Publications
Agglomerative Constrained Clustering Through Similarity and Distance Recalculation,
, International Conference on Hybrid Artificial Intelligence Systems, p.424-436, (2020)
Improving constrained clustering via decomposition-based multiobjective optimization with memetic elitism,
, GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 06/2020, p.333–341, (2020)
3377930.3390187.pdf (297.15 KB)

Un primer estudio sobre el uso de los sistemas de clasificación basados en reglas difusas en problemas de clasificación con clases no balanceadas,
, XIV Congreso Español sobre tecnologías y lógica fuzzy, 01, Ciudad Real (Español), (2006)
CommuniMents: A Framework for Detecting Community Based Sentiments for Events,
, International Journal on Semantic Web and Information Systems, Volume 13, Issue 2, p.87-108, (2017)
Decomposition-Fusion for Label Distribution Learning,
, Information Fusion, 02/2021, Volume 66, p.64-75, (2021)
1-s2.0-S1566253520303596-main.pdf (947.74 KB)

DILS: Constrained clustering through dual iterative local search,
, Computers & Operations Research, Volume 121, p.104979, (2020)
1-s2.0-S0305054820300964-main.pdf (903.73 KB)

Enhancing instance-level constrained clustering through differential evolution,
, Applied Soft Computing, Volume 108, Number 107435, p.1-19, (2021)
Making CN1 -SD Subgroup Discovery Algorithm Scalable to Large Size Data Sets Using Instance Selection,
, Expert System with Applications, Volume 35, Number 4, p.1949-1965, (2008)
Monotonic classification: An overview on algorithms, performance measures and data sets,
, Neurocomputing, 05/2019, Volume 341, p.168-182, (2019)
1-s2.0-S0925231219302383-main.pdf (1.52 MB)

ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning,
, Applied Sciences, Volume 10, Issue 9, p.3089, (2020)
Similarity-based and Iterative Label Noise Filters for Monotonic Classification,
, Proceedings of the 53rd Hawaii International Conference on System Sciences, p.1698-1706, (2020)
0169.pdf (253.64 KB)

Smartdata: Data preprocessing to achieve smart data in R,
, Neurocomputing, 09/2019, Volume 360, p.1-13, (2019)
Synthetic Sample Generation for Label Distribution Learning,
, Information Sciences, 01/2021, Volume 544, p.197-213, (2021)
1-s2.0-S0020025520307544-main.pdf (1.36 MB)
