Publications
Using Evolutionary Algorithms as Instance Selection for Data Reduction in KDD: an Experimental Study,
, IEEE Transactions on Evolutionary Computation, Volume 7, Number 6, p.561-575, (2003)
Training set selection for monotonic ordinal classification,
, Data & Knowledge Engineering, Volume 112, p.94 - 105, (2017)
Synthetic Sample Generation for Label Distribution Learning,
, Information Sciences, 01/2021, Volume 544, p.197-213, (2021)
1-s2.0-S0020025520307544-main.pdf (1.36 MB)

Subgroup Discovery in Large Size Data Sets Preprocessed Using Stratified Instance Selection for Increasing the Presence of Minority Classes,
, Pattern Recognition Letters, Volume 29, p.2156-2164, (2008)
Stratification for Scaling Up Evolutionary Prototype Selection,
, Pattern Recognition Letters, Volume 26, p.953-963, (2005)
Similarity-based and Iterative Label Noise Filters for Monotonic Classification,
, Proceedings of the 53rd Hawaii International Conference on System Sciences, p.1698-1706, (2020)
0169.pdf (253.64 KB)

Replacement strategies to preserve useful diversity in steady-state genetic algorithms,
, Information Sciences, Volume 178, Number 23, p.4421–4433, (2008)
Replacement Strategies to Preserve Useful Diversity in Steady-State Genetic Algorithms,
, Information Sciences, (2012)
Prototype selection to improve monotonic nearest neighbor,
, Engineering Applications of Artificial Intelligence, Volume 60, p.128 - 135, (2017)
Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study,
, IEEE Transactions Pattern Analysis and Machiche Intelligence, Volume 34, Number 3, p.417–435, (2012)
ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning,
, Applied Sciences, Volume 10, Issue 9, p.3089, (2020)
Predictive-collaborative model as recovery and validation tool. Case of study: Psychiatric emergency department decision support,
, Expert Systems with Applications, Volume 39, Number 4, p.4044–4048, (2012)
On the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining,
, Applied Soft Computing, Volume 6, p.323-332, (2006)
Monotonic classification: An overview on algorithms, performance measures and data sets,
, Neurocomputing, 05/2019, Volume 341, p.168-182, (2019)
1-s2.0-S0925231219302383-main.pdf (1.52 MB)

MoNGEL: monotonic nested generalized exemplar learning,
, Pattern Analysis and Applications, May, Volume 20, Number 2, p.441–452, (2017)
MoNGEL: monotonic nested generalized exemplar learning,
, Pattern Analysis and Applications, p.1–12, (2015)
Modelo predictivo colaborativo de apoyo al diagnóstico en servicio de urgencias psiquiátricas,
, Revista Ibérica de Sistemas y Tecnologías de la información, Volume 4, Number 4, p.29-42, (2009)
Making CN2-SD Subgroup Discovery Algorithm scalable to Large Size Data Sets using Instance Selection,
, Expert Systems with Applications, Volume 35, p.1949-1965, (2008)
Making CN1 -SD Subgroup Discovery Algorithm Scalable to Large Size Data Sets Using Instance Selection,
, Expert System with Applications, Volume 35, Number 4, p.1949-1965, (2008)
Linguistic Modeling with Hierarchical Systems of Weighted Linguistic Rules,
, International Journal of Approximate Reasoning, Volume 32, Number 2-3, p.187-215, (2003)
Label noise filtering techniques to improve monotonic classification,
, Neurocomputing, 08/2019, Volume 353, p.83-95, (2019)
1-s2.0-main.pdf (1.21 MB)

Hyperrectangles Selection for Monotonic Classification by Using Evolutionary Algorithms,
, International Journal Computational Intelligence Systems, Volume 9, Number 1, p.184–201, (2016)
Evolutionary Stratified Training Set Selection for Extracting Classification Rules with trade off Precision-Interpretability,
, Data & Knowledge Engineering, Volume 60, Number 1, p.90-108, (2007)
Enhancing instance-level constrained clustering through differential evolution,
, Applied Soft Computing, Volume 108, Number 107435, p.1-19, (2021)
DILS: Constrained clustering through dual iterative local search,
, Computers & Operations Research, Volume 121, p.104979, (2020)
1-s2.0-S0305054820300964-main.pdf (903.73 KB)

Diagnose of Effective Evolutionary Prototype Selection using an Overlapping Measure,
, International Journal of Pattern Recognition and Artificial Intelligence, Volume 23, Number 8, p.1527-1548, (2009)
Decomposition-Fusion for Label Distribution Learning,
, Information Fusion, 02/2021, Volume 66, p.64-75, (2021)
1-s2.0-S1566253520303596-main.pdf (947.74 KB)

CommuniMents: A Framework for Detecting Community Based Sentiments for Events,
, International Journal on Semantic Web and Information Systems, Volume 13, Issue 2, p.87-108, (2017)
Analysis of data complexity measures for classification,
, Expert Systems with Applications, Volume 40, Number 12, p.4820–4831, (2013)
A memetic algorithm for Evolutionary Prototype Selection: A Scaling Up Approach,
, Pattern Recognition, Volume 41, Number 8, p.2693-2709, (2008)
A greedy randomized adaptive search procedure applied to the clustering problem as an initialization process using K-Means as a local search procedure,
, Journal of Intelligent and Fuzzy Systems, Volume 12, Number 3-4, p.235–242, (2002)
Un algoritmo memético para la selección de prototipos: Una propuesta eficiente para problemas de tamaño medio,
, Proceedings Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB), Tenerife, (2007)
Selección Evolutiva de Instancias en Minería de Datos,
, Workwhop de Minería de Datos y Aprendizaje Automático, 01, Santander (España), (2002)
Scrae Web: Sistema de Corrección y Revisión Automática de Exámenes a Través de la Web,
, Jornadas de Enseñanza Universitaria de la Informática Jenui , 01, Cáceres (España), (2002)
Replacement Strategies to Maintain Useful Diversity in Steady-State Genetic Algorithms,
, Proceedings of the 8th Online World Conference on Soft Computing in Industrial Applications, September, (2003)
Incorporating Knowledge in Evolutionary Prototype Selection,
, Proceedings of the 7th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), Volume 4224, p.1358-1366, (2006)
Improving constrained clustering via decomposition-based multiobjective optimization with memetic elitism,
, GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 06/2020, p.333–341, (2020)
3377930.3390187.pdf (297.15 KB)

Estudio de la influencia de las medidas de complejidad de los datos en los Sistemas de Clasifcación Basados en Reglas Difusas: Análisis de la Razón Discriminante de Fisher,
, XIV Congreso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF), September, Mieres (Spain), p.257-263, (2008)
Credal C4.5 with Refinement of Parameters,
, Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications, Cham, p.739–747, (2018)
Análisis of Evolutionary Prototype Selection by means of a Data Complexity Measure based on Class Separabilty,
, Actas del Taller de Minería de Datos y Aprendizaje (TAMIDA), Zaragoza, p.145-152, (2007)
An Study on the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining,
, Proceedings of the 8th Online World Conference on Soft Computing in Industrial Applications, September, (2003)
Agglomerative Constrained Clustering Through Similarity and Distance Recalculation,
, International Conference on Hybrid Artificial Intelligence Systems, p.424-436, (2020)
A proposal of Evolutionary Prototype Selection for Class Imbalance Problems,
, Proceedings of the 7th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), Volume 4224, p.1415-1423, (2006)
A Nearest Hyperrectangle Monotonic Learning Method,
, Proceedings of the 11th International Conference Hybrid Artificial Intelligent Systems, 2016, Seville, Spain, April 18-20, 2016, p.311–322, (2016)
A GRASP Algorithm for Clustering,
, Proceedings of the 8th Ibero-American Conference on Artifical Intelligence, Seville, Spain, November 12-15, 2002,, p.214–223, (2002)
A First Attempt on Monotonic Training Set Selection,
, Hybrid Artificial Intelligent Systems, Cham, p.277–288, (2018)
Técnicas de reducción de datos en KDD,
, Minería de datos: Técnicas y Aplicaciones, Number 13-33, Sevilla (España), (2005)
Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining,
, Evolutionary Computation in Data Mining, Berlin, Heidelberg, p.21–39, (2005)
Selección Evolutiva Estratificada de Conjuntos de Entrenamiento para la Obtención de Bases de Reglas con un Alto Equilibrio entre Precisión e Interpretabilidad,
, Tendencias de la Minería de Datos en Spain., p.263 - 274, (2004)
Replacement Strategies to Maintain Useful Diversity in Steady-State Genetic Algorithms,
, 01, p.85-96, (2005)
Instance Selection Using Evolutionary Algorithms: An Experimental Study,
, Advanced Techniques in Knowledge Discovery and Data Mining, London, p.127–152, (2005)
De la teoría a la práctica: una reflexión sobre el EEES en aula,
, Adaptación del profesorado universitario al espacio europeo de educación superior mediante el uso de nuevas tecnologías, Number 69-77, Jaén (España), (2005)
A Study on the Combination of Evolutionary Algorithms and Stratified Strategies for Training Set Selection in Data Mining,
, Soft Computing: Methodologies and Applications, p.271-284, (2005)
A Review on Evolutionary Prototype Selection,
, Intelligent Systems for Automated Learning and Adaptation: Emerging Trends and Applications, p.92–113, (2010)