Publicaciones
Strategies for time series forecasting with generalized regression neural networks,
, Neurocomputing, Volume 491, p.509-521, (2022)
ClEnDAE: A classifier based on ensembles with built-in dimensionality reduction through denoising autoencoders,
, Information Sciences, Volume 565, p.146-176, (2021)
1-s2.0-S0020025521002024-main.pdf (1.79 MB)

E2PAMEA: un algoritmo evolutivo para la extraccióni eficiente de patrones emergentes difusos en entornos big data,
, Proceedings of the XIX Conference of the Spanish Association for Artificial Intelligence, (2021)
2021 - CAEPIA - E2PM.pdf (173.29 KB)

Reducing Data Complexity using Autoencoders with Class-informed Loss Functions,
, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume In Press, (2021)
Slicer: Feature Learning for Class Separability with Least-Squares Support Vector Machine Loss and COVID-19 Chest X-Ray Case Study,
, Hybrid Artificial Intelligent Systems, Cham, p.305–315, (2021)
A Comprehensive and Didactic Review on Multilabel Learning Software Tools,
, IEEE Access, 03/2020, Volume 8, p.50330-50354, (2020)
An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges,
, Neurocomputing, Volume 404, p.93-107, (2020)
1-s2.0-S092523122030624X-main.pdf (0 bytes)

Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications,
, Neurocomputing, Volume 410, p.237-270, (2020)
Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines,
, Information Fusion, 02/2020, Volume 54, p.44-60, (2020)
1-s2.0-S1566253519300880-main.pdf (895.14 KB)

E2PAMEA: A fast evolutionary algorithm for extracting fuzzy emerging patterns in big data environments,
, Neurocomputing, 11/2020, Volume 415, p.60-73, (2020)
1-s2.0-S0925231220311139-main.pdf (927.85 KB)

El ecosistema de aprendizaje del estudiante universitario en la post-pandemia. Metodologías y herramientas,
, Enseñanza y Aprendizaje de Ingeniería de Computadores, Number 10, (2020)
EvoAAA: An evolutionary methodology for automated neural autoencoder architecture search,
, Integrated Computer-Aided Engineering, 05/2020, Volume 27, Number 3, p.211-231, (2020)
FCharte-EvoAAAOpen.pdf (820.83 KB)

A First Approximation to the Effects of Classical Time Series Preprocessing Methods on LSTM Accuracy,
, International Work-Conference on Artificial Neural Networks, 05/2019, p.270-280, (2019)
A Showcase of the Use of Autoencoders in Feature Learning Applications,
, International Work-Conference on the Interplay Between Natural and Artificial Computation, 05/2019, p.412-421, (2019)
A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations,
, Progress in Artificial Intelligence, 11, Volume 8, p.1-14, (2019)
2018-PRAI-NonStandard-Accepted.pdf (951.61 KB)

Automatic Time Series Forecasting with GRNN: A Comparison with Other Models,
, International Work-Conference on Artificial Neural Networks, 05/2019, p.198-209, (2019)
Automating Autoencoder Architecture Configuration: An Evolutionary Approach,
, International Work-Conference on the Interplay Between Natural and Artificial Computation, 05/2019, p.339-349, (2019)
Dealing with difficult minority labels in imbalanced mutilabel data sets,
, Neurocomputing, Volume 326, p.39–53, (2019)
2019-NeucomDealingDifficultLabels.pdf (4.77 MB)

predtoolsTS: R package for streamlining time series forecasting,
, Progress in Artificial Intelligence, 06/2019, Volume 8, p.505–510, (2019)
Charte2019_Article_PredtoolsTSRPackageForStreamli.pdf (390.07 KB)

REMEDIAL-HwR: Tackling multilabel imbalance through label decoupling and data resampling hybridization,
, Neurocomputing, Volume 326, p.110–122, (2019)
2019-NeucomRemedial-HwR.pdf (2.83 MB)

Ruta: implementations of neural autoencoders in R,
, Knowledge-Based Systems, 06/2019, Volume 174, p.4-8, (2019)
1-s2.0-S0950705119300140-main.pdf (421.73 KB)

Smartdata: Data preprocessing to achieve smart data in R,
, Neurocomputing, 09/2019, Volume 360, p.1-13, (2019)
Time Series Forecasting with KNN in R: the tsfknn Package,
, The R Journal, 12/2019, Volume 11, Number 2, p.229-242, (2019)
RJ-2019-004.pdf (204.01 KB)

A First Approach to Face Dimensionality Reduction Through Denoising Autoencoders,
, 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, 11, Madrid (Spain), p.439–447, (2018)
2018-IDEAL-DimensionalityDAE.pdf (2.45 MB)

A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines,
, XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018), 10, Granada (Spain), p.949–950, (2018)
2018-CAEPIA-TutorialAEs.pdf (59.39 KB)

A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations,
, Progress in Artificial Intelligence, Nov, (2018)
AEkNN: An AutoEncoder kNN-Based Classifier With Built-in Dimensionality Reduction,
, International Journal of Computational Intelligence Systems, 11/2018, Volume 12, p.436-452, (2018)
125905686.pdf (3.86 MB)

An Approximation to Deep Learning Touristic-Related Time Series Forecasting,
, 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, 11, Madrid (Spain), p.448–456, (2018)
2018-IDEAL-LSTMTouristic.pdf (2.13 MB)

Análisis del impacto de datos desbalanceados en el rendimiento predictivo de redes neuronales convolucionales,
, XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018), 10, Granada (Spain), p.1213–1218, (2018)
2018-CAEPIA-DesbalanceoCNNs.pdf (228.43 KB)

Nuevas arquitecturas hardware de procesamiento de alto rendimiento para aprendizaje profundo,
, Enseñanza y aprendizaje de ingeniería de computadores. Revista de experiencias docentes en ingeniería de computadores, Volume 8, p.67–83, (2018)
2018-EAIC18-HardwareAltoRend-compressed.pdf (431.68 KB)

Tips, guidelines and tools for managing multi-label datasets: The mldr.datasets R package and the Cometa data repository,
, Neurocomputing, Volume 289, p.68–85, (2018)
2018-Neucom-TipsMLCCometa-compressed.pdf (1017.86 KB)

Una primera aproximación a la predicción de variables turísticas con Deep Learning,
, XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018), 10, Granada (Spain), p.939–943, (2018)
2018-CAEPIA-TurismoLSTMs.pdf (127.66 KB)

A first approach towards a fuzzy decision tree for multilabel classification,
, 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 7, Naples (Italy), p.1–6, (2017)
2017-IEEE-FuzzyDTMLC.pdf (299.08 KB)

A specialized lazy learner for time series forecasting,
, 17th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2017, 7, Costa Ballena, Rota, Cáadiz (Spain), p.1397–1403, (2017)
2017-CMMSE-SpecializedLazyLearner.pdf (211.11 KB)

A Transformation Approach Towards Big Data Multilabel Decision Trees,
, 14th International Work-Conference on Artificial Neural Networks (IWANN 2017), 6, Cádiz (Spain), p.73–84, (2017)
2017-IWANN-BigDataMLDT.pdf (372.37 KB)

Comparative analysis of data mining and response surface methodology predictive models for enzymatic hydrolysis of pretreated olive tree biomass,
, Computers & Chemical Engineering, Volume 101, p.23–30, (2017)
2017-CACE-Biomasa.pdf (1.28 MB)

Evolución tecnológica del hardware de vídeo y las GPU en los ordenadores personales,
, Enseñanza y aprendizaje de ingeniería de computadores. Revista de experiencias docentes en ingeniería de computadores, Volume 7, p.111–128, (2017)
2017-EAIC17-EvolucionGPUs.pdf (2.1 MB)

Is the average photon energy a unique characteristic of the spectral distribution of global irradiance?,
, Solar Energy, Volume 149, p.32–43, (2017)
2017-SolarEnergy-Photon-compressed.pdf (534.33 KB)

Modeling the Transformation of Olive Tree Biomass into Bioethanol with Reg-CO2RBFN,
, 14th International Work-Conference on Artificial Neural Networks (IWANN 2017), 6, Cádiz (Spain), p.733–744, (2017)
2017IWANN-Biomass.pdf (158.82 KB)

On the Impact of Imbalanced Data in Convolutional Neural Networks Performance,
, 12th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2017, 6, La Rioja (Spain), p.220–232, (2017)
Pulgar2017_Chapter_OnTheImpactOfImbalancedDataInC.pdf (634.69 KB)

Uso de dispositivos FPGA como apoyo a la enseñanza de asignaturas de arquitectura de computadores,
, Enseñanza y aprendizaje de ingeniería de computadores. Revista de experiencias docentes en ingeniería de computadores, Volume 7, p.37–52, (2017)
2017-EAIC17-FPGAsEnsenanza.pdf (1.48 MB)

Análisis visual de técnicas no supervisadas de deep learning con el paquete dlvisR,
, XVII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2016), 9, Salamanca (Spain), p.895–904, (2016)
2016-CAEPIA-dlvisR.pdf (2.56 MB)

Combining simple exponential smoothing models for time series forecasting,
, International work-conference on Time Series, ITISE 2016, 6, Granada (Spain), p.635-644, (2016)
2016-ITISE-ExponentialSmoothing.pdf (1.13 MB)

Explotación de la potencia de procesamiento mediante paralelismo: un recorrido histórico hasta la GPGPU,
, Enseñanza y aprendizaje de ingeniería de computadores. Revista de experiencias docentes en ingeniería de computadores, Volume 6, p.19–33, (2016)
2016-EAIC16-Paralelismo.pdf (1.16 MB)

MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation,
, XVII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2016), 9, Salamanca (Spain), p.821–822, (2016)
2016-CAEPIA-MLSMOTE.pdf (579.04 KB)

On the Impact of Dataset Complexity and Sampling Strategy in Multilabel Classifiers Performance,
, 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2016, 4, Seville (Spain), p.500–511, (2016)
Complexity.pdf (1.56 MB)

R Ultimate Multilabel Dataset Repository,
, 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2016, 4, Seville (Spain), p.487–499, (2016)
RUMDR.pdf (294.87 KB)

Subgroup Discovery with Evolutionary Fuzzy Systems in R: the SDEFSR Package,
, The R Journal, Volume 8, Issue 2, p.307-323, (2016)
2016-Garcia-RJournal.pdf (2.56 MB)

Addressing imbalance in multilabel classification: Measures and random resampling algorithms,
, Neurocomputing, Volume 163, p.3–16, (2015)
2015-Neucom-AddressingImbalance.pdf (546.81 KB)

An ensemble strategy for forecasting the extra-virgin olive oil price in Spain,
, International work-conference on Time Series, ITISE 2015, 7, Granada (Spain), p.506–516, (2015)
2015-ITISE-ForecastOliveOil.pdf (547.65 KB)

CO2RBFN-CS: First Approach Introducing Cost-Sensitivity in the Cooperative-Competitive RBFN Design,
, 13th International Work-Conference on Artificial Neural Networks (IWANN 2015), 6, Palma de Mallorca (Spain), p.361–373, (2015)
mldr: Paquete R para Exploración de Datos Multietiqueta,
, XVI Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2015), 11, Albacete (Spain), p.695–704, (2015)
2015-CAEPIA-mldr.pdf (2.39 MB)

MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation,
, Knowledge-Based Systems, Volume 89, p.385–397, (2015)
2015-KBS-MLSMOTE.pdf (1.56 MB)

{QUINTA: A question tagging assistant to improve the answering ratio in electronic forums},
, IEEE International Conference on Computer as a Tool, EUROCON 2015, 9, Salamanca (Spain), p.1-6, (2015)
2015-EUROCON-QUINTA.pdf (2.03 MB)

Resampling Multilabel Datasets by Decoupling Highly Imbalanced Labels,
, 10th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2015, 6, Bilbao (Spain), p.489–501, (2015)
2015-HAIS-REMEDIAL.pdf (1.04 MB)

Usando Algoritmos de Descubrimiento de Subgrupos en R: El Paquete SDR,
, VII Simposio de Teoría y Aplicaciones de Minería de Datos, p.739-748, (2015)
2015 - TAMIDA-b.pdf (335 KB)

Working with Multilabel Datasets in R: The mldr Package,
, The R Journal, Volume 7, Number 2, p.149–162, (2015)
2015-RJournal-mldr.pdf (1.16 MB)

Concurrence among Imbalanced Labels and Its Influence on Multilabel Resampling Algorithms,
, 9th International Conference on Hybrid Artificial Intelligent Systems (HAIS 2014), 6, Salamanca (Spain), p.110–121, (2014)
2014-HAIS-ConcurrenceLabels.pdf (1.12 MB)

LI-MLC: A Label Inference Methodology for Addressing High Dimensionality in the Label Space for Multilabel Classification,
, IEEE Transactions on Neural Networks and Learning Systems, Volume 25, Number 10, p.1842-1854, (2014)
2014-TNNLS-LI-MLC.pdf (1.85 MB)

MLeNN: A First Approach to Heuristic Multilabel Undersampling,
, 15th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2014, 9, Salamanca (Spain), p.1-9, (2014)
2014-IDEAL-MLeNN.pdf (184.04 KB)

Propuesta de una asignatura de Diseño de Servidores para la especialidad de Tecnologías de Información,
, Enseñanza y aprendizaje de ingeniería de computadores. Revista de experiencias docentes en ingeniería de computadores, Volume 4, p.15–24, (2014)
2014-EAIC14-AsignaturaDisenoServ.pdf (864.57 KB)

A First Approach to Deal with Imbalance in Multi-label Datasets,
, 8th International Conference on Hybrid Artificial Intelligent Systems (HAIS 2013), 9, Salamanca (Spain), p.150-160, (2013)
2013-HAIS-ImbalanceMultilabel.pdf (194.4 KB)

Alternative OVA Proposals for Cooperative Competitive RBFN Design in Classification Tasks,
, 12th International Work-Conference on Artificial Neural Networks (IWANN 2013), Tenerife (Spain), p.331-338, (2013)
2013-IWANN-AlternativeOVA.pdf (146.42 KB)

Improving Multi-label Classifiers via Label Reduction with Association Rules,
, 7th International Conference on Hybrid Artificial Intelligent Systems (HAIS 2012), 9, Salamanca (Spain), p.188–199, (2012)
2012-HAIS-LabelReduction.pdf (171.47 KB)

Multi-label Testing for CO2RBFN: A First Approach to the Problem Transformation Methodology for Multi-label Classification,
, 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, 6, Torremolinos-Málaga (Spain), p.41–48, (2011)
2011-IWANN-MultilabelTestingCO2RBFN.pdf (131.76 KB)

ReturnOK: El pasado de la computación personal,
, V Congreso Internacional de Patrimonio e Historia de la Ingeniería, 4, Las Palmas de Gran Canaria (Spain), p.1–19, (2010)
2010-CIPHI-Actas.pdf (1.16 MB)

ReturnOK, la Wiki sobre retroinformática,
, Iniciación a la Investigación, Volume 5, p.1-5, (2010)
2010-IniciaInvUJA-ReturnOK.pdf (82.73 KB)
