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In this paper, a cooperative-competitive multi-objective evolutionary fuzzy system called E2PAMEA is
presented for the extraction of emerging patterns in big data environments. E2PAMEA follows an adap-
tive schema to automatically employ different genetic operators according to the learning needs, which
avoid the tuning of some parameters. It also employs a token-competition-based procedure for updating
an elite population where the best set of patterns found so far is stored. In addition, a novel MapReduce
procedure for an efficient computation of the evaluation function employed for guiding the search pro-
cess is proposed. The method, called Bit-LUT employs a pre-evaluation stage where data is represented as
a look-up table made of bit sets. This look-up table can be employed later in the chromosome evaluation
by means of bitwise operations, reducing the computational complexity of the process.
The experimental study carried out shows that E2PAMEA is a promising alternative for the extraction of

high-quality emerging patterns in big data. In addition, the proposed Bit-LUT evaluation shows a signif-
icant improvement on efficiency with a great scalability capacity on both dimensions of data, which
enables the processing of massive datasets faster than other alternatives.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

The amount of data generated everyday has grown exponen-
tially in recent decades due to the explosion of devices that gener-
ate data. Valuable insights can be extracted from these large
quantities of data. It is well-known that nowadays big data is a
hot topic in business and academia [1]. However, classic machine
learning approaches are not suitable for dealing with these large
amounts of data efficiently. There are currently many definitions
for big data [2–4]. Usually, a problem is considered as a big data
one when the amount of information exceeds the computing
capacities of a single machine due to several constraints such as
volume, arrival speed or heterogeneity of data.

Metaheuristics [5] are optimisation methods that combine local
improvement procedures and high-level strategies. These methods
are characterised by their ability to exploit information about an
unknown initial search space in order to bias the subsequent
search towards useful subspaces. Due to its capacity to find good
solutions (the optimal one is not guaranteed) in a reasonable
amount of time, metaheuristics have been widely used in many
machine learning tasks such as classification [6] and clustering
[7], amongst others, as they can be seen as optimisation problems.

Within machine learning, there is a set of tasks whose main aim
is to characterise relationships in data with respect to a variable of
interest. This is known as supervised descriptive rule discovery
(SDRD) [8]. These relationships should be understandable by the
expert in order to help them take decisions [9]. Throughout the
SDRD literature, exact algorithms have been developed for the
extraction of all possible relationships that fulfils these require-
ments. However the main drawback of these methods is the high
computational cost when data grows and the need to discretise
numerical data. In this way, metaheuristics, especially evolution-
ary algorithms (EAs) [10], have been employed within SDRD in
order to improve the trade-off between the quality of the solution
and its computational time [11–13].

Unfortunately, the application of EAs in machine learning tasks
usually involve the use of an evaluation function that needs to
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traverse the whole dataset each time a chromosome of the popula-
tion is evaluated throughout the evolutionary process. Therefore,
when the amount of data grows as in big data problems, the appli-
cation of these methods becomes unfeasible. One of the most com-
mon strategies performed in big data analysis is distributed
computing. Here the data and the processing are distributed
amongst the computing nodes of a cluster. Each node only pro-
cesses a subset of the data. The final result is then extracted by
means of an aggregation of all the outputs of the computing nodes.
This strategy is well-suited for big data analysis on large comput-
ing clusters or cloud computing environments [14]. The most pop-
ular paradigm that follows this strategy is MapReduce [15], where
their open-source frameworks Apache Hadoop [28] and Apache
Spark [16] are mainly employed for both distributed storage and
the processing of data.

This paper is focused on the extraction of high-quality emerging
patterns by means of a multi-objective EA (MOEA) called Extrac-
tion of Emerging Patterns through an Adaptive Multi-objective
Evolutionary Algorithm (E2PAMEA). The main aim of this algo-
rithm is twofold: firstly, to improve the quality of the extracted
knowledge while parameters tuning is reduced with respect to
similar alternatives. For this purpose, the algorithm employs an
adaptive approach for the extraction of interesting emerging pat-
terns, where different genetic operators are automatically applied
according to the learning needs. Secondly, to reduce the execution
time in big data environments avoiding data-division problems.
Following similar approaches in the literature, the evaluation pro-
cess is performed in a distributed way by means of a novel MapRe-
duce procedure called Bit Look-Up Table (Bit-LUT). This procedure
is based on the transformation of the data into a look-up table
made of bit sets where the coverages of the different attribute–
value pairs of the problem are stored. This allows the method to
reduce the evaluation time and the use of physical memory due
to the use of bits and bitwise operations. In addition, the scalability
is also improved with respect to the number of variables, which is a
major drawback on other approaches.

The paper is organised as follows: Section 2 presents the main
concepts employed in this paper. In Section 3 the Bit-LUT evalua-
tion approach is shown. Section 4 presents the E2PAMEA algo-
rithm. Section 5 shows the experimental analysis carried out to
determine the quality of the proposed method. In Section 6 a dis-
cussion of the results is presented. Finally, the conclusions
extracted from this work are depicted in Section 7.
2. Background

The main concepts employed throughout this paper are
described in this section. Firstly, the big data problem is defined
in Section 2.1. Secondly, a revision of metaheuristics employed in
big data analysis is depicted in Section 2.2. Finally, the EPM task
is presented in Section 2.3.

2.1. Big data

Big data can be defined as large volumes of data, arriving at high
speed into the systems from a variety of sources [2]. These charac-
teristics of big data impose new challenges upon us for the extrac-
tion of knowledge in these kinds of environments. For example,
traditional algorithms cannot handle these large amounts of data
as they assume that data fit in memory. Nowadays, big data anal-
ysis is applied in almost every field of application, including: edu-
cation [17], smart cities [18,19], security [20] and many machine
learning tasks [21–23] amongst others. For this reason, there are
several frameworks developed for dealing with big data. One of
the most popular is the MapReduce paradigm [24,25]. It is a frame-
work for distributed computing based on a divide-and-conquer
strategy. One of the main advantages of this framework is that it
can be easily deployed within large computing centres as it can
automatically handle all the necessary mechanisms involved in
distributed computation in a way which is transparent to the
developer. Therefore, experts are able to focus on how the data will
be processed by their algorithms.

As implied by the name, MapReduce defines two main functions
[26]: map and reduce. These functions must be implemented by
the developer. The definition of these functions is given below
[26]:

� Map phase. Data is split into several partitions. These data par-
titions are automatically sent to the computing nodes of the
cluster optimising data locality. Each partition is identified with
a tuple key;valueð Þ. After that, all the nodes process their parti-
tions concurrently. Finally, the output of this procedure is
another tuple key0;value0

� �
with the result of the map operation.

These pairs are then shuffled and ordered by key if necessary
and become the output of the reduce function.
� Reduce phase. This aggregates the intermediate results pro-
duced by the map function. The reduce function is executed
on each key0 key, where all the values are aggregated following
the reduce function. Thus, it returns a new tuple key0;value00

� �
,

which corresponds to the final result for each key.

Despite the advantages of MapReduce, their jobs are loaded
from disk each time they are applied. Therefore, the performance
on iterative jobs is decreased [27]. Fortunately, alternative solu-
tions have been developed. Currently, Apache Spark [16], amongst
others, solve this issue. Spark uses a structure called resilient dis-
tributed dataset (RDD) [28] which provides a set of parallel trans-
formations and actions over data. The key point of RDDs is that
intermediate results produced by several transformations or map
procedures can persist in the main memory, so the re-execution
of the whole MapReduce pipeline across different jobs is not
necessary.

2.2. Metaheuristics for big data analysis

Metaheuristics are usually nature-inspired methods aimed at
solving optimisation problems. The main advantage of these meth-
ods is their capacity for finding a solution close enough to the opti-
mal one within an affordable amount of time when dealing with
complex problems, e.g., in [29–33]. Moreover, they are able to find
solutions without describing in detail the problem, although it is
possible to add expert knowledge to the search process in order
to improve it. In fact, a learning task can be seen as an optimisation
problem as well, so it is well known that metaheuristics have been
widely applied to many machine learning tasks [34]. In concrete,
many metaheuristics have been widely applied on classification
tasks, especially for feature selection, where EAs [35,36], particle
swarm optimisation (PSO) algorithms [37], GRASP [38], Tabu
Search [39], amongst others have been used. Also, metaheuristics
have been widely employed for optimising the parameters of neu-
ral networks [40], support vector machines [41], or ensembles [42].
They have also been employed for clustering [7], where swarm
intelligence methods such as PSO, ant colony optimization, artifi-
cial bee colony, and others are the most employed [43]. For associ-
ation rule mining, methods such as cuckoo search [44], bee colony
[45], firefly algorithm [46] amongst others have been employed.
Finally, for the SDRD task, the majority of approaches presented
apply an EA [47–50].



Table 1
Contingency table of a pattern.

Class No class

Covered tp fp
Not covered fn tn
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Despite the good results obtained with the use of metaheuris-
tics, their application to machine learning tasks over big data envi-
ronments is a challenge due to scalability issues. This problem is
mainly associated with the computation of an evaluation function
for determining the quality of each candidate solution. This evalu-
ation usually involves a full traversal of the dataset, which is costly.
Therefore, it is necessary to create strategies for the development
of scalable metaheuristics. In this case, a MapReduce-based
approach is the most widely employed strategy for the implemen-
tation of these techniques. In particular, two main approaches have
been proposed [26]:

� A local approach (also known as approximate model). A base-
line algorithm is executed within the map phase, extracting
insights related to the partition of the data. Next, all the pieces
of knowledge are combined in the reduction phase. The final
result of the algorithm depends on the partitions employed.
� A global approach (also known as exact model). The entire
method, or one of its most expensive tasks, is designed to work
in a distributed way. With this kind of algorithm, the result is
always the same regardless of the partitions employed.

In data mining tasks, the whole dataset must be within each
map in order to properly evaluate the individual, which is not pos-
sible in big data by definition. Therefore, pioneering metaheuristics
developed for data mining tasks in big data environments were
mainly based on local approaches, which approximates the value
of the evaluation function [51–54]. These approaches can effi-
ciently scale-up with respect to the amount of data. However,
there are several drawbacks that should be taken into considera-
tion: firstly, the aggregation performed in the reduce phase is not
trivial and must be carefully designed. Secondly, as knowledge is
extracted from a random partition of data, knowledge extracted
may suffer from data-division problems such as skewed class dis-
tributions, lack of training data, and so on [55]. This could produce
the extraction of less accurate models.

These problems can be avoided by means of a global approach
where the evaluation function can be exactly computed regardless
the partitions employed. Examples of this approach can be found in
[56–59]. In general, global methods are desirable over local ones as
they are not affected by data-division problems. However, the
design of this kind of methods is usually complex as it could
require several MapReduce stages or additional processing with
respect to the original algorithm in order to verify the exact com-
putation. Additionally, this kind of approaches usually applies the
same MapReduce procedure on each iteration. As a result, global
approaches are usually slower than local ones. In this paper, the
proposed Bit-LUT approach encourage the employment of global
approaches by means of an easy method for an exact evaluation
of the individuals of a population, reducing its computational cost
and improving its scalability with respect to previous approaches.

2.3. Emerging pattern mining

EPM [60,13] is a data mining task that belongs to the SDRD [8]
framework. It searches for those patterns containing a significant
change in their support from one dataset to another one or from
a given class with respect to the remaining classes in a single
dataset.

Within this context, a dataset D which corresponds to a specific
problem is defined as follows: let V ¼ v1;v2; . . . ;vnf g be the set of
variables of the problem. These can be categorical or numerical.
One of them is the class or target variable of the problem, denoted
as vc. For this task, it is assumed that the class is always a categor-
ical variable. Xi ¼ xi1; xi2; ::xinf g is defined as the set of different cat-
egories for the categorical variable Vi, the domain of a numerical
variable Vi, or a set of linguistic labels (LLs) [61] for representing
numeric variables by means of fuzzy logic. Let e ¼ v1; x1j

� �
;

�
v2; x2j
� �

; . . . ; vn; xnj
� �g be an example (or instance) of the problem.

Finally, D ¼ e1; e2; . . . ; enf g is defined as a dataset, which is a set
of examples of the problem.

A selector [62] is defined as a tuple v i; xi;j
� �

where v i 2 V and
xi;j 2 Xi that connects a variable to its values. Let I ¼ i1; i2; . . . ; inð Þ
be the set of selectors of a given problem. A pattern P is defined
as a subset of I. The selectors in P are usually joined by conjunc-
tions or in disjunctive normal form. In this way, P covers ei, or ei
contains P if and only if all the selectors in P are satisfied by ei.
Finally, P is defined as an EP if its growth rate (GR) is higher than
q > 1. The GR is calculated as in Eq. (1).
GRðPÞ ¼
0; IF SupD1

ðPÞ ¼ SupD2
ðPÞ ¼ 0;

1; IF SupD1
ðPÞ– 0 ^ SupD2

ðPÞ ¼ 0;
SupD1 ðPÞ
SupD2 ðPÞ

; otherwise

8>><
>>: ð1Þ
where SupDi
Pð Þ is the support of the pattern P in the dataset Di. The

support is calculated as SupDi
Pð Þ ¼ countDi ðPÞ

jDi j where countDi
ðPÞ is the

number of instances covered by P on Di while jDij is the number
of instances in Di.

The main objectives of this task are the description of the dis-
criminative characteristics between classes or the description of
emerging tendencies in data. In this study the first objective is
tackled in order find the discriminative characteristics of the
classes of a given problem. In fact, it is important to find a trade-
off between the discriminative power of the patterns extracted
and their capacity to easily explain the underlying phenomena to
the experts. Therefore, several quality measures should be com-
puted in order to achieve this purpose. All these measures,
employed within the SDRD framework, can be easily calculated
by means of a contingency table where the number of correctly/in-
correctly covered/uncovered instances are shown for each pattern.
This kind of table is presented in Table 1. where tp is the number of
instances correctly covered by the pattern, fp is the number of
incorrectly covered instances, fn is the number of incorrectly
uncovered instances and tn is the number of correctly uncovered
instances. The most widely used quality measures within EPM
are presented in Table 2 [63], where T is equal to the total number
of instances.

Classic deterministic algorithms have been developed for EPM
such as DeEPS [68]. There are also works based on FP-trees such
as Tree-based JEP-C for EPM [69]. Moreover, there are develop-
ments based on efficient data structures such as the CP-tree for
the StrongJEP-C algorithm [70] and DGCP-Tree [71], which imposes
some constraints in order to find subsets of relevant emerging pat-
terns. Evolutionary fuzzy systems [72] have been presented in
[50,59] for EPM. These methods improve the quality and the inter-
pretability of the results by making use of fuzzy logic. In addition,
the execution time is significantly reduced with respect to the clas-
sic approaches. Nevertheless, it is necessary to tune many param-
eters. In fact, the work in [73] is oriented towards big data, but its
execution time is usually high.



Table 2
Quality measures used in EPM for the determination of the quality of a pattern.

Name Abbreviation Formula

Confidence [64] Conf tp
tpþfp

Weighted Relative Accuracy [65] WRAcc tpþfp
T

tp
tpþfp� tpþfn

T

� �
Growth Rate [60] GR p fpþtnð Þ

n tpþfnð Þ
True Positive Rate [66] TPR tp

tpþfn
False Positive Rate [67] FPR fp

fpþtn
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3. The Bit-LUT evaluation approach

The use of EAs in learning tasks usually involves the application
of an evaluation function that must traverse the whole dataset
each time a chromosome is evaluated. As can be observed, the per-
formance of an EA for learning tasks is highly dependent on the
amount of data. The proposed evaluation approach has been devel-
oped using the Apache Spark framework following a MapReduce
approach. In a nutshell, the new proposed evaluation procedure
is based on an optimised look-up table calculated before the begin-
ning of the evolutionary process in order to avoid the full traversal
of the raw dataset for each chromosome evaluation. This table can
be employed on an EA to improve its performance at the chromo-
some evaluation stage. By means of this method, the fitness calcu-
lation procedure:

1. Improve its processing time.
2. Reduce memory consumption.
3. Properly scale up on both dimensions of data: number of
instances and number of variables.

The proposed chromosome evaluation approach by means of
MapReduce is firstly performed by means of a pre-evaluation
stage, where raw data is transformed in order to be efficiently pro-
cessed. This is carried out before the evolutionary process and it is
independent of the representation employed. Next, the chromo-
some evaluation stage will determine the quality of the chromo-
somes by means of the look-up table. This will be carried out
throughout the evolutionary process and depends on the chromo-
some representation employed. This section describes the pre-
evaluation stage as it is independent of the underlying EA.
3.1. Bit-LUT pre-evaluation

It is assumed that training data are already split into p parti-
tions across the computing cluster. In addition, each instance e is
identified with a unique index k. For the pre-evaluation stage it
is assumed that there is a fixed, immutable amount of selectors.
Thus, the membership degree of a given instance is always the
same with respect to a given selector throughout the whole pro-
cess. For the sake of understanding, the term membership degree
will be employed to refer to all categorical, numerical or fuzzy
selectors. According to this idea, a look-up table can be created
where the membership degree of all the instances with respect
to a given selector is stored. Within Bit-LUT, this look-up table con-

tains, for each selector, a bit set BSji ¼ x1; x2; . . . ; xnf g where n is the
total number of instances and xk is a binary value, calculated as in
Eq. (2), where a value of one means that the selector covers the
instance k or zero otherwise. Using this approach, we can assert
that only the necessary membership degree computations are
undertaken, thus improving the performance, while physical mem-
ory consumption is reduced due to the use of a single bit instead of
a 64-bit value for each instance and selector.
Algorithm1 Bit-LUT pre-evaluation stage. Map procedure

Input:
A dataset D composed of tuples k; ekð Þ

Output:
A matrix M with jIj rows and n columns.

1: for i 2 1; . . . ; jV j and j 2 1; . . . ; jXij do
2: for all k; ekð Þ 2 D do
3: Mij;k  cov k; i; jð Þ
4: end for
5: end for
Algorithm2 Bit-LUT pre-evaluation stage. Reduce procedure

Input:
Mp, a set of matrices with jIj rows and n columns

Output:
Data0, a matrix with jIj rows and n columns.

1: Data0  M1j . . . jMp

Bit-LUT calculates its look-up table by means of a single MapRe-
duce job, presented in Algorithm 1 and 2 for the map and reduce
procedure, respectively. On each data partition or map, the binary
value for the instance k that determines whether it is covered by a
given selector or not is determined by the coverage (cov) function
presented in Eq. (2) (Algorithm 1, line 3).

covðk; i; jÞ ¼ 1; If TC l1
i k; ið Þ; . . . ;lli

i k; ið Þ
� �

¼ lj
i k; ið Þ;

0; otherwise

(
ð2Þ

where TC is the maximum t-conorm and lj
i k; ið Þ is the membership

degree of the value in instance k for variable i with respect to the

value j for variable i. In case of a non-fuzzy selector, lj
i k; ið Þ ¼ 1 if

the value in instance k for variable i satisfies the selector or zero
otherwise. Then it is determined that the selector covers the
instance if and only if its belonging degree with respect to the given
selector is the maximum with respect to all other possible values
for that variable. This operation is carried out over all selectors for
each instance in the partition.

Finally, the map phase returns for each partition a partial matrix
of bits according to the data it owns. After that, all these partial
results are collected in order to extract a final matrix of bits
Data0 at the reduce phase, where each row represents the coverage
of a selector. The aggregation is performed by means of a bitwise
OR operation on those rows referring to the same selector (Algo-
rithm 2, line 2). As can be observed, the number of rows of Data0

is equal to the number of selectors of the problem, i.e., jIj while
the number of columns depends on the number of instances. In
this way, if Data0 is stored in a distributed data structure such as
Apache Spark RDDs [28], the algorithm is able to properly scale
up with respect to the number of selectors of the problem as well.
An example of this pre-evaluation stage, where Data0 is calculated
on a 6-instance dataset using 3 partitions, is presented in Fig. 1.
The coverage of the selectors is presented in columns instead of
rows to facilitate the understanding.

3.2. Computational complexity

The computational complexity of the Bit-LUT evaluation is anal-
ysed in this section. The complexity of the fitness calculation stage
without the Bit-LUT approach is OðISNÞ, where I is the number of
individuals in the population, S is the number of selectors, and N



Fig. 1. Example of a Bit-LUT pre-evaluation stage using a dataset with six instances and three partitions. The coverage of selectors is presented in columns instead of rows to
facilitate the understanding.
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is the number of instances of the problem. The reason for this is
that, for each instance of the problem, it is necessary to calculate
its fuzzy belonging degree with respect to the selectors repre-
sented by the individuals. In the big data scenario, it is assumed
that N � S� I, so the evaluation stage is a very heavy process.

Bit-LUT softens this complexity by means of a pre-evaluation
stage, whose complexity is OðSNÞ, in order to create a look-up
table. Thanks to this table, the computational complexity of the fit-
ness calculation within the evolutionary process is reduced to
OðISÞ, as checking the coverage of the instances by a given selector
has a constant cost. Therefore, the proposed Bit-LUT evaluation
approach reduces, by an order of magnitude, the computational
cost of evaluating the chromosomes.
4. The E2PAMEA algorithm

In this section an EA which employs the proposed evaluation
approach is presented. In particular, E2PAMEA is an EFS that looks
for emerging patterns with a good trade-off between its reliability
and descriptive capacity in the context of a big data problem. The
method is able to extract patterns in a disjunctive normal form
(DNF). For this purpose, an adaptive multi-objective evolutionary
approach called NSGA-II adaptive [74] is employed. This is due to
the complexity of finding EPs with high reliability, interestingness
and understandability, as multiple contradictory objectives must
be optimised at the same time. In summary, E2PAMEA presents
the following main characteristics:

1. Use of fuzzy logic for representing numeric variables.
2. Codification of chromosomes by means of a
‘‘chromosome = rule” approach.
3. Evolutionary process based on NSGA-II adaptive with specific
operators for EPM.
4. Cooperative-competitive approach within an elite popula-
tion. The elite population will keep the best set of patterns
found so far throughout the evolutionary process.
5. Employment of the Bit-LUT evaluation approach to improve
the processing time and scalability in both dimensions of data.

The main elements of the proposed algorithm are described in
the following subsections. First, the pattern representation within
E2PAMEA is described in SubSection 4.1. After that, the proposed
evaluation process is depicted in SubSection 4.2. Next, the genetic
operators and their application are described in SubSection 4.3. The
reinitialisation procedure is depicted in SubSection 4.4. Finally, the
operational schema is shown in SubSection 4.5.
4.1. Pattern representation

Patterns extracted by E2PAMEA are presented in DNF form and
they use fuzzy logic for the representation of numerical variables
such as LLs [61]. The use of LLs allows us both to improve its
robustness [55,75] and to extract more interpretable knowledge
than other representations [76]. Each fuzzy set that corresponds
to a LL can be defined by the user when expert knowledge is avail-
able or by means of triangular membership functions otherwise.

In Fig. 2 an example of a chromosome in E2PAMEA is presented.
A DNF pattern can activate several values for each variable, which
are joined by disjunctions. Therefore, an individual is represented
by means of a binary vector. Its size is the number of selectors of
the problem, i.e., jIj. Moreover, an integer value is added into this
representation in order to codify the class of the pattern. This value



Fig. 3. Chromosome evaluation in E2PAMEA by means of MapReduce using Bit-LUT
data.

Fig. 2. Representation of a fuzzy DNF pattern with continuous and categorical
variables in E2PAMEA.
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represents the i-th nominal value of the class. Using this represen-
tation, a selector participates in the pattern if its corresponding
value in the binary vector is equal to one. It is important to remark
that a variable does not participate in the pattern if all its values
are zero or one. This representation allows us the extraction of
emerging patterns for all the classes of the problem.

Using this representation, an instance is covered if and only if
its Antecedent Part Compatibility (APC) is higher than zero [50].
This value is the degree of compatibility of the example with
respect to the antecedent part of the pattern. It is calculated by
means of an initial application of a fuzzy t-conorm which repre-
sents the fuzzy disjunction together with a fuzzy t-norm after-
wards which represents the fuzzy conjunction. Therefore, if the
instance has a membership degree higher than zero in the fuzzy
subspace delimited by the antecedent part of the pattern, then
the instance is covered.
4.2. Chromosome evaluation with Bit-LUT

The evaluation of chromosomes is carried out efficiently by
means of Data0, extracted previously during the pre-evaluation
process of Bit-LUT. According to the representation employed
and Data0, the coverage for a given individual P can be calculated
as depicted in Eq. (3).

CovðPiÞ¼ BS11jBS21j . . . jBSj1
� �

& BS12jBS22j . . . jBSj2
� �

&...& BS1njBS2nj . . . jBSjn
� �

ð3Þ

where & and j are the bitwise AND and OR operators, respectively. It
is important to remark that, using this representation, if a selector j

for variable i does not participate in the pattern, then BSji ¼ 0, as it is
the neutral element for the bitwise OR operator. Moreover, if a
whole variable i does not participate in the pattern, then

BS1i jBS2i j . . . jBSji
� �

¼ 1, as this is the neutral element for the bitwise

AND operator.
As can be observed, by means of Bit-LUT this evaluation proce-

dure can be easily parallelised by means of a MapReduce job,
where the map phase calculates all possible OR operations
between elements that belongs to the same variable, while the
reduce phase performs the AND operations on the previous result
in order to obtain the final coverage of the pattern.

Finally, the contingency table for an individual P using Bit-LUT
is calculated as shown in Table 3, where the symbol ! means the

complement of that bit set and BSjclass is the bit set representing
the class of the pattern.

Returning to the example in Fig. 1, a pattern
P : V1 ¼ R ^ V3 ¼ LL1 _ LL3ð Þ ! V2 ¼ 0 is analysed in Fig. 3.
Table 3
Contingency table of a pattern by means of the Bit-LUT evaluation process.

Class No class

Covered tp ¼ jCovðPÞ&BS classjj fp ¼ jCovðPÞ&!BS classjj
Not covered fn ¼ j!CovðPÞ&BS classjj tn ¼ j!CovðPÞ&!BS classjj
4.3. Genetic operators

Firstly, the population of E2PAMEA is initialised by means of an
oriented initialisation procedure. With this method, 75% of the
individuals are generated with at most 25% of their variables ran-
domly initialised, while the remaining individuals are generated at
random. The idea is to perform an initialisation that promotes gen-
erality within the patterns of the population.

Within E2PAMEA, a binary tournament selection [77] is
employed in the selection process. The different genetic operators
employed are presented below:

� Two-point crossover [78] for the intensification of promising
areas of the search space.
� HUX crossover [79] for diversification in order to avoid
stagnation.
� Mutation operator that completely removes a variable of a pat-
tern, by setting all its genes to zero. This allows generalisation
of the patterns.
� Mutation based on a random change in a single gene for diver-
sification in the searching process.

E2PAMEA uses an adaptive strategy for the application of differ-
ent genetic operators according to how the population is evolving.
This approach avoids tuning the parameters for the operator’s
probabilities at the beginning of the process. Initially, the applica-
tion probabilities of all operators are uniformly distributed in order
to avoid any bias in the application of the operators. Next, these
probabilities change according to the operator’s success in the last
generation. This success is the number of individuals generated by
the operator. In the case of the success of an operator being lower
than two, it is set to two in order to avoid its removal.

4.4. Reinitialisation procedure

It is possible for the population to stagnate, i.e., it is not possible
to improve any more because a local optimum has been reached. A
reinitialisation procedure is applied in E2PAMEA in order to avoid
falling into a local optimum. The procedure is executed when the
population is not able to cover new examples for 25% of the total
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evaluations. Therefore, if the population is not able to improve its
coverage for a very long period of time, it is assumed that the pop-
ulation is stagnated.

The reinitialisation procedureworks as follows: first, individuals
in the Pareto front are joined together with the current elite popu-
lation, creating J. After that, a token-competition-based procedure
[59] is triggered wherein only those non-repeated, high-coverage,
interesting patterns are kept. Then, the resulting population will
overwrite the current elite one if and only if its average WRAcc is
higher than the current elite. Finally, the result of this procedure
is introduced into the population of the next generation Ptþ1.
Remaining individuals in Ptþ1 are generated by means of a
coverage-based initialisation [47] in order to cover other areas of
the search space.

4.5. Operational schema

In this section the proposed operational schema for E2PAMEA is
presented. As mentioned previously, the proposed method has
been developed for the Apache Spark framework as it is particu-
larly suitable for iterative, distributed computations.

Algorithm3 The E2PAMEA algorithm with distributed
chromosome evaluation.

Input:
A dataset D
m: maximum evaluations to perform

Output:
A set of patterns P

1: Data0  BIT-LUT_PREEVALUATION D .See Alg. 1 and Alg.
2.

2: P  ORIENTEDINITIALISATION

3:  BIT-LUT_EVALUATE P;Data0 .See Section 4.2 and
Fig. 3.

4: while evaluations 6 m
5: P0  GeneticOperators P .See Section 4.3
6:  BIT-LUT_EVALUATE P0;Data0

7: Q  FASTNONDOMINATEDSORTING P [ P0 .See [80]
8: if Reset Criterion
9: P  REINITIALISATIONPROCEDURE Elite, Q .See

Section 4.4.
10: else
11: P  FILLBYCROWDINGDISTANCE Q .See [80]
12: end if
13: end while
14: P  TOKENCOMPETITION P .See [59]
15: return Population with best average WRAcc between P

and Elite

After the Bit-LUT pre-evaluation stage (Algorithm 3, line 1), the
evolutionary algorithm is triggered for the extraction of EPs. Algo-
rithm 3 presents the pseudo-code of the main method. First, the
initial population is generated by means of the oriented initialisa-
tion operator and then it is evaluated by means of a MapReduce
procedure using Bit-LUT data (Algorithm 3, lines 2–3). After that,
the evolutionary process is executed until a maximum number of
evaluations is reached (Algorithm 3, lines 4–13). Within this pro-
cess an offspring population P0 is first generated by applying the
genetic operators following the proposed adaptive schema in Sec-
tion 4.3 (Algorithm 3, line 5). Next, P0 is evaluated using Bit-LUT
(Algorithm 3, line 6). Once P0 is evaluated, both populations are
joined together and then shorted by dominance fronts by means
of the fast non-dominated sorting algorithm [80] (Algorithm 3, line
7). Finally, the reinitialisation procedure presented in Section 4.4 is
checked and applied, updating the elite population, if necessary.
Otherwise, the population is updated by introducing the first n
fronts directly in P or the first n individuals of a front, sorted by
crowding distance, until P is full (Algorithm 3, line 11). At the
end of the evolutionary process, a token-competition-based proce-
dure is triggered on the current population in order to remove
redundancies as much as possible (Algorithm 3, line 14). Finally,
if the average WRAcc of the current population P is higher than
the elite one, P is returned. Otherwise, the elite population is
returned (Algorithm 3, line 15). In this procedure, the key element
for performance is the chromosome evaluation by means of
MapReduce using the Bit-LUT data.
4.6. Computational complexity

The computational complexity of an algorithm is governed by
its most complex component. Therefore, in this section the compu-
tational complexity of the different components of E2PAMEA are
analysed:

� In the worst case, the computational complexity of the oriented
initialisation (line 2), crossover and mutation operators (line 5)
is O ISð Þ, where I is the number of individuals and S is the num-
ber of selectors, as all genes of the population are explored and
modified.
� The evaluation function within the evolutionary process (line 6)
has a complexity of OðISÞ. At the pre-evaluation stage, this com-
plexity becomes OðSNÞ, where N corresponds the number of
instances (line 3).
� The fast non-dominated sorting procedure (line 7) has a com-
plexity of OðMI2Þ [80], where M is the number of objectives.
� The checking of the reset criterion (line 8) is constant for each
individual. Therefore, its complexity is of OðIÞ.
� The complexity of the reinitialisation procedure, at line 11, is of
OðMIlogIÞ. This is because the crowding distance sorting [80] if
the reset criterion is not fulfilled. Otherwise, the token compe-
tition (line 9) has a complexity of OðIlogIÞ. This is due to its sort-
ing stage.

According to these elements, the entire evolutionary process
has a complexity of OðMI2Þ thanks to the reduction brought by
the Bit-LUT procedure. As the algorithm is designed for big data
environments, it assumed that N � I and S > I. Therefore, it can
be noticed that the pre-evaluation stage and even the Bit-LUT eval-
uation within the evolutionary process are very heavy processes
that need to be distributed in order to improve efficiency.
5. Experimental study

In this section, the experimental study for the determination of
the quality of the proposal is carried out. First, the experimental
framework is presented. Next, a comparison of the quality of the
knowledge extracted from different algorithms is shown. Finally,
a scalability analysis is performed.
5.1. Experimental framework

The experimental framework used for the evaluation of
E2PAMEA is presented in this section. Its characteristics are
described below:



Table 4
Properties of the datasets used in the experiments.

Name # Examples (in millions) # Variables (R/I/N) # Selectors # Classes

census 0.299 41 (1/12/28) 427 2
kddcup 0.494 41 (26/0/15) 544 23
rlcp 5.749 11 (11/0/0) 33 2
susy 5.000 18 (18/0/0) 54 2
higgs 11.000 28 (28/0/0) 84 2
hepmass 10.500 29 (29/0/0) 87 2

Á.M García-Vico et al. / Neurocomputing 415 (2020) 60–73 67
� Datasets. Six datasets from the UCI repository [81] were
employed for comparing the quality of the proposed method.
In addition, artificial datasets were created using the MOA
framework [82] for the scalability analysis. For further details
on these datasets, please refer to our repository at the website
(https://github.com/SIMIDAT/e2pamea-bd). Table 4 presents
the characteristics of data, where the number of instances in
millions (# Instances), the number of variables (# Variables)
separated into real, integer and nominal (R/I/N), the size of
selectors (# Selectors), and the number of classes are shown.
� Experiment evaluation. As EPM tries to describe the underlying
phenomena in data, an evaluation becomes necessary of the
patterns extracted using unseen data. Therefore, this experi-
mental study follows a fivefold stratified cross-validation
schema in order to avoid as much as possible bias when creat-
ing the training-test partitions.
� Algorithms and parameters. The E2PAMEA algorithm is com-
pared in this paper against BD-EFEP as it is the most promis-
ing EA for EPM in the big data context up to now [59]. The
computational complexity of BD-EFEP is governed by its eval-
uation procedure, which is OðISNÞ, i.e., each individual must
traverse the whole dataset once for each selector. It is impor-
tant to remark that it is assumed that N � S > I as it is
focused on big data environments. A pseudo-code for BD-
EFEP is shown in Alg. 4, where the computational complexity
of each procedure is analysed. The parameters configuration is
depicted in Table 5. The parameters employed for BD-EFEP
were taken from [59]. The parameters chosen for E2PAMEA
were selected in order to be as similar as possible to the
BD-EFEP and provide a fair comparison. This way, it is not
necessary to tune the parameters of the E2PAMEA. In addition,
it is important to mention that due to the adaptive nature of
the E2PAMEA, the crossover and the mutation probabilities
are not available.
� Quality measures. The quality measures analysed in this study
were presented in Table 2. These measures are key for the
determination of the quality of the patterns extracted regarding
the different aspects of EPM. In addition, the number of patterns
Table 5
Algorithms and their parameters used in this experimental
study.

Algorithm Parameters

BD-EFEP [59] Population length (per class) = 51
Number of labels = 3
Number of evaluations = 10000
Objectives = Jaccard,FPR
Crossover probability = 0.6
Mutation probability = 0.1

E2PAMEA Population length (per class) = 51
Number of labels = 3
Number of evaluation = 10000
Objectives = Jaccard,FPR
(n p) and the average number of variables (n v) are analysed in
order to determine the model complexity. It is important to
remark that the value shown for GR represents the percentage
of patterns whose GR in test is greater than one. This is because
the domain of GR is 0;1½ �, so the average cannot be computed
properly.
� Run environment. The experimental study was carried out
using a computation cluster composed of 16 nodes with two
Intel Xeon E5-2670v2 each, 10 cores at 2.50 Ghz and 64 GB of
RAM. The cluster is based on RedHat Enterprise Linux (relase
7.3). The experiments were performed using Apache Spark ver-
sion 2.1.
Algorithm4 Pseudo-code of the BD-EFEP algorithm [59].
Computational complexity of each procedure is shown as a
comment, where N is the number of instances, M the number
of objectives, S the number of selectors and I the number of
individuals.

Input:
A dataset D
m: maximum evaluations to perform

Output:
A set of patterns P

1: P  GENERATEINITIALPOPULATION .OðIÞ
2:  EVALUATEP,D .OðISNÞ
3: while evaluations 6 m
4: Q  GENETICOPERATORSP .OðISÞ
5:  EVALUATEQ ,D .OðISNÞ
6: R  FASTNONDOMINATEDSORTINGP [ Q .OðMI2Þ
7: if  RESETCRITERIONR
8: P  RANDOMINITIALISATIONF 0, P .OðISÞ
9: else
10: P  FILLBYCROWDINGDISTANCER .OðMIlogIÞ
11: end if
12: end while
13: P  TOKENCOMPETITIONP .OðIlogIÞ
14: P  FILTERBYCONFIDENCEP .OðIÞ
5.2. Analysis of the results

This section presents the analysis of the results obtained with
these algorithms. Both methods use a global MapReduce approach,
so they extract the same results independently of the number of
distributed training partitions employed across the nodes of the
cluster. Therefore, the number of partitions is not shown in this
study.

The average results extracted for the analysed algorithms on
each dataset is presented in Table 6. In addition, the median results
for each algorithm on all datasets are presented in the last two
rows in order to ease the analysis. An analysis of the different qual-
ity measures is presented below:

https://github.com/SIMIDAT/e2pamea-bd


Table 6
Average results obtained by the big data algorithms for emerging pattern mining.

Dataset Algorithm n p n v WRAcc CONF GR TPR FPR

census E2PAMEA 18.0000 3.0710 0.6460 0.9670 1.0000 0.6660 0.3740
BD-EFEP 21.4000 4.0923 0.6211 0.9365 1.0000 0.6212 0.3790

kddcup E2PAMEA 29.0000 4.7800 0.7050 0.5160 0.7720 0.4750 0.0220
BD-EFEP 13.0000 5.2971 0.4510 0.5480 0.7857 0.1864 0.1532

rlcp E2PAMEA 5.6000 2.0070 0.9220 1.0000 1.0000 0.8590 0.0160
BD-EFEP 5.2000 6.6700 0.5161 0.7010 1.0000 0.1097 0.0776

susy E2PAMEA 9.4000 3.5050 0.5540 0.7360 1.0000 0.2620 0.1530
BD-EFEP 14.0000 1.9727 0.6695 0.8284 1.0000 0.5106 0.1717

higgs E2PAMEA 2.8000 3.1330 0.5040 0.6790 1.0000 0.0450 0.0360
BD-EFEP 9.6000 2.6911 0.9203 0.9827 0.9833 0.8710 0.0303

hepmass E2PAMEA 11.6000 2.6050 0.6450 0.7860 1.0000 0.5170 0.2270
BD-EFEP 19.0000 1.9934 0.5659 0.4098 0.6738 0.2488 0.0884

Median E2PAMEA 10.5000 3.1020 0.6455 0.7610 1.0000 0.4960 0.0945
BD-EFEP 13.5000 3.3916 0.5934 0.7648 0.9916 0.3769 0.1207

Table 7
Performance comparison between E2PAMEA and BD-EFEP on the analysed datasets.
The last row presents the statistical signficance value according to the Wilcoxon test.

Dataset Algorithm Exec. time (s) Memory (MB)

census E2PAMEA 7.00 14.00
BD-EFEP 135.00 37.00

kddcup E2PAMEA 26.64 35.10
BD-EFEP 196.00 4.70

rlcp E2PAMEA 37.17 21.90
BD-EFEP 2535.00 356.08

susy E2PAMEA 43.81 36.20
BD-EFEP 2772.00 562.30

higgs E2PAMEA 105.55 111.40
BD-EFEP 6796.00 1909.00

hepmass E2PAMEA 95.93 107.40
BD-EFEP 5701.00 1759.00

Median E2PAMEA 40.49 35.65
BD-EFEP 2653.50 459.55
p-value 0.0138 0.0374
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� n p. The number of patterns extracted by both algorithms is, in
general, low. Therefore, the models are simple. It is important to
remark that, in general, E2PAMEA extracts a lower number of
rules than BD-EFEP.
� n v . The average number of variables extracted by both algo-
rithms allows a fast, easy analysis of each individual rule. For
E2PAMEA, the average number of variables is lower than BD-
EFEP, which produces a simpler model.
� WRAcc. In both cases, the WRAcc extracted is high. However, it
is important to remark that the median WRAcc extracted with
E2PAMEA is higher than the one extracted with BD-EFEP.
� CONF. Both algorithms contain a very similar confidence, with a
slightly better confidence for BD-EFEP. The use of the elite pop-
ulation and its update policy in E2PAMEA, together with the
coverage-based reinitialisation allows the extraction of individ-
uals with high reliability. Nevertheless, this is a great improve-
ment as generality is improved (as can be seen on WRAcc),
while reliability remains stable.
� GR. Both algorithms extract a high number of patterns that are
EPs on test data. However, it is important to remark that in gen-
eral, the knowledge extracted by E2PAMEA fits better to the real
underlying phenomena, as it has a higher percentage of patterns
that are EPs on test.
� TPR and FPR. In general, it can be observed that E2PAMEA is able
to extract a set of patterns with higher TPR, together with lower
FPR than BD-EFEP. This means that the knowledge extracted is
more general and more reliable with the proposed method than
other alternatives, which is a great improvement on the quality
of the insights extracted.

The knowledge extracted in EPM searches for a good trade-off
between three main objectives: simplicity, generality and reliabil-
ity. It is important to remark that reliability is the most relevant
objective as descriptions should always be accurate. According
to the results extracted, E2PAMEA improves all the aspects anal-
ysed with respect to BD-EFEP, except for confidence where its
quality is similar. This means that the pattern model of E2PAMEA
is simpler, allowing an easier analysis by the experts. The knowl-
edge is more general as it covers a higher amount of positive
examples, while the reliability is improved as there are less incor-
rectly covered examples while the confidence is kept. These prop-
erties allow the extraction of better conclusions about the
underlying phenomena from these insights than the ones
extracted with BD-EFEP. Therefore, the proposed algorithm
extracts EPs with a better trade-off between simplicity, generality
and reliability than other alternatives proposed up to now for EPM
in big data environments.
5.3. Performance comparison

In this section, an execution time and memory consumption
comparison between the different algorithms analysed is carried
out. The results presented have been obtained using 512 dis-
tributed training partitions on each method.

Table 7 presents the time comparison and memory consump-
tion of the algorithms analysed. It is important the remark that
the last row is the significance values according to the Wilcoxon
statistical test [83], with a ¼ 0:05. In addition, Fig. 4 graphically
presents this comparison using a logarithmic scale. The results pre-
sented are the average execution time in seconds of the different
datasets analysed. The results show that both algorithms present
really good execution times on those datasets with the lowest
number of instances, i.e., census and kddcup. However, when the
amount of data grows to approximately five million instances on
rlcp and susy, the execution time of BD-EFEP drastically increases
up to more than 2000 s, while the execution time of E2PAMEA is
less than 50 s. Finally, for the largest datasets with more than 10
million instances, the execution time of E2PAMEA is approximately
100 s, while on BD-EFEP this time is more than 5000 s, which could
be unacceptable in some scenarios. Therefore, according to the
results of the Wilcoxon test, E2PAMEA significantly surpasses
BD-EFEP with regard to execution time.

On the other hand, memory consumption on the proposed
method is drastically reduced, especially on the largest datasets.
However, it is important to mention the results obtained using
the kddcup dataset, where the amount of memory employed by



Fig. 4. Performance comparison between E2PAMEA and BD-EFEP on the analysed datasets. (a) Execution time comparison, (b) Memory consumption comparison.
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E2PAMEA is significantly higher than BD-EFEP. This is due to the
high ratio between the number of selectors and the number of
instances. Nevertheless, this is not a problem on bigger datasets
as this ratio is usually much lower, i.e., millions of instances against
thousands of selectors. In addition there is a high number of
classes, which significantly increases the population size and
memory consumption. In general, the average memory gain using
E2PAMEAwith respect to BD-EFEP is about 92%. Therefore, the pro-
posed evaluation approach significantly outperforms the classical
one in terms of memory consumption, which is also supported
by the results extracted from the Wilcoxon test.
5.4. Scalability analysis

In big data analysis the methodologies should be prepared for
handling the future amounts of data in a reasonable time as well.
For this purpose, a scalability analysis for both the number of
instances and the number of variables has been carried out. For
the scalability analysis with respect to the number of instances, a
set of artificial datasets generated by the MOA framework [82]
ranging from 1 � 107 to 1 � 108 instances with a fixed amount of
20 variables each one was analysed. For the scalability analysis
with respect to the number of variables, it is important to remark
that the complexity is related to the amount of selectors of the
problem. For this purpose a set of artificial datasets ranging from
100 to 15000 variables was analysed, where half of them were cat-
egorical variables with five categories, and the other half numeric
variables. For numeric variables, five LLs were employed. There-
fore, the number of selectors ranges from 500 ð50 � 5þ 50 � 5Þ to
75000 ð7500 � 5þ 7500 � 5Þ. The number of instances in these data-
sets was fixed at 1 � 106.

In particular, Fig. 5a presents the scalability analysis with
respect to the number of instances, where in logarithmic scale
Fig. 5. Scalability analysis of E2PAMEA by (a) number of instances
are presented the number of instances on the x axis, the execution
time on the y axis on the left-hand side, and the memory consump-
tion on the right-hand side. As can be observed, the execution time
scales up linearly as the number of instances increases. This is a
desirable behaviour in big data as more nodes can be added in
order to maintain an acceptable execution time. Therefore, the exe-
cution time of the proposed algorithm properly scales up with
respect to the number of instances. In addition, the amount of
memory required is very low. In fact, the amount of memory
required suggests that the method can fit on a single machine even
when processing 100 million instances, although parallel process-
ing should be employed to improve execution time. Moreover, the
memory scales up linearly following a stepped shape. This shape is
produced due to the memorymanagement of the bit set data struc-
ture employed in Bit-LUT that doubles its size when it needs to
allocate more memory. Thus, the memory scalability with respect
to the number of instances is appropriate for big data analysis.

Finally, Fig. 5b presents the scalability analysis with respect to
the number of selectors of the problem. On both axes the logarith-
mic scaling was employed, where the number of selectors is pre-
sented on the x axis and the execution time on the y axis. It can
be observed that the execution time scales up linearly when the
number of variables increases. Thus, the proposed algorithm is able
to properly scale up with respect to the number of variables. How-
ever, it is remarkable that the slope of the scalability is higher with
respect to the number of instances. This could be produced by sev-
eral elements such as higher complexity in individuals, which pro-
duce a higher data transfer for each evaluation process, together
with a significant increase of reduce operations which slow down
the process due to data transfers. Finally, it is important to remark
that the amount of memory required is low and it linearly scales up
with respect to the number of selectors. Therefore, the memory
scalability with respect to the number of selectors of the problem
is appropriate.
(b) number of selectors. (b) is shown using a logarithmic scale.
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According to these results, the proposed Bit-LUT evaluation pro-
cess is a promising alternative for speeding up the chromosome
evaluation process with respect to BD-EFEP. Bit-LUT is also able
to handle big data as it properly scales up with respect to the num-
ber of instances. Moreover, it is also able to linearly scale up with
respect to the number of variables/selectors of the problem. There-
fore, Bit-LUT is a promising alternative for a fast, scalable evalua-
tion of individuals for evolutionary algorithms, specifically in EPM.
6. Discussion

The EPM method aims at finding those discriminative patterns
which are able to describe the highest number of instances of the
dataset with the best balance between its simplicity and reliability.
The purpose is to provide knowledge about the underlying phe-
nomena in data in order to help decision-making processes. This
fact is of relevance in big data analysis as a simple, understandable
summary of these vast amounts of data are necessary.

According to the results extracted, the proposed algorithm is
able to find a good trade-off between the different objectives of
the problem thanks to the use of a multi-objective approach, which
is able to find the patterns at the Pareto front. However, one of the
main problems of dominance-based multi-objective evolutionary
algorithms is their performance degradation when the number of
objectives increases [84].

The aim of the adaptive strategy developed for E2PAMEA is
twofold: firstly, it removes the need to tune the parameters of
the crossover and mutation probabilities; secondly, with the cor-
rect combination of operators, the algorithm is able to avoid local
optima as there is a trade-off between the exploitation and explo-
ration capacities. In general, this adaptive strategy seems interest-
ing as it promotes a fair application of the genetic operators
according to its performance, improving exploitation, while it
allows some room for randomness in order to provide a controlled
exploration capacity, avoiding premature convergence. Specifically
for E2PAMEA, the crossover operators promotes the specificity of
the patterns. This means that they look for longer, reliable individ-
uals, from two different perspectives: two-point crossover tries to
explode nearby areas of the search space, while HUX crossover
explores the areas with the largest Humming distance with respect
to their parents. On the other hand, the application of the mutation
operators promotes the generality and diversity of the patterns.
Therefore, they look for shorter, general ones. In particular, random
gene change allows more diversity, while random variable removal
allows more generality. This is interesting when the search for reli-
able patterns gets stagnated. Here, the mutation operators can
remove those less relevant variables, improving generality without
loosing reliability. In fact, the algorithm obtains similar levels of
confidence with respect to BD-EFEP. However, there is a reduction
of the error magnitude, as can be observed in FPR, while the gen-
erality of the patterns is improved, according to the TPR and GR
values. Therefore, there is a great synergy between these operators,
as they are able to find reliable patterns, with higher generalisation
capacity than the BD-EFEP.

Nevertheless, this adaptive scheme usually converges to one
operator, which keeps the applicability of the remaining ones at
the minimum level. Therefore, the algorithm can get stagnated in
an optimum. In this way, the application of the reinitialisation pro-
cedure is necessary in order to collect the best individuals found so
far and, then, move to another area of the search space. In the EPM,
patterns extracted should avoid overlapping as they provide
unnecessary redundancy. For the E2PAMEA, this is done by means
of the token-competition-based procedure in the reinitialisation,
which keeps those patterns with higher WRAcc, while the com-
plexity of the patterns set extracted is reduced. Although this is a
fast process, it cannot assert the complete removal of redundant
patterns due to its niche-based procedure. Therefore, in order to
soften this problem, the elite population is only replaced if the
average WRAcc is better, as more interesting patterns are
extracted. According to the results obtained in terms of WRAcc
by E2PAMEA, this strategy seems to be good for finding interesting
patterns. Additionally, the reduction of the complexity of the set of
patterns shows the suitability of the application of the procedure
for this problem.

Distributed approaches are necessary because, by definition, big
data problems cannot be handled by a single computer in a reason-
able time due to its complexity, volume, and so on. Due to this fact,
many researchers deploy their clusters within cloud services [14].
The cost of these services is usually calculated by CPU and memory
consumption. Thus, efficiency is key. In the development of evolu-
tionary algorithms for EPM focused on big data, the main bottle-
neck is its evaluation process. As can be seen from other
alternatives such as BD-EFEP, each individual in the population
must traverse this huge dataset each time it needs to be evaluated.
Thus this a very slow operation. In this paper, the Bit-LUT evalua-
tion process has been developed for a distributed, efficient evalua-
tion, which avoids such dataset traversal within the evolutionary
process. This is mainly due to the pre-calculation stage, and the
employment of bit sets and bitwise operations. The procedure
has several advantages:

� First, the computational complexity of the evaluation within the
evolutionary process is reduced in an order of magnitude as
checking if an instance is covered by a pattern has a constant
time. This is supported by the results extracted as E2PAMEA is
approximately fifty times faster than BD-EFEP.
� Secondly, the reduction in memory consumption is also reduced
in an order of magnitude as only one bit per instance and selec-
tor is stored. This is shown in the experimental study, where
E2PAMEA reduces uses approximately fifteen times less mem-
ory than BD-EFEP in average.
� Finally, the proposed method linearly scales up in both dimen-
sions of data due to the employment of the Bit-LUT evaluation.
This supports the fact that the proposed method is able to anal-
ysed bigger datasets than previous approaches presented up to
date.

This performance improvement is achieved because the defini-
tions of the different fuzzy sets definedmust remain fixed through-
out the whole process. Within the descriptive point of view, the
pre-setting of the fuzzy sets employed is a common approach
within the EPM algorithms developed so far, so the optimisation
of the provided fuzzy sets is usually not allowed. However, it could
be interesting to address this point of view in future works in order
to improve the descriptive capacities of the methods.
7. Conclusions

In this paper, an EFS based on a MOEA called E2PAMEA has been
presented for an efficient extraction of high-quality EPs in big data
environments. It is based on an adaptive version of the NSGA-II
algorithm in order to provide a better diversification-exploitation
trade-off, while the tuning of the crossover and mutation probabil-
ities is removed. The genetic operators employed are the two-point
and HUX crossover operators for exploitation or diversity when
necessary, together with two mutation operators: the removal of
a variable for generalisation of the patterns extracted, or a random
change in a gene. Similarly, E2PAMEA uses an elite population
where a cooperative-competitive schema together with a token
competition-based procedure for the promotion of reliable results.
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The efficiency of the proposed method is mainly due to the eval-
uation procedure presented in this paper, called Bit-LUT. In partic-
ular, it is aMapReduce approach based on an exactmethod. It uses a
first pre-evaluation stage by means of a MapReduce job before the
beginning of the evolutionary process in order to provide a look-up
table for a faster evaluation on the evolutionary process. This table
stores a bit set for each selector of the problem which determines
which instance of the dataset is covered by the given selector. After
that, the proposed look-up table is employed under the chromo-
some evaluation of the proposed evolutionary process by means
of another MapReduce job. In this phase, the map procedure calcu-
lates the coverage of those elements that belong to the same vari-
able by means of bitwise OR operations, while in the reduce
phase these results are aggregated by means of bitwise AND oper-
ations in order to obtain the final coverage of the individual. After
that, the objective measures can be calculated using this coverage.

The suitability of E2PAMEA has been proven in this paper with
respect to other EPM evolutionary algorithm for big data. As a con-
clusion, the proposed algorithm outperforms previous approaches
in all aspects analysed, so the quality of the results extracted with
E2PAMEA is more reliable, more interesting and more general than
previous approaches. In addition, the scalability of the Bit-LUT
evaluation approach has been analysed. The results show that
Bit-LUT is at least an order of magnitude faster than previous
approaches, while the amount of physical memory required is
reduced by almost twenty times with respect to previous
approaches. In addition, processing time and physical memory
are able to properly scale up with respect to the number of
instances, together with respect to the number of variables/selec-
tors, which is one of the main drawbacks with EPM algorithms.

Therefore, the E2PAMEA algorithm provides a good trade-off
between exploitation and exploration which allows the extraction
of high-quality EPs in big data environments, while the Bit-LUT
evaluation is a promising alternative for a fast, scalable execution
of EAs for big data algorithms, especially for the EPM task.
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