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a b s t r a c t

Autoencoders are neural networks which perform feature learning on data. Many variants can be
found in the literature, but their implementations are scarce, in separate software pieces and utilizing
different languages and frameworks. The ruta package implements a unified foundation for the
construction and training of autoencoders on top of Keras and Tensorflow, and allows for easy access
to the main functionalities as well as full customization of their diverse aspects.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The problem of feature extraction consists in finding a trans-
formation of the feature space of some data set which is more
adequate than the original one in relation to another task, such as
classification or visualization. A particular case of this problem is
dimensionality reduction, where the objective is to build a more
compact representation for the data while retaining most of their
information.

Some traditional techniques for feature extraction are princi-
pal components analysis (PCA) [1], multidimensional scaling [2],
Isomap [3] and locally linear embedding [4]. Other more mod-
ern methods include t-distributed stochastic neighbor embed-
ding (t-SNE) [5], which is designed to visualize high-dimensional
datasets, restricted Boltzmann machines (RBMs) [6] and autoen-
coders (AEs) [7], both based on neural networks.

AEs are a tool for feature extraction in increasing development.
Making use of them, however, is not straightforward. Software
pieces which implement them are uncommon and are either very
basic versions or adapted to specific databases. Basic AE models
are relatively easy to implement in well-known deep learning
frameworks, such as Keras [8] or Tensorflow [9], but this requires
some knowledge about their structure and training procedures.
In addition to this, some useful regularizations and alterations in
the objective functions can present challenges while coding. Since
most neural AEs share a common basis, it is desirable to have
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an implementation which abstracts its components and gives the
customization possibilities to build different kinds of AEs without
reimplementing them. This would allow users to leverage the
possibilities of AEs as feature learning techniques without the
need to study their architecture in advance.

The ruta package for the R language includes all the necessary
foundations to build AEs for all kinds of experimentations. It
is based on frameworks Keras and Tensorflow to ensure effi-
ciency and cross-platform compatibility. Its interface allows any
R user to easily define different models, train them and perform
additional tasks with little to no previous knowledge required.

2. Problems and background

As previously stated, the main objective of an AE is to find a
good transformation of the features according to one or more cri-
teria. When an instance is mapped to the new feature space, it is
seen as an encoding of the original. This encoding must allow the
AE to reconstruct the instance from the original feature space by
means of a decodification process. Intuitively, this reconstruction
can only be achieved if sufficient information about each instance
is retained within the encoding.

2.1. Autoencoder framework

An AE [10] is an artificial neural network (ANN) composed
of an encoder and a decoder. Analytically, it can be seen as a
composition of maps f and g which results in a tensor of the
same shape as the input. As an ANN, it takes a form analogue to
that on Fig. 1. AEs were originally used to perform a preliminary
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Fig. 1. A possible neural architecture for an AE with a 2-variable encoding layer.

weight training on other ANNs, but on their own they can also
learn alternative representations for input data.

The different aspects that lead an AE to a specific transfor-
mation are its neural architecture, which determines the type of
input and the size of the encoding; the cost and activation func-
tions, which can be defined and regularized in order to induce
some desired properties, and parameters of the training process,
such as the optimization algorithm or the number of times the
data is feeded to the network.

2.2. Variants

An interesting advantage of AEs is their versatility: one can
obtain encodings with certain properties if the adequate reg-
ularizations are chosen. There exist many AE variants in the
literature [10], the most common ones centered in how to control
the behavior of the transformation while allowing for faithful
reconstructions. The following are the most relevant ones:

• Sparse: induces a low number of activations in average in
the encoding layer.

• Contractive: attempts to preserve the local structure of the
original space, thus searching for coordinates in a lower-
dimensional manifold.

• Denoising: is able to remove noise introduced in input ex-
amples.

• Robust: is less sensitive to noise in instances due to a differ-
ent loss function.

• Variational: extracts a generative model from the data and
is able to produce new, unseen instances.

• Adversarial: trains in an adversarial manner with the aim of
forcing the encoding to follow a given distribution.

• Convolutional and LSTM-based: are composed of other types
of units and layers in order to accommodate bidimensional
and sequential data, respectively.

3. Software framework

In this section we elaborate on the internal structure of the
developed software and its functionality.

3.1. Software architecture

The object system utilized in ruta is S3, a minimal object
orientation from the R language based on generic functions. The
software is developed around several classes which have certain
applicable methods:

• ruta_autoencoder: represents a parametrized AE learner.
It can be trained and can perform several post-train tasks,
such as data encoding and reconstruction.

• ruta_network: defines neural network structures by lay-
ers. Networks can be concatenated to produce a longer
one.

• ruta_loss: represents the loss function to be optimized by
the learner. It is either a wrapper over a loss function from
Keras, or a built-in loss function such as correntropy.

• ruta_noise: represents a type of noise which can be ap-
plied to input data. Several of these are provided within the
package for convenience.

3.2. Software functionalities

The main functionalities of package ruta are as follows:

• Define and customize diverse aspects of an AE model.
• Train AE variants according to the desired objective function.
• Encode and reconstruct input data with a trained model.
• Evaluate a trained model according to several metrics which

account for quality of reconstruction.
• Sample generative models created by variational AEs.
• Generate corrupted data with different types of noise.

The programming interface provided by the package gives
several ways to access this set of functionalities, according to the
desired level of customization and difficulty:

• Directly train an AE and compress a database via function
autoencode.

• Define a basic AE simply by enumerating the dimensions of
its layers in a vector, e.g. autoencoder(c(32, 6)).

• Define each layer composing the neural architecture by
means of functions input, dense, conv, output, etc., then
construct an AE with possibly one or more variant proper-
ties.

The following AE types can be used: basic, sparse, contrac-
tive, denoising, robust, variational and convolutional (via the
included conv layers). Some of them may be combined by means
of the make family of functions, e.g. make_sparse. They are
extensively documented within the package and in the online
documentation.1

3.3. Implementation details

Since ruta is implemented on top of Tensorflow and Keras, it
can run on computing devices such as GPUs. In order for them
to be used, the correct Tensorflow version with CUDA support
will need to be installed. Several issues can arise during the
installation and first use, which have been documented in the
troubleshooting section of the online documentation.

Few other software pieces provide the necessary functionality
to build custom AEs. Among them we can find H2O [11], with its
h2o.deeplearning function which includes an autoencoder
option; package autoencoder for R [12], and library yadlt for
Python. These focus on just one or two AE variants and provide
less customizability than AEs defined in ruta. For further options
one needs to resort to Deep Learning frameworks, which require
a much higher programming effort in order to define AE models.

4. Illustrative examples

An easy way to start using ruta is by means of the autoen-
code function. This will take a dataset and automatically train a
simple AE and produce a codification for it. The function accepts

1 https://ruta.software.

https://ruta.software
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Fig. 2. Features learned by a basic AE with Iris data.

several parameters, from which only the desired dimension is
mandatory. Other optional parameters are the type of AE, the
activation function in the middle layer and the number of epochs
for the training process. The following example uses this function
to extract 2 features from the well-known toy dataset Iris:

library(ruta)
library(purrr)

encoded <- iris[, 1:4] %>% as.matrix() %>% autoencode(2,
" robust " )

These 2 features can be visualized like in Fig. 2 in order to
represent the model learned by the AE.

The next step in difficulty involves defining a deep autoen-
coder. To help beginners describe its architecture, ruta provides
a conversion from integer vector to neural network architecture
in the following manner: c(64, 16) would become a network
with an input layer the size of the inputs, a hidden layer with 64
variables, another hidden layer with 16 units for the encoding, the
last hidden layer with 64 variables and an output layer the same
size of the input one. Thus, the interface allows for simpler code,
which can be observed in the following comparison between the
code needed to define the same model in ruta and Keras:

xtrain <- quakes[1:750,] %>% as.matrix()
xtest <- quakes[751:1000,] %>% as.matrix()
code_dim <- 2
hidden_dim <- 6

# ============== Ruta ==============
features <- autoencoder(c(hidden_dim, code_dim), " sigmoid

" ) %>%
train(xtrain) %>%
encode(xtest)

# ============== Keras ==============
input_l <- layer_input(shape = 5)
encoded <- layer_dense(input_l, units = hidden_dim)
encoded <- layer_dense(encoded, units = code_dim,

activation = " sigmoid " )
decoded <- layer_dense(encoded, units = hidden_dim)
decoded <- layer_dense(decoded, units = 5)

autoe <- keras_model(input_l, decoded)
encoder <- keras_model(input_l, encoded)
compile(autoe, loss = " mean_squared_error " , optimizer = "

rmsprop " )
fit(autoe, xtrain, xtrain)
features <- predict(encoder, xtest)

The following example loads a dataset from Keras and normal-
izes its variables. Afterwards it defines a sparse AE by means of
the autoencoder_sparse function with a 3-variable encoding,
trains it and uses it to reconstruct test data. An evaluation is
performed according to the mean squared error metric for the
same test data.

boston <- keras::dataset_boston_housing()

train_x <- scale(boston$train$x)
test_x <- scale(

boston$test$x,
center = train_x %@% " scaled:center " ,
scale = train_x %@% " scaled:scale "

)

learner <- autoencoder_sparse(
input() + dense(3, " tanh " ) + output(),
" mean_squared_error "

)
model <- train(learner, train_x, epochs = 200)

reconstructions <- reconstruct(model, test_x)
evaluate_mean_squared_error(model, test_x)

Another task that can be performed by a trained variational AE
is generation of new instances. In this case, we load the MNIST
dataset of handwritten digits and learn 10 features which can
be sampled via the generate function. Instances can also be
generated by interpolating encodings from existing instances and
decoding those interpolations, as Fig. 3 shows.

mnist = keras::dataset_mnist()

x_train <- keras::array_reshape(
mnist$train$x, c(dim(mnist$train$x)[1], 784)

) / 255.0
x_test <- keras::array_reshape(

mnist$test$x, c(dim(mnist$test$x)[1], 784)
) / 255.0

network <-
input() +
dense(256, " elu " ) +
variational_block(10, seed = 42) +
dense(256, " elu " ) +
output( " sigmoid " )

learner <- autoencoder_variational(network, loss = "
binary_crossentropy " )

model <- train(learner, x_train, epochs = 10)

samples <- model %>% generate(dimensions = c(8, 5), side
= 6, fixed_values = 0.99)

The generic AE templates provided within the package may
not always be adaptable enough for some problems. Thus, in or-
der to provide detailed control over the model for more advanced
users with some knowledge of Keras, ruta can convert its AE
objects into a list of Keras models. This list contains three models:
one for the encoder, another one for the decoder and one for the
full AE. It can be accessed by setting the input shape in the Ruta
object and calling the to_keras method:

obj <- autoencoder_contractive(c(128, 16))
obj$input_shape <- 1000
models <- to_keras(obj)
print(models$autoencoder)

Individual examples for each AE type are provided in the
online documentation, as well as detailed instructions on how to
build more customized neural architectures.

5. Conclusions

In this paper, we have presented a novel software piece fo-
cused in the construction of AEs, the ruta package for R. As
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Fig. 3. Instances generated when interpolating between test samples in a variational AE trained with MNIST data.

Fig. 4. Cumulative downloads since ruta was published.

opposed to most software developed on this topic, ruta imple-
ments several well-known AE variants and can handle different
datasets. The software is implemented on top of Tensorflow and
Keras in order to provide good performance, but abstracts many
common aspects of AEs in order to provide an easy-to-use in-
terface, accessible to R users with or without a programming
background.

We have provided examples on how trained AEs can perform
several tasks such as encoding and reconstruction of new data,
as well as evaluation and even instance generation. When users
need more control over the automatic generation of AE architec-
tures, the package allows to extract the associated Keras models
so as not to hinder their customization.

Since its publication on CRAN in May 2018 to the end of the
year, ruta has received more than a thousand downloads from
the RStudio CRAN mirror. Fig. 4 shows the amount of downloads
since the day of publication.

Some supplementary software packages have already been
planned. These include a package dedicated to visualizing the
behavior of AEs, from their training process to the learned model,
and a web-based user interface with the aim of providing easier
access to these neural architectures.
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Table 1
Software metadata.
Nr. (executable) Software metadata

description
Please fill in this column

S1 Current software version 1.1.0
S2 Permanent link to executables of

this version
https://github.com/fdavidcl/
ruta/releases/tag/1.1.0

S3 Legal Software License GPL-3.0
S4 Computing platform/Operating

System
Linux, OS X, Microsoft
Windows

S5 Installation requirements &
dependencies

Python, R, Tensorflow, Keras

S6 If available, link to user manual —
if formally published include a
reference to the publication in the
reference list

https://ruta.software/reference/

S7 Support email for questions fdavidcl@ugr.es

Table 2
Code metadata.
Nr. Code metadata description Please fill in this column

C1 Current code version 1.1.0
C2 Permanent link to code/repository

used of this code version
https://github.com/fdavidcl/
ruta/tree/1.1.0/

C3 Legal Code License GPL-3.0
C4 Code versioning system used git
C5 Software code languages, tools,

and services used
R

C6 Compilation requirements,
operating environments &
dependencies

R developer tools

C7 If available Link to developer
documentation/manual

https://ruta.software/reference/

C8 Support email for questions fdavidcl@ugr.es

Ministry of Economy and Competitiveness and project BigDaP-
TOOLS - Ayudas Fundación BBVA a Equipos de Investigación
Científica 2016, Spain.

Appendix. Required metadata

Current executable software version
See Table 1.

Current code version
See Table 2.
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