MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation

TitleMLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
Publication TypeConference Paper
Year of Publication2016
AuthorsCharte, Francisco, Rivera Antonio J., del Jesus M. J., and Herrera F.
Conference NameXVII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2016)
Pagination821–822
Date Published9
Conference LocationSalamanca (Spain)
ISBN Number978-84-9012-632-5
Abstract

This is a summary of our article published in Knowledge-Based Systems to be part of the MultiConference CAEPIA'16 Key-Works.

Notes

-