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a b s t r a c t 

Currently, knowledge discovery in databases is an essential first step when identifying valid, novel and 

useful patterns for decision making. There are many real-world scenarios, such as bankruptcy predic- 

tion, option pricing or medical diagnosis, where the classification models to be learned need to fulfill 

restrictions of monotonicity (i.e. the target class label should not decrease when input attributes values 

increase). For instance, it is rational to assume that a higher debt ratio of a company should never re- 

sult in a lower level of bankruptcy risk. Consequently, there is a growing interest from the data mining 

research community concerning monotonic predictive models. This paper aims to present an overview 

of the literature in the field, analyzing existing techniques and proposing a taxonomy of the algorithms 

based on the type of model generated. For each method, we review the quality metrics considered in 

the evaluation and the different data sets and monotonic problems used in the analysis. In this way, this 

paper serves as an overview of monotonic classification research in specialized literature and can be used 

as a functional guide for the field. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Data mining, as a key stage in the discovery of knowledge, is

aimed at extracting models that represent data in ways we may

not have previously taken into consideration [1] . Among all the

data mining alternatives, we focus our attention on classification

as a predictive task [2,3] . There is a particular case of predictive

classification where the target class takes values in a set of ordered

categories. In the case at hand, we are referring to ordinal classi-

fication or regression [4] . In addition, the classification task is de-

fined as monotonic classification in those cases in which domains

of attributes have been ordered and a monotonic relationship ex-

ists between an evaluation of an object in the attributes and its

class assignment [5] . 

Monotonicity is a type of background knowledge of vital im-

portance for many real problems, which is needed to obtain more
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ccurate, robust and fairer models of the data considered. In this

ay, monotonicity can be found in different environments such

s economics, natural language or game theory [5] , as well as the

valuation of courses at teaching institutions [6] . 

Some important examples of real problems where this kind of

ackground knowledge has to be considered are being analyzed to-

ay. For bankruptcy prediction in companies in time [7] , appropri-

te action should be taken considering the information based on

nancial indicators taken from their annual reports. Monotonicity

s present in the comparison of two companies where one dom-

nates the other in all financial indicators. Because of this dom-

nance, the overall evaluation of the second one should not be

igher than that of the first. In this way, monotonic classification

as been applied to predict the credit rating score used by banks

8] . Another example is the house pricing problem [9] , in which we

hould assure that the price of a house increases with an increase

f the number of rooms or with the availability of air conditioning,

nd that it decreases with, for example, the pollution concentration

n the area. 

Considering monotonicity constraints in a learning task is moti-

ated by two main facts [10] : (1) the size of the hypothesis space
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1 Recall that y, y ′ ∈ Y = { 1 , . . . , C} , so that every two labels can be compared us- 

ing the ordinal scale. 
hich facilitates the learning process, is reduced; (2) other met-

ics besides accuracy, such as the consistency with respect to these

onstraints, can be used by experts to accept or reject certain

odels. 

In this way, the need of handling background knowledge about

rdinal evaluations and monotonicity constraints in the learning

rocess has led to the development of new algorithms. The interest

n the field of monotonic classification has significantly increased

11,12] , leading to a growing number of techniques and methods.

part from these algorithmic developments, different quality mea-

ures have been presented to measure the consistency with respect

onotonicity constraints. 

Given that, to the knowledge of the authors, there are no func-

ional guides for this domain of study, and it can be difficult to

btain a general overview of the state of the art. Because of this

eason, this paper presents an overview on the monotonic classifi-

ation field, including: 

• A systematic review of the techniques proposed in the liter-

ature. 

• A taxonomy to categorize all the existing algorithms, includ-

ing whether or not there is publicly available software re-

lated to them. 

• The quality measures applied to evaluate the performance

of monotonic classifiers in the literature. These metrics ana-

lyze the performance both in terms of accuracy and degree

of fulfillment of the monotonicity constraints. 

• Finally, the data sets considered in every proposal and a

summary of which are the most used and where they can

be found. 

The remainder of this paper is structured as follows.

ection 2 presents a definition of the monotonic classification

roblem. Section 3 shows an overview of the monotonic methods

nd the taxonomy proposed to categorize them. Section 4 offers an

nalysis of the quality metrics considered in monotonic classifica-

ion. Section 5 presents the data sets evaluated in the literature,

ighlighting the most popular ones and where they can be found.

n Section 6 we offer some guidelines regarding existing methods

o researchers interested in this topic and we enumerate some rec-

mmendations for future research. Finally, Section 7 is devoted to

he conclusions reached. 

. Definition of monotonic classification 

The process of data knowledge discovery in databases is a key

bjective for organizations to make accurate and timely decisions

nd recognize the value in data sources. One of the main stages

ithin the process is data mining [1] , where models are extracted

rom the input data collected. These models are used to support

eople in making decisions about problems that may be rapidly

hanging and not easily specified in advance (i.e. unstructured and

emi-structured decision problems). Among all kinds of models, we

ocus our attention on classification algorithms, where the goal is

o predict the value of a target variable. When the target variable

xhibits a natural ordering, we are talking about ordinal classifi-

ation (also known as ordinal regression) [4,11,13,14] . The order of

he categories can be exploited to construct more accurate mod-

ls in those application domains involving preferences, like social

hoice, multiple criteria decision making, or decision under risk

nd uncertainty. For example, in a factory a worker can be evalu-

ted as “excellent”, “good” or “bad”, or a credit risk can be rated as

AAA”, “AA”, “A” or “A-”. A particular case of ordinal classification

s monotonic classification [11] . The interest in monotonic classifi-

ation of the scientific community has increased over the last few
ears. This fact can be corroborated in Fig. 1 , where the number of

roposals in the specialized literature is represented over time. 

Classification problems where there is background knowledge

n the form of ordinal evaluations and monotonicity constraints

re very common. In this kind of problem, the order properties of

he input space are exploited, by using the available knowledge in

erms of dominance relation (one sample dominates another when

ach coordinate of the former is not smaller than the respective

oordinate of the latter). Monotonicity constraints require that the

lass label assigned to a pattern should be greater or equal to the

lass labels assigned to the patterns it dominates. As an example,

onsider a monotonicity constraint relating one input attribute and

he target class. In this case, a sample in the data set with a higher

alue of the input attribute should not be associated to a lower

lass value, as long as the other attributes of the sample are fixed.

 monotonicity constraint always involves one input attribute and

he class attribute, and there should be, at least, one monotonicity

onstraint (to distinguish monotonic classification from ordinal re-

ression). Monotonicity constraints can be either direct (as the ex-

mple presented before) or inverse (if the value of the attribute de-

reases, the class value should not increase). Usually, in real mono-

onic classification problems, the monotonicity constraints are as-

umed only for a subset of the input features. 

As a descriptive example, we can consider student evaluation

n a college, the students being evaluated with a rating between 0

nd 10. We consider three students (Student A, B and C) with 22

valuations each one and a final mark. We consider that all the in-

ut attributes (22 evaluations) have a direct monotonic assumption

ith respect to the output value (final qualification, represented in

old face): 

• Student A: 5,5,5,5,7,6,5,5,5,5,5,5,6,5,5,6,6,6,5,5,5,5, 4 . 

• Student B: 3,5,3,4,7,3,3,5,3,3,3,3,6,3,3,4,3,6,4,3,5,3, 5 . 

• Student C: 2,2,1,2,1,2,2,3,2,2,1,2,3,2,2,3,3,2,2,1,2,3, 2 . 

As can be observed, there is a monotonic violation involving

wo samples (Students A and B), where Student B, who has worse

r equal evaluation marks than Student A, who presents a higher

nal qualification. On the other hand, there are no monotonic vio-

ations when considering Student C with respect to both Students

 and B. 

Now, we formally define a classification data set with ordinal

abels and monotonicity constraints. Let us assume that patterns

re described using a total of f input variables with ordered do-

ains, x i ⊆ R 

f , and a class label, y i , from a finite set of C ordered

abels, y i ∈ Y = { 1 , . . . , C} . In this way, the data set D consists of n

amples or instances D = { (x 1 , y 1 ) , . . . , (x n , y n ) } . As previously dis-

ussed, a dominance relation , �, is defined as follows: 

 � x 

′ ⇔ x s ≥ x s 
′ ∀ s with a monotonicity constraint , (1)

here x s and x s 
′ 

are the s th coordinates of patterns x and x ′ , re-

pectively. In other words, x dominates x ′ if each coordinate of x

s not smaller than the respective coordinate of x ′ . 
Samples x and x ′ in space D are comparable if either x ′ �x ′ or

 

′ �x . Both x and x ′ are incomparable otherwise. Two examples x

nd x ′ are identical if x j = x j 
′ 
, ∀ j ∈ { 1 , . . . , f } , and they are non-

dentical if ∃ j for which x j � = x j 
′ 
. 

A pair of comparable examples ( x , y ) and ( x ′ , y ′ ) is said to be

onotone if: 1 

 � x 

′ ∧ x � = x 

′ ∧ y ≥ y ′ , (2)

r 

 = x 

′ ∧ y = y ′ . (3)
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Fig. 1. Number of monotonic classification proposals over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A data set D with n examples is monotone if all possible pairs

of examples are either monotone or incomparable. It is worth

mentioning that the previous notation was expressed for direct

monotonicity constraints, but it could be changed to consider in-

verse ones. This definition considers that all f characteristics to be

monotonous, forming a fully monotone data set . 

However, in real life there may be data sets with monotonic ( m )

and non-monotonic ( p ) characteristics, forming a partially mono-

tone data set whose definition would be as follows: 

For D = { (x m 

1 
, x 

p 
1 
, y 1 ) , . . . , (x m 

n , x 
p 
n , y n ) } , where the patterns are

described using f input variables ( f = m + p), x m 

i 
⊆ R 

f m with or-

dered domains, x 
p 
i 

⊆ R 

f p with unordered domains and a class la-

bel, y i , from a finite set of C ordered labels, y i ∈ Y = { 1 , . . . , C} .
The monotone partial order �η is defined in expression ( 4 ) and

partial monotonic data set in expression ( 5 ), for (( x m , x p ), y ) and

((x m 

′ 
, x p 

′ 
) , y ′ ) : 

(x 

m , x 

p ) �η (x 

m 

′ 
, x 

p ′ ) ⇔ x m ≥ x m 

′ ∀ m , x p = x p 
′ ∀ p (4)

(x 

m , x 

p ) �η (x 

m 

′ 
, x 

p ′ ) ∧ y ≥ y ′ , ∀ (x 

m , x 

p ) , (x 

m 

′ 
, x 

p ′ ) ∈ D (5)

3. A taxonomy for monotonic classification algorithms 

This section presents and describes the proposals in the spe-

cialized literature for monotonic classification, deriving a taxonomy

from them. 

The Knowledge Data Discovery process is composed of sev-

eral stages. Two of them are usually known as data preprocessing

and data mining [15] . In monotonic classification, the algorithms

present in the literature belong to one of these two stages: data

preprocessing [16] for monotonic classification problems (here, we

denote it as Monotonic Data Preprocessing) or knowledge extrac-

tion through monotonic classification [11] , respectively. The re-

maining categorizations are based on the goal of the different

methods, the heuristics followed and the models generated by

each algorithm. In this sense, the algorithms proposed can be di-

vided into: 

1. Monotonic Classifiers, aiming at the generation of predictive

models satisfying the monotonicity constraints either par-
tially or totally. There are several families of classifiers de-

pending on the type of model they build: 

• Instance based classifiers. These algorithms do not build

a model but they directly use the instances of the data

set of to make classification decisions. 

• Decision trees or classification rules. In this case, the

models built involve readable production rules in forms

of decision trees or a set of rules. 

• Ensembles [17] or multiclassifiers. This group is com-

posed by methods which use several classifiers to obtain

different responses, which are aggregated into a global

classification decision. Two classical approaches are con-

sidered: 

– Boosting: a number of weak learners are combined to

create a strong classifier able to achieve accurate pre-

dictions. These algorithms use all data to train each

learner, but the instances are associated with differ-

ent weights representing their relevance in the learn-

ing process. If an instance is misclassified by a weak

learner, its weight is increased so that subsequent

learners focus on them. This process is applied iter-

atively. 

– Bagging: it chooses random subsets of samples with

replacement of the data set, and a (potentially) weak

learner is trained from each subset. 

• Neural Networks. These are biologically inspired mod-

els, where the function relating inputs and target at-

tribute consists of a set of building blocks (neurons),

which are organized in layers and interconnected. An it-

erative training process is performed to obtain the values

of connection weights. They are the precursors of Deep

Learning, which is currently the most promising area in

Machine Learning [18] . 

• Support Vector Machines. This family considers support

vector machines based learning and derivatives. 

• Hybrid. This last set of algorithms considers the combi-

nation of different classification algorithms into a hybrid

one (for example, rule and instance-based learning). 

• Fuzzy Integral. These algorithms are based on the

use of the Choquet integral which can be seen as a
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Fig. 2. Monotonic algorithms taxonomy. 
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y max = min { y | (x , y ) ∈ D ∧ x 0  x } . (8) 
generalization of the standard (Lebesque) integral to the

case of non-additive measures [19] . 

2. Monotonic Data Preprocessing refines the data sets in order

to improve the performance of monotonic classification al-

gorithms: 

• Relabeling. These methods change the label of the in-

stances to minimize the number of monotonicity viola-

tions present in the data set. 

• Feature selection. Their objective is to obtain the most

relevant features to improve monotonic classification per-

formance. 

• Instance selection. In this case, a subset of samples is se-

lected from the data set with the objective of deriving

better monotonic classifiers. 

• Training set selection. The heuristic followed by this set

of algorithms must be generic in such a way that the se-

lected set is the one that reports the highest performance

regardless of the classifier subsequently used. 

Fig. 2 shows the proposed taxonomy and Tables 1 and 2 the

ummary of all the monotonic classifiers found in the specialized

iterature. The first column of the table contains the year of the

roposal, the second is the reference and the third is the proposal

ame. We also show in the fourth and fifth columns, whether or

ot the algorithm requires a total monotonic input data set and

hether or not it produces complete monotonic output models,

espectively. The sixth column indicates whether the algorithm

ccepts partially monotonic data sets [20] . Seventh and eighth

olumns present the non monotonic classification algorithms used

s a baseline to compare the method and the monotonic classi-

ers used for comparison in the experimental analysis conducted

n each paper. The last column shows whether or not the algo-

ithm’s source code is publicly available and, if it is, the name of

ramework in which we can find it. All algorithms are capable of

ealing with multiclass problems, except for one of them which

ill be indicated in its description. 

Next, we provide a description of the methods in each family. 
.1. Monotonic classifiers 

.1.1. Instance based classifiers 

• Ordered Learning Model ( OLM [10,69] ). New objects are clas-

sified by the following function: 

f OLM 

(x ) = max { y i : (x i , y i ) ∈ D, x i  x } . (6)

If there is no object from D which is dominated by x , then a

class label is assigned by a nearest neighbor rule. D is cho-

sen to be consistent and not to contain redundant examples.

An object ( x i , y i ) is redundant in D if there is another object

( x j , y j ) such that x i �x j and y i = y j . 

• Isotonic discrimination [26] . This method applies isotonic re-

gression based relabeling. After that, the limiting cumulative

probability distribution for a prediction is evaluated consid-

ering the changes produced in the previous stage. 

• Isotonic separation [32] . As a continuation of a relabeling

process based on linear programming, instances that do not

belong to boundaries are eliminated. The resulting bound-

aries are used to make the predictions. 

• Ordered Stochastic Dominance Learner ( OSDL [35,70] ). For

each sample x i , OSDL computes two mapping functions: one

that is based on the examples that are stochastically dom-

inated by x i with the maximum label (of that subset), and

the second is based on the examples that cover (i.e., domi-

nate) x i , with the smallest label. Later, an interpolation be-

tween the two class values (based on their position) is re-

turned as a class. 

• Monotonic k-Nearest Neighbor ( MkNN [36] ). This classifier is

an adaptation of the well-known nearest neighbor classifier,

considering a full monotone data set. Starting from the orig-

inal nearest neighbor rule, the class label assigned to a new

data point x 0 must lie in the interval [ y min , y max ], where: 

y min = max { y | (x , y ) ∈ D ∧ x  x 0 } , (7)

and: 
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Table 1 

Monotonic classification methods reviewed. Part I. 

Require Completely Partial Comparison versus 

Year Reference Abbr. name Input monot. Monot. output Monot. Classical methods Monotonic methods Code available in 

1992 [10] OLM Yes No No C4, ID3 None [21] in WEKA 

1995 [22] MID No No Yes ID3 OLM Not available 

1995 [23] HLMS No Yes No None None Not available 

1997 [24] Monotonic networks Yes Yes No None None Not available 

1999 [25] P-DT, QP-DT Yes, No Yes, No No, No ID3 MID Not available 

1999 [26] Isotonic discrimination No Yes No None None Not available 

20 0 0 [27] MT Yes Yes No C4.5 OLM Not available 

20 0 0 [28] VC-DRSA No No No None None Not available 

20 0 0 [29] DomLEM No No No None None Not available 

2002 [30] Bioch&Popova MDT No Yes No None None Not available 

2002 [9] Modified MID No No Yes None None Not available 

2003 [31] MDT Yes Yes No CART None Not available 

2005 [32] Isotonic Separation No No No None None Not available 

2005 [33] MonMLP Yes Yes No None None In CRAN 

2007 [34] VC-DRSA with Ambig. Resol. No No No None None Not available 

2008 [35] OSDL No Yes No None None [21] in WEKA 

2008 [36] MkNN No Yes No kNN None Not available 

2008 [37] MOCA No Yes No OSDL None Not available 

2008 [38] Stochastic DRSA No No No None None Not available 

2009 [39] ICT No Yes Yes None None Not available 

2009 [40] LPRules No Yes No J48, SVM OLM, ICT Not available 

2009 [41] VP-DRSA No No No None None Not available 

2009 [42] MORE No Yes No SVM, J48, kNN None Not available 

2010 [20] MPNN MIN–MAX No No Yes None None Not available 

2010 [43] VC-bagging No No No None OLM, OSDL Not available 

2011 [44] VC-DomLEM No No No Naive Bayes, SVM, Ripper, C4.5 OLM, OSDL Not available 

Table 2 

Monotonic classification methods reviewed. Part II. 

Require Completely Partial Comparison versus 

Year Reference Abbr. name Input monot. Monot. output Monot. Classical methods Monotonic methods Code available in 

2012 [45] REMT No No No CART, Rank Tree OLM, OSDL Not Available 

2012 [19] Choquistic Regression Yes Yes No MORE LMT, Logistic Regression Not Available 

2012 [46] VC-DRSA with 

Non-Monot. Features 

No No Yes Naive Bayes, SVM, None Not Available 

Ripper, C4.5, MODLEM 

2014 [8] MC-SVM Yes Yes No SVM None Not Available 

2015 [47] MGain No No No C4.5 None Not Available 

2015 [48] FREMT No No No None REMT Not Available 

2015 [49] MonRF No No No None OLM, OSDL, MID Not Available 

2015 [50] VC-DRSA ORF No No No None None [51] in jMAF 

2015 [52] RDMT(H) No No No None MID, ICT Not Available 

2015 [53] RMC-FSVM No No No FSVM, SVM None Not Available 

2015 [54] VC-RF No No No None VC-DRSA with Non-Monot. Feat., Not Available 

VC-DomLEM 

2016 [55] MoNGEL No No Yes None MkNN, OLM, OSDL [56] in Java 

2016 [57] Monot. AdaBoost No No Yes None MID Not Available 

2016 [58] AntMiner + , No, No Yes, Yes Yes, Yes ZeroR OLM Not Available 

cAnt-Miner PB +MC 

2016 [59] EHSMC-CHC No No No None MkNN, OLM, OSDL, MID Not Available 

2016 [60] XGBoost No Yes Yes pGBRT, Spark MLLib, H2O None [60] in GitHub 

2016 [61] PM-SVM No No Yes SVM MC-SVM [61] in GitHub 

2016 [62] PM-RF No No Yes Random Forest MC-SVM [62] in GitHub 

2016 [63] MMT No No Yes ID3, J48, CART, RandomTree REMT, OLM, OSDL, RDMT(H) Not Available 

2017 [64] FCMT No No No REMT, FREMT None Not Available 

2017 [12] MCELM No Yes No CART, Rank Tree, ELM OLM, OSDL, REMT Not Available 

2017 [65] RULEM No Yes Yes Ripper, C4.5 AntMiner + Not Available 

2017 [66] MFARC-HD, No, No No, No No, No WM OSDL, M k NN, C4.5-MID, Not Available 

FS MOGFS e +T UN e OLM, EHSMC-CHC, RF-MID 

2018 [67] MonoBoost No No Yes k NN None [67] in GitHub 

2018 [68] PMDT No No Yes None REMT, OLM, OSDL, RDMT(H) Not Available 

 

 

 

 

 

3

 

 

 

 

 

• MOCA [37] . MOCA is a nonparametric monotone classifica-

tion algorithm that attempts to minimize the mean abso-

lute prediction error for classification problems with ordered

class labels. Firstly, the algorithm obtains a monotone classi-

fier considering only training data. In the test phase, a sim-

ple interpolation scheme is applied. 
.1.2. Decision trees and classification rules 

• Monotonic Induction of Decision trees ( MID [22] ). Ben-David

introduces a measure of non-monotonicity in the classical

classification decision tree ID3 algorithm [71] . This measure

was denoted as total-ambiguity-score. To calculate it, a non-

monotonicity b × b matrix M must be constructed, related
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to a tree containing b branches. Each value m ij is 1 if the

branches i and j are non-monotone, and 0 if they are. 

• Positive Decision Tree, Quasi-Positive Decision Tree ( P-DT,

QP-DT [25] ). In these algorithms the splitting rule separates

the points that have the right child-node larger than the left

child-node (in the sense of the target variable). The algo-

rithm adds samples to the nodes in such way that the result-

ing tree is monotone. This algorithm requires as a precon-

dition to be applied on strictly monotone binary data sets,

containing only two classes. This is the only method which

is not able to deal with multiclass data sets. 

• Variable Consistency model of Dominance-based Rough Sets

Approach ( VC-DRSA [28] ). The method introduces a relax-

ation to the DRSA model, which admits some inconsistent

objects to the lower approximations; the relaxation is con-

trolled by an index called consistency level. VC-DRSA is in-

sensitive to marginal inconsistencies which appear in data

sets. 

• Monotonic Tree ( MT [27] ). Potharst and Bioch present a tree

generation algorithm for monotonic classification problems

with discrete domains for multiclass data sets. In addition,

the proposal can be used to repair non-monotonic decision

trees that have been generated by other methods. 

• DomLEM [29] . This algorithm generates a complete and non-

redundant set of decision rules, heuristically tending to min-

imize the number of rules generated. It is able to produce

decision rules accepting a limited number of negative exam-

ples within the variable consistency model of the dominance

rough sets approach. 

• Modified MID [9] . In this case, an improvement of the order

ambiguity in MID algorithm is proposed by the authors. The

new order ambiguity weighs nonmonotone leaf pairs by the

probability of leaf appearance. 

• Bioch&Popova Monotone Decision Tree ( Bioch&Popova MDT

[30] ). This algorithm generates monotonic decision trees

from noisy data modifying the update rule. It controls the

size of the trees by means of pre- and post-pruning while

the tree is guaranteed to remain monotone. 

• Monotonic Decision Tree ( MDT [31] ). The authors proposed

an induction approach to generate monotonic decision trees

from sets of examples which may not be monotonic or con-

sistent. The algorithm constructs the tree using a set of or-

dinal labels which are not the same as the original ones. A

mapping process can be used to relabel them into the origi-

nals. 

• VC-DRSA with Ambiguity Resolution [34] . This method in-

duces the rules from rough approximations of preference-

ordered decision classes, according to Variable Consistency

Dominance-based Rough Set Approach. When ambiguity ap-

pears in the prediction of the class of a new instance to eval-

uate, the method assigns a given instance to a class charac-

terized by a maximum positive difference between strength

of rule premises suggesting assignment to this class and

those discouraging such an assignment. 

• Stochastic DRSA [38] . The proposal presents a new stochastic

approach to dominance-based rough sets, whose application

results in estimating the class interval for each instance. The

class interval generated has the form of a confidence inter-

val and follows from the empirical risk minimization of the

specific loss function. 

• Variable Precision Dominance-based Rough Set Approach

( VP-DRSA [41] ). The authors offers a proposal to treat errors

in the framework of DRSA. They introduce the concept of

variable precision rough set approach. 

• Isotonic Classification Tree ( ICT [39] ). This approach adjusts

the probability estimated in the leaf nodes in case of a
monotonicity violation. The idea is that, considering the

monotonicity constraint, the sum of the absolute prediction

errors on the training sample should be minimized. In addi-

tion, this algorithm can also handle problems where some,

but not all, attributes have a monotonic relation with respect

to the response. 

• Variable Consistency DomLEM ( VC-DomLEM [44] ). Improve-

ment of the DomLEM method to transfer the probabilistic

characteristic of variable consistency approaches through to

rule induction. 

• VC-DRSA with Non-Monotone Features [46] . The relationships

in the data are represented by monotonic decision rules. To

discover the monotonic rules, the authors propose a non-

invasive transformation of the input data, and a way of

structuring them into consistent and inconsistent parts us-

ing VC-DRSA. 

• Rank Entropy based Monotonic decision Trees ( REMT [45] ).

This algorithm introduces a metric called rank entropy as

a robust measure of feature quality. It is used to compute

the uncertainty, reflecting the ordinal structures in mono-

tonic classification. The construction of the decision tree is

based on this measure. 

• RDMT(H) [52] . Marsala and Petturiti presented a tree clas-

sifier parameterized by a discrimination measure H , which

is considered for splitting, together with other three pre-

pruning parameters. RDMT(H) guarantees a weak form of

monotonicity for the resulting tree when the data set is

monotone consistent and H refers to any rank discrimination

measure. The authors adapted different measures to mono-

tonic classification. 

• MGain [47] . MGain introduces the index of the monotonic

consistency of a cut point with respect to a data set. When

non-monotonic data appear in the training set, the index of

monotonic consistency selects the best cut point. If the ini-

tial data set is totally monotonic, the results obtained are

similar to those using C4.5 [72] . 

• AntMiner+, cAnt-Miner PB +MC [58] . These algorithms are an

extension of an existing ant colony optimization based clas-

sification rule learner, able to create lists of monotonic clas-

sification rules. They consider an improved sequential cov-

ering strategy to search for the best list of classification

rules. 

• Monotonic Multivariate Trees ( MMT [63] ). The proposed

method discovers partitions via oblique hyperplane in the

input space. MMT generates the projections of the objects

which are used to split the data by improved splitting crite-

ria with rank mutual information or rank Gini impurity. 

• Rule Learning of ordinal classification with Monotonicity

constraints ( RULEM [65] ). The authors present a technique

to induce monotonic ordinal rule based classification mod-

els, which can be applied in combination with any rule or

tree induction technique in a post processing step. They also

introduce two metrics to evaluate the plausibility of the or-

dinal classification models obtained. 

• MFARC-HD [66] . In this case, different mechanisms based on

monotonicity indexes are coupled with a popular and com-

petitive classification evolutionary fuzzy system: FARC-HD. 

In addition, the proposal is able to handle any kind of clas-

sification data set without a preprocessing step. 

• FS MOGF S e +T UN e [66] . The proposed method consists of two 

separated stages for learning and subsequent tuning. The

first stage is based on an improved multi-objective evolu-

tionary algorithm designed to select the relevant features

while learning the appropriate granularities of the member-

ship functions. In the second stage, an evolutionary post-

process is applied to the knowledge base obtained. 
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• Partially Monotonic Decision Trees ( PMDT [68] ). The au-

thors propose a rank-inconsistent rate that distinguishes at-

tributes from criteria. That rate represents the directions of

the monotonic relationships between criteria and decisions.

Finally, a partially monotonic decision tree algorithm is de-

signed to extract decision rules for partially monotonic clas-

sification tasks. 

3.1.3. Ensembles 

1. Boosting 

• LPRules [40] . This algorithm is based on a statistical anal-

ysis of the problem, trying to relate monotonicity con-

straints to the constraints imposed on the probability

distribution. First, LPRules decomposes the problem into

a sequence of binary subproblems. Then, the data for

each subproblem is monotonized using a non-parametric

approach by means of the class of all monotone func-

tions. In the last step, a rule ensemble is generated using

the LPBoost method to avoid errors in the monotonized

data. 

• MOnotone Rule Ensembles ( MORE [42] ). MORE uses for-

ward a stage-wise additive modeling scheme for gener-

ating an ensemble of decision rules for binary problems.

An advantage of this method, as the authors indicate, is

its comprehensibility and consistence. 

• Monotonic Random Forest ( MonRF [49] ). The method

is an adaptation of Random Forest [73] for classifica-

tion with monotonicity constraints, including the rate of

monotonicity as a parameter to be randomized during

the growth of the trees. An ensemble pruning mecha-

nism based on the monotonicity index of each tree is

used to select the subset of the most monotonic decision

trees which constitute the forest. 

• Variable Consistency Dominance-based Rough Set Ap-

proach Ordinal Random Forest ( VC-DRSA ORF [50] ). The

authors propose an Ordinal Random Forest based on the

variable consistence dominance rough set approach. The

ordinal random forest algorithm is implemented using

Hadoop [74] . 

• Variable Consistency Random Forest ( VC-RF [54] ). Wang

et al. propose the dominance and fuzzy preference in-

consistency rates, which have the capacity of discover-

ing global monotonicity relationships directly from data

rather than induced rules. The method includes a re-

fined transformation, in which an additional step is

introduced to determine whether an ordinal condition

attribute should be cloned or not according to its incon-

sistency rates. 

• Monotonic Adaboost [57] . In this case, decision trees are

combined in an Adaboost scheme [75] , considering a

simple ensemble pruning method based on the degree of

monotonicity. The objective in this algorithm is to offer a

good trade-off between accurate predictive performance

and the construction of monotonic models. 

• XGBoost [60] . An open source library that provides the

gradient boosting framework, which supports monotonic

constraints as of version 0.71. 

• Partially Monotone Random Forest ( PM-RF [62] ). By cre-

ating a novel re-weighting scheme, PM-RF is an effective

partially monotone approach that was particularly good

at retaining accuracy while correcting highly non mono-

tone data sets with many classes, albeit only achieving

monotonicity locally. 

• MonoBoost [67] . Inspired by instance based classifiers,

MonoBoost is a framework for monotone additive rule

ensembles where partial monotonicity appears. The algo-
rithm ensures perfect partial monotonicity with reason-

able performance. 

There exist two publicly available and open source libraries

that are absent from the literature: Arborist [76] and GBM

[77] . Both are R packages that allow for monotone features

by naïvely constraining each branch split (in each tree) to

prohibit non monotone splits. 

2. Bagging 

• Variable Consistency Bagging ( VC-bagging [43] ). For this

proposal, the data set is structured using the Variable

Consistency Dominance-based Rough Set Approach (VC-

DRSA). A variable consistency bagging scheme is used

to produce bootstrap samples that promote classification

examples with relatively high consistency measure val-

ues. 

• Fusing Rank Entropy based Monotonic decision Trees

( FREMT [48] ). This method fuses decision trees tak-

ing into account attribute reduction and a fusing prin-

ciple. The authors propose an attribute reduction ap-

proach with rank-preservation for learning base clas-

sifiers, which can effectively avoid overfitting and im-

prove classification performance. In a second step, the

authors establish a fusing principle considering the max-

imal probability by combining the base classifiers. 

• Fusing Complete Monotonic decision Trees ( FCMT [64] ).

Xu et al. propose an improvement of FREMT algorithm

using a discriminativeness matrix approach that guaran-

teed finding all satisfactory subsets. 

.1.4. Neural networks 

• Monotonic networks [24] . Monotonic networks implements

a piecewise-linear surface by taking maximum and min-

imum operations on groups of hyperplanes. Monotonicity

constraints are enforced by constraining the sign of the hy-

perplane weight. 

• Monotonic Multi-Layer Perceptron ( MonMLP [33] ). This algo-

rithm satisfies the requirements of monotonicity for one or

more inputs by constraining the sign of the weights of the

multi-layer perceptron network. The performance of Mon-

MLP does not depend on the quality of the training data be-

cause it is imposed in its structure. 

• Monotonic Partial Neural Network MIN–MAX ( MPNN MIN–

MAX [20] ). In this paper, the authors clarify some of the the-

oretical results on monotone neural networks with positive

weights, which sometimes cause misunderstanding in the

neural network literature. In addition, in the case of partially

monotone problems they generalize the so-called MIN–MAX

networks. 

• Monotonic Classification Extreme Learning Machine ( MCELM

[12] ). MCELM is a generalization of extreme learning ma-

chine for monotonic classification data sets. The proposal in-

volves a quadratic programing problem in which the mono-

tonicity relationships are considered to be constraints and

the training errors as the objective to be minimized. 

.1.5. Support Vector Machines 

• Monotonicity Constrained Support Vector Machine ( MC-SVM

[8,78] ). MC-SVM is a rating model based on a support vector

machine including monotonicity constraints in the optimiza-

tion problem. The model is applied to credit rating, and the

constraints are derived from the prior knowledge of financial

experts. 

• Regularized Monotonic Fuzzy Support Vector Machine ( RMC-

FSVM [53] ). This method applies the Tikhonov regulariza-

tion [79] to SVMs with monotonicity constraints in order to
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ensure that the solution is unique and bounded. In this way,

the prior domain knowledge of monotonicity can be repre-

sented in the form of inequalities based on the partial order

of the training data. 

• Partially Monotone Support Vector Machine ( PM-SVM [61] ).

PM-SVM differs from the MC-SVM by proposing a new con-

straint generation technique designed to more efficiently

achieve monotonicity. 

.1.6. Hybrid 

• Monotonic Nested Generalized Exemplar Learning ( MoN-

GEL [55] ). MoNGEL combines instance-based and rule learn-

ing. The instances are converted to zero-dimensional rules,

formed by a single point, obtaining an initial set of rules. As

a second step, the method searches for that comparable rule

of the same class with the minimum distance with respect

to each rule, in order to iteratively generalize it. In the last

step, the minimum number of non monotonic rules existing

between them will be removed. 

• Evolutionary Hyperrectangle Selection for Monotonic Clas-

sification ( EHSMC-CHC [59] ). After building a set of hyper-

rectangles from the training data set, a selection chosen by

evolutionary algorithms is applied. In a preliminary stage,

an initial set of hyperrectangles are generated by using a

heuristic based on the training data, and then a selection

process is carried out, focused on maximizing the perfor-

mance considering several objectives, such as accuracy, cov-

erage of examples and reduction of the monotonicity viola-

tions of the model with the lowest possible number of hy-

perrectangles. 

.1.7. Fuzzy Integrals 

• Heuristic Least Mean Square ( HLMS [23,80] ). HLMS aims to

identifying the fuzzy measure taking advantage of the lat-

tice structure of the coefficients. Thanks to this identifica-

tion, knowledge concerning the criteria can be obtained. 

• Choquistic Regression [19,81,82] . The basic idea of choquis-

tic regression is to replace the linear function of predictor

variables, which is commonly used in logistic regression to

model the log odds of the positive class, by the choquet in-

tegral [83] . 

.2. Monotonic Data Preprocessing 

Other group of methods in monotonic classification area are fo-

used on applying data preprocessing techniques to improve the

erformance of monotonic classification algorithms [16] . So far the

iterature proposals follow four paths: 

1. Relabeling. These methods aim at changing the class label of

the instances which produce monotonicity violations to gen-

erate fully monotone data sets, which are required for many

monotonic classifiers. 

• Dykstra Relabel [26] . These authors propose a monotone

relabeling based on isotonic regression, able to minimize

absolute error or squared error. The algorithm is optimal,

optimizing those loss functions (absolute or squared er-

ror) but it does not guarantee the minimum number of

label changes as it is not the key objective. 

• Daniels–Velikova Greedy Relabel [84,85] . This is a greedy

algorithm used to relabel the non-monotone examples

one at a time. At each step, it searches for the instance

and the new label to maximize the increase in mono-

tonicity of the data set. Although, at each step, it is able

to maximize the jump towards complete monotonicity,
the algorithm relabels more examples than is needed.

This relabel method does not guarantee an optimal so-

lution. 

• Optimal Flow Network Relabel [36,85,86] . This method is

based on finding a maximum weight independent set in

the monotonicity violation graph. Relabeling the comple-

ment of the maximum weight independent set results in

a monotone data set with as few label changes as possi-

ble. This method is optimal, producing the minimal num-

ber of label changes. 

• Feelders Relabel [87–89] . This algorithm faces the prob-

lem of relabeling with minimal empirical loss as a con-

vex cost closure problem. Feelders Relabel results in an

optimal solution. 

• Single-pass Optimal Ordinal Relabel [90] . In this case, the

idea is to exploit the properties of a minimum flow net-

work and identify pleasing properties of some maximum

cuts. As the name suggests, this is an optimal relabeling

algorithm. 

• Naive Relabel [91] . This algorithm is a building block

of the two algorithms detailed next, and uses a greedy

scheme. The method does not guarantee an optimal so-

lution. 

• Border Relabel [91] . This is a fast alternative to the greedy

algorithm mentioned above, an it is more specific as it

minimizes the deviations between the new and the orig-

inal labels. This case is similar to the previous one, and

thus is not optimal. 

• Antichain Relabel [91] . Based on the previous algorithm,

this algorithm minimizes the total number of relabelings

and leads to optimal solutions. 

2. Feature Selection [92] . The objective of these methods is to

improve the predictive capacity of the monotonic classifiers

by selecting the most relevant characteristics. 

• O-ReliefF, O-Simba [93] 

The authors introduce margin-based feature selection al-

gorithms for monotonic classification by incorporating

the monotonicity constraints into the ordinal task. Relief

and Simba methods are extended to the context of ordi-

nal classification. 

• min-Redundancy Max-Relevance ( mRMR [94–96] ) 

The algorithm mRMR integrates the rank mutual in-

formation metric with the search strategy of min-

redundancy and max-relevance, creating an effective al-

gorithm for monotonic feature selection. 

• Non-Monotonic feature selection via Multiple Kernel 

Learning ( NMMKL [97] ). Yang et al. propose a non-

monotonic feature selection method that alleviates

monotonic violations by computing the scores for indi-

vidual features that depend on the number of selected

features. 

3. Instance Selection [98,99] . The idea behind these algorithms

is to improve the performance of monotonic classifiers by

selecting the most useful instances to be used as training

set, using instance-based heuristics. 

• Monotonic Iterative Prototype Selection ( MONIPS [6] ) 

MONIPS follows an iterative scheme in which it deter-

mines the most representative instances which maintain

or improve the prediction capabilities of the MkNN al-

gorithm. It follows an instance removal process based on

the improvement of the MkNN performance. 

4. Training Set Selection [100] . This set of algorithms has the

same objective as those mentioned previously, except that

the heuristic followed must be generic in such a way that

the selected set is the one that reports the highest perfor-

mance regardless of the classifier that is used on it later. 



176 J.-R. Cano, P.A. Gutiérrez and B. Krawczyk et al. / Neurocomputing 341 (2019) 168–182 

Table 3 

Metrics considered in the reviewed monotonic classification methods. 

Predictive assessment Monotonicity 

Abbr. name metrics fulfillment metrics 

OLM MSE None 

MID MSE, MAE NMI 

HLMS Accuracy None 

Monotonic networks Error rate None 

P-DT, QP-DT Error rate None 

Isotonic discrimination None None 

MT Accuracy None 

VC-DRSA None None 

DomLEM None None 

Bioch&Popova MDT None None 

Modified MID Error rate NMI 

MDT Accuracy γ 1 , γ 2 

Isotonic separation None None 

MonMLP None None 

VC-DRSA with amb. resol. None None 

OSDL None None 

MkNN Error rate None 

MOCA MAE None 

Stochastic DRSA None None 

ICT MAE None 

LPRules MAE None 

VP-DRSA None None 

MORE MAE None 

MPNN MIN–MAX MSE, error rate None 

VC-bagging MAE None 

VC-DomLEM MAE, accuracy None 

REMT MAE None 

Choquistic regression Accuracy, AUC None 

VC-DRSA with non-monot. features Accuracy None 

MC-SVM Accurary, recall, PPV, FOM 

NPV, F -measure, κ coefficient 

MGain Accuracy None 

FREMT Accuracy, MAE None 

MonRF Accuracy, MAE NMI 

VC-DRSA ORF None None 

RDMT(H) Accuracy, κ coefficient, MAE NMI 

RMC-FSVM Accuracy, recall, None 

PPV, F -measure 

VC-RF Accuracy, MAE None 

MoNGEL Accuracy, MAE NMI 

Monot. AdaBoost Accuracy, MAE NMI 

AntMiner+, cAnt-Miner PB + MC Accuracy None 

EHSMC-CHC Accuracy, MAE, MAcc, MMAE NMI 

XGBoost AUC None 

PM-SVM Accuracy, κ coefficient MCC 

PM-RF Accuracy MCC 

MMT Accuracy, MAE None 

FCMT Accuracy, MAE None 

MCELM MAE None 

RULEM Accuracy, MAE, MSE None 

MFARC-HD, FS MOGFS e +T UN e MAE, MMAE NMI 

MonoBoost F -measure, κ coefficient, recall, accuracy None 

PMDT Accuracy, MAE None 
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comes that are incorrectly classified. 
• Monotonic Training Set Selection ( MonTSS [101] ) 

MonTSS incorporates proper measurements to identify

and select the most suitable instances in the training set

to enhance both the accuracy and the monotonic nature

of the models produced by different classifiers. 

4. Quality metrics used in monotonic classification 

This section analyzes and summarizes the evaluation measures

used in all the experimental studies present in the specialized lit-

erature. They evaluate two different aspects: precision and mono-

tonicity. In Table 3 , we present, for each monotonic classification

method, the measures used both for predictive assessment and for

monotonicity fulfillment. The description of each metric is included

below. 
.1. Predictive assessment metrics 

In order to define the metrics considered to evaluate the pre-

ictive performance of a classifier, we introduce the following no-

ation: 

• True Positives (TP): number of instances with positive out-

comes that are correctly classified. 

• False Positives (FP): number of instances with positive out-

comes that are incorrectly classified. 

• True Negative (TN): number of instances with negative out-

comes that are correctly classified. 

• False Negative (FN): number of instances with negative out-
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The first set of predictive measures included are applied in bi-

ary classification, and they are listed below: 

• Accuracy [8] : 

Accuracy = 

T P + T N 

T P + F P + T N + F N 

, (9) 

representing the predictive ability according to the propor-

tion of the tested data correctly classified. 

• Error rate [8] : 

Error rate = 

F P + F N 

T P + F P + T N + F N 

. (10) 

This is the opposite case to the previous one, evaluating the

proportion of the tested data incorrectly classified. 

• Recall [8] : 

Recall = 

T P 

T P + F N 

. (11) 

Recall (also called sensitivity) is a measure of the proportion

of actual positives that are correctly classified. 

• Positive predictive value (PPV [8] ): 

PPV = 

T P 

T P + F P 
, (12) 

which is the proportion of test instances with positive pre-

dictive outcomes that are correctly predicted. PPV (also

known as precision) represents the probability that a posi-

tive test reflects the underlying condition being tested for. 

• Negative predictive value (NPV [8] ): 

NPV = 

T N 

T N + F N 

, (13) 

which is the proportion of test instances with negative pre-

dictive outcomes that are correctly predicted. 

• F -measure [8] : 

F − measure = 

2 · P P V · Recall 

P P V + Recall 
. (14) 

This metric is the harmonic mean of precision and recall. 

• The κ coefficient [8] represents the agreement between the

classifier and the data labels, and it is computed as follows:

κ coefficient = 

P a − P e 

1 − P e 
, (15) 

where P e is the hypothetical probability of chance agreement

and P a is the relative observed agreement between the clas-

sifier and the data. They are computed as follows: 

P e = 

(T P + F P ) · (T P + F N) + (T N + F P ) · (T N + F N) 

(T P + T N + F P + F N) 2 
, (16) 

P a = 

T P + T N 

T P + T N + F P + F N 

. (17) 

• Area Under Curve (AUC): To combine the Recall and the false

positive rate ( F P 
F P+ T N ) into one single metric, we first com-

pute the two former metrics with many different thresholds

(for example 0.00, 0.01, 0.02 , . . . , 1.00) for the logistic regres-

sion, then plot them on a single graph, with the false posi-

tive rate values on the abscissa and the Recall values on the

ordinate. The resulting curve is called ROC curve, and the

metric we consider is the AUC of this curve. 

The second set of predictive measures have been applied to

ulticlass classification problems, and are listed below: 
• Mean Squared Error (MSE [65] ) is calculated as: 

MSE = 

1 

n 

n ∑ 

i =1 

(y ′ i − y i ) 
2 , (18)

where n is the number of observations in the evaluated data

set, y ′ 
i 

the estimated class label for observation i and y i the

true class label (both represented as integer values based on

their position in the ordinal scale). It measures the average

of the squares of errors. 

• Mean Absolute Error (MAE [65] ) is defined as: 

MAE = 

1 

n 

n ∑ 

i =1 

| y ′ i − y i | . (19)

MAE is a measure of how close predictions are to the out-

comes. 

• Monotonic Accuracy (MAcc [59] ), computed as standard Ac-

curacy, but only considering those examples that completely

fulfill the monotonicity constraints in the test set. In other

words, non-monotonic examples do not take part in the cal-

culation of MAcc. 

• Monotonic Mean Absolute Error (MMAE [59] ), calculated as

standard MAE, but only considering those examples that

completely fulfill the monotonicity constraints in the test

set. 

.2. Monotonicity fulfillment metrics 

In this case, the interest is to evaluate the rate of monotonicity

rovided by either the predictions obtained or the model built. 

Let x be an example from the data set D. NClash ( x ) is the num-

er of examples from D that do not meet the monotonicity restric-

ions with respect to x , and n is the number of instances in D.

Monot ( x ) is the number of examples from D that meet the mono-

onicity restrictions with respect to x . 

• The Non-Monotonic Index [22,102] is defined as the number

of clash-pairs divided by the total number of pairs of exam-

ples in the data set: 

NMI = 

1 

n (n − 1) 

∑ 

x ∈ D 
NClash (x ) (20)

• γ 1 [31] , assessed as: 

γ1 = 

S + − S −
S + + S −

, (21) 

S − = 

∑ 

x ∈ D 
NClash (x ) , (22) 

S + = 

∑ 

x ∈ D 
NMonot(x ) , (23) 

where S − is the number of discordant pairs, and S + is the

number of concordant pairs. γ 1 is the Goodman–Kruskal’s

γ statistic [103] . 

• γ 2 [31] : 

γ2 = 

S + − S −
# P 

, (24) 

where # P is the total number of pairs, i.e. P = S + + S − +
# N CP, # N CP standing for number of non-comparable pairs. 

• Frequency of Monotonicity (FOM [8] ): 

FOM = 

S + 
. (25) 
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Table 4 

Number of times each metric is 

used in monotonic classification lit- 

erature. 

Metric # of times used 

Accuracy 24 

MAE 21 

Error rate 5 

κ coefficient 4 

MSE 4 

Recall 3 

F -measure 3 

PPV 2 

MMAE 2 

AUC 2 

NPV 1 

MAcc 1 

NMI 8 

MCC 2 

γ 1 1 

γ 2 1 

FOM 1 

NMI2 0 
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• The Non-Monotonicity Index 2 (NMI2 [104] ) is defined as

the number of non-monotone examples divided by the to-

tal number of examples: 

NMI2 = 

1 

n 

∑ 

x ∈ D 
Clash (x ) (26)

where Clash ( x ) = 1 if x clashes with at least one example

in D , and 0 otherwise. If Clash (x ) = 1 , x is called a non-

monotone example. This metric was proposed in [104] but

it has not been used in any study yet. 

• Monotonicity Compliance (MCC [61] ), defined as the propor-

tion of the input space where the requested monotonicity

constraints are not violated, weighted by the joint probabil-

ity distribution of the input space. This metric has been pro-

posed to be applied when partial monotonicity is present. 

Table 4 includes the number of times each metric was used in

the different experimental studies. As can be observed, the most

commonly used metrics for predictive purposes are Accuracy and

MAE, whereas NMI is the most popular one for estimating the

monotonicity fulfillment. 

5. Data sets used in monotonic classification 

Next, we review monotonic classification papers to summarize

which are the data sets considered in their experimental analysis. 

The information about the most commonly used data sets (with

at least 15 appearances in the literature) has been included in

Table 5 , which summarizes their properties. For each data set, we

can observe the number of examples (Ex.), attributes (Atts.), nu-

merical attributes (Num.) and nominal attributes (Nom.), the num-

ber of classes (Cl.), the source where the data set can be found, the

NMI metric associated with it and finally, the number of times it

has been included in experimental analysis in the literature. 

A brief description is now given for each of these data sets: 

• AutoMPG: the data set concerns city-cycle fuel consumption

given in miles per gallon (Mpg). 

• BostonHousing: the data set concerns the housing values in

the suburbs of Boston. 

• Car: this data set (Car Evaluation Database) was derived

from a simple hierarchical decision model. The model eval-

uates cars according to six input attributes: buying, maint,

doors, persons, lug_boot, safety. 

• ERA: this data set was originally gathered during an aca-

demic decision-making experiment aiming at determining
which are the most important qualities of candidates for a

certain type of jobs. 

• ESL: in this case, we find profiles of applicants for cer-

tain industrial jobs. Expert psychologists from a recruiting

company, based on psychometric test results and interviews

with the candidates, determined the values of the input at-

tributes. The output is an overall score corresponding to the

degree to which of the candidate fits this type of job. 

• LEV: this data set contains examples of anonymous lecturer

evaluations, taken at the end of MBA courses. Before receiv-

ing the final grades, students were asked to score their lec-

turers according to four attributes such as oral skills and

contribution to their professional/general knowledge. The

single output was a total evaluation of the lecturer’s perfor-

mance. 

• Pima: this data set comes from the National Institute of

Diabetes and Digestive and Kidney Diseases. Several con-

straints were placed on the selection of sample from a larger

database. In particular, all patients here are females of Pima

Indian heritage, and are at least 21 years old. The class label

demonstrates if the person has (or not) diabetes. 

• MachineCPU: this problem focuses on relative CPU perfor-

mance data. The task is to approximate the published rela-

tive performance of the CPU. 

• SWD: this data set contains real-world assessments of qual-

ified social workers regarding the risk of a group of children

if they stay with their families at home. This evaluation of

risk assessment is often presented to judicial courts to help

decide what is in the best interest of an allegedly abused or

neglected child. 

Considering these data sets, Table 6 includes the estimation of

he possible monotonic relationship between each input feature

nd the class feature, by using the RMI measure [45] . This met-

ic takes values in the range [ −1 , 1] , where −1 means that the re-

ationship is totally inverse (if the feature increases, the class de-

reases), and 1 represents a completely direct relationship (if the

eature increases, the class increases). If the relationship is direct

for instance, a value in the range [0.1,1]), we include a ‘+’ in the

ell. In the case of an inverse relationship (a value in the range

 −1 , −0 . 1] ), the symbol used is ‘ −’, and, when the RMI value is

n the range [ −0 . 1 , 0 . 1] , we consider that the feature and the class

re not related (represented by a ‘ = ’). The RMI value is given below

ach corresponding symbol. As can be checked in Table 6 , most of

he characteristics present a relationship with the corresponding

lass, so that they are good candidate data sets to be used in fu-

ure experimental studies. 

. Guidelines and future work in monotonic classification 

This section offers suggestions to researchers interested in de-

eloping new ideas within this field. We will emphasize some rele-

ant algorithms proposed in the literature to be considered as con-

estant methods in experimental comparisons. In this regard, our

onsiderations on their analysis will focus on: 

• Algorithms to consider for future study: We will choose a

subset of methods depending on the specific family they be-

long to. We will suggest a list of algorithms motivated by

their properties, reputation and performance. 

– Instance-based techniques: The OSDL is a method to keep

in mind due to its interpretation of the monotonicity

constraints in terms of stochastic dominance which is

very useful when trying to achieve total monotonicity

in the predictive decisions. Furthermore, we should con-

sider MkNN based on the basis of its simplicity, perfor-
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Table 5 

Summary of the most used data sets used in the monotonic classifiers literature. 

Data set Ex. Atts. Num. Nom. Cl. Source NMI # of times used 

AutoMPG 392 7 7 0 10 [105] 0.023 17 

BostonHousing 506 12 10 2 4 [106] 0.001 15 

Car 1728 6 0 6 4 [105] 0.0 0 0 22 

ERA 10 0 0 4 4 0 9 [69] 0.016 15 

ESL 488 4 4 0 9 [69] 0.004 18 

LEV 10 0 0 4 4 0 5 [69] 0.006 15 

MachineCPU 209 6 6 0 4 [105] 0.001 19 

Pima 768 8 8 0 2 [105] 0.015 16 

SWD 10 0 0 10 10 0 4 [69] 0.009 16 

Table 6 

RMI measure [45] for all input features when considering the most popular monotonic classification data sets. 

Data Set A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

AutoMPG − − − − + + + 

−0.5 −0.8 −0.8 −0.7 0.3 0.6 0.4 

BostonHousing − + − = − + − + − − − = 

−0.5 0.3 −0.4 0.0 −0 .4 0.6 −0.4 0.2 −0 .2 −0 .4 −0 .5 0.0 

Car + + + + + + 

1.0 1.0 1.0 1.0 1.0 1.0 

ERA + + + + 

0.3 0.4 0.2 0.2 

ESL + + + + 

0.6 0.6 0.6 0.6 

LEV + + + + 

0.2 0.4 0.2 0.2 

MachineCPU − + + + + + 

−0.6 0.6 0.7 0.7 0.5 0.5 

Pima + + = = + + + + 

0.2 0.3 0.0 0.0 0.2 0.2 0.2 0.2 

SWD + + + = + = + = + + 

0.2 0.2 0.3 0.0 0.2 0.0 0.2 0.0 0.2 0.2 
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mance and the ease of its integration when hybridized

with other algorithms. 

– Statistical based methods: MonMLP should be considered

to be the classic multi-layer perceptron network that has

been a source of inspiration for the rest of the algorithms

from the same family. Another choice, which is choquis-

tic regression, replaces the linear function of predictor

variables using the choquet integral. The choquet inte-

gral is very attractive for machine learning as to if of-

fers measures that quantify the importance of individual

predictor variables and the interaction between groups

of variables. We also recommend considering the PM-

SVM technique because of its apability to treat partial

monotonicity using an alternative metric to NMI, called

MCC and its ability to measure the monotonicity de-

gree. Finally, we should take into consideration the algo-

rithm MCELM. Its advantages are that it does not need to

tune parameters iteratively, it has extremely fast training

times, does not require monotonic relationships to exist

between features, the outputs are consistent and experi-

mentally it shows generalization capability. 

– Rules and Decision Trees family: MID was the first pro-

posal in this family. The idea is simple and intuitive since

it consists of the inclusion of a criterion to achieve a

trade-off between accuracy and the monotonicity con-

straints present in the data. In fact, this criterion can

be easily attached to any decision tree and rule learning

model. Also noteworthy is the fact that its performance

in prediction is oustanding. There is another decision

tree algorithm called REMT which introduces the rank

mutual information (RMI) as a feature quality measure,

combining the advantage of robustness of Shannons en-

tropy with the ability of dominance rough sets in ex-

tracting ordinal structures from monotonic data sets. The

 

models generated by REMT are monotonically consis-

tent and have high predictive capabilities. Finally, we

highlight the choice of MMT based on its ability to

handle the performance limitations produced by in-

comparable object pairs. MMT addresses this problem

constructing multivariate decision trees with monotonic- 

ity constraints. 

– Ensemble based methods: Five techniques have been se-

lected as the most noteworthy. The LPRules and Mono-

Boost are representative boosting algorithms for multi-

class problems, despite the first was based on binary

decomposition. FREMT has been chosen thanks to the in-

teresting attribute reduction and fusing principle intro-

duced in its definition. MonRF is considered due to its

good performance and the extensive experimental anal-

ysis conducted by the authors. Lastly, the scalability of

XGBoost and its capability of obtaining monotone consis-

tent decisions makes it an obvious choice. 

• Quality metrics: the quality of the models learned can be

evaluated based on precision or monotonicity fulfillment. If

we take precision into account, MAE is the measure that

should be considered as it is widely used in the area. As far

as monotonicity fulfillment is concerned, NMI is the most

commonly used metric which adequately reflects compli-

ance with model monotonicity (see Section 4.1 ). 

Directions for future research in monotonic classification are in-

icated as follows: 

• It is necessary to propose performance measures that com-

bine the evaluation of accurate and monotonic predictions.

Currently, MAE and NMI measures are mainly used simul-

taneously, but the latter requires a complete set to calcu-

late the comparability of the examples. We have seen that

in some revised algorithms useful measures have been pro-
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posed for this purpose, but they are hardly being used in

successive ideas. On the other hand, we are missing the use

of complex measures that have been used in ordinal regres-

sion [107] , such as ROC curves or performance curves. 

• The distinction between partial and total monotonic classifi-

cation is crucial and this should be clearly indicated in fu-

ture proposals. Depending on the application, it will make

more sense to use one type of technique or another, depend-

ing on where the importance of the model learned lies; ei-

ther in the interpretation of the model or in the accuracy

of the model. We recommend that this type of property be

clearly highlighted in future proposals. 

• It is possible to devise extensions of the classic monotonic

classification problem based on different graduations of re-

strictions between input and output attributes. There may

be attributes that are more relevant than others in the

monotonicity constraint and their violation may result in

greater perjury. This implies a reformulation of the partial

order and a generalization of the problem to introduce bias

in the predictions. 

• Although adaptations of all types of classifiers to this prob-

lem, including ensembles, have been proposed, other types

of proposals are still lacking, such as the decomposition

of One-Versus-One (OVO) and more advanced One-Versus-

All (OVA) classes [5,108] and more data preprocessing tech-

niques, such as noise filtering [109] . 

• We have also observed that many of the algorithms re-

viewed in this paper are not available to the public in soft-

ware repositories. More software development is needed in

this area. 

• Currently, monotonic classification is understood as a natural

extension of the classical or ordinal regression. Other pre-

dictive learning paradigms that require some interpretation

of the results may benefit from monotone models or mono-

tone predictions in certain real-life applications. We refer to

those singular or non-standard predictive problems [110] in-

cluding weak supervision [111] . To date, there are proposals

to deal with monotonicity constraints in imbalanced classi-

fication [112,113] . 

7. Conclusions 

This paper is a systematical review of monotonic classification

literature that could be used as a functional guide on the scope.

Monotonic classification is an emerging area in the field of data

mining. In recent years, the number of proposals in this area of

knowledge has significantly increased, as shown in Fig. 1 . This fact

justifies the necessity of proposing a taxonomy that classifies and

discriminates all the methods proposed so far. The taxonomy de-

signed can be used as a guide to: 

• Decide which kind of algorithm and model is best suited for

a new monotonic problem. 

• Compare any new proposals with those current proposals

which come from the same family, so that it can be de-

cided if the new proposal should be considered and if any

improvements in their performance can be observed. 

Together with this taxonomy, we also analyze which methods

are publicly available, and whose source codes are available on

line. In those cases, we also include where their implementation

can be found. 

Additionally, an analysis of the proposed and used quality met-

rics is carried out, considering predictive assessment and mono-

tonicity fulfillment. We also highlight some measures, which are

more frequently considered in this field, such as Accuracy, MAE

and NMI. 
Finally, a summary and description of all the data sets used is

onsidered. We emphasize eight of them, which have been used in,

t least, ten of the experimental evaluations reviewed in the litera-

ure. Their characteristics, availability and the monotonic relation-

hips between input features and the class label are also detailed. 

The overview is completed by including a set of guidelines re-

arding the most representative methods found in the literature to

e considered in novel ideas and proposals and with an enumera-

ion of possible directions for future research in this field. 
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