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A B S T R A C T

Label Distribution Learning (LDL) is a general learning framework that assigns an instance to a distribution
over a set of labels rather than to a single label or multiple labels. Current LDL methods have proven
their effectiveness in many real-life machine learning applications. However, LDL is a generalization of the
classification task and as such it is exposed to the same problems as standard classification algorithms, including
class-imbalanced, noise, overlapping or irregularities. The purpose of this paper is to mitigate these effects
by using decomposition strategies. The technique devised, called Decomposition-Fusion for LDL (DF-LDL), is
based on one of the most renowned strategy in decomposition: the One-vs-One scheme, which we adapt to be
able to deal with LDL datasets. In addition, we propose a competent fusion method that allows us to discard
non-competent classifiers when their output is probably not of interest. The effectiveness of the proposed
DF-LDL method is verified on several real-world LDL datasets on which we have carried out two types of
experiments. First, comparing our proposal with the base learners and, second, comparing our proposal with
the state-of-the-art LDL algorithms. DF-LDL shows significant improvements in both experiments.
. Introduction

A supervised learning process is the machine learning task of train-
ng a predictive model using data points with known outputs. Classi-
ication is the problem of identifying to which of a set of categories a
ew observation belongs. Hence, the aim of classification is to obtain
model that will be able to assign the correct class to an unknown

attern. However, there is a growing number of problems in which
pattern can have several labels simultaneously associated. Examples

re found in image classification [1] or genetics [2], etc. Multi-Label
earning (MLL) [3–6] is a generalization of the traditional classification
here multiple labels may be assigned to each instance.

Nevertheless, in many real-world problems we can find cases in
hich MLL is still not sufficient since the level of description of each

abel is not the same. To name just one example from the datasets
sed in this paper, the biological experiments on the yeast genes [7]
ver a period of time result in different levels of gene expression in
time series. The precise degree of expression at each point in time

s of minor significance. What is really crucial is the distribution of
he overall expression over the entire period of time. If the learning
ask is to predict that distribution for a given gene, it can hardly fit
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into the MLL framework because the role of the individual output in
the distribution is crucial, and there is no partitioning of relevant and
irrelevant labels at all.

The Label Distribution Learning (LDL) concept appeared for first
time in 2013 [8] and was formally described in 2016 [9] in order
to deal with ambiguity on the label side of the mapping when one
instance is not necessarily mapped to one single label. The aim of this
paradigm is to answer the question ‘‘how much does each label describe
the instance?’’ instead of ‘‘which label can describe the instance?’’.

From the first formulation of the LDL problem, numerous stud-
ies have been carried out applying the LDL methodology to vari-
ous real life problem solving situations, e.g.: sense beauty recogni-
tion [10], facial age estimation [8], personality recognition on social
media [11], image emotion classification [12], pre-release prediction
of crowd opinion on movies [13], crowd counting in public video
surveillance [14], head pose estimation [15], etc. Other studies have
focused more on developing new learners or on adapting existing learn-
ers such as: instance-based algorithms (e.g., AA-kNN [9]), optimiza-
tion algorithms (e.g., SA-IIS, SA-BFGS [9] or LDL-SCL [16]), decision
trees (e.g., LDL forests [17]), deep learning algorithms (e.g., Deep
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Label Distribution [18]), or ensembles strategies (e.g., Logistic boosting
regression for LDL [19], Structured random forest for LDL [20]).

LDL is a generalization of the classification task [21] and as a
result is vulnerable to the same problems as conventional classification
algorithms: imbalanced datasets [22], when there is a disproportion
in the number of examples of the different classes; noisy data [23],
because of imperfections in data acquisition, transmission or storage;
overlapping [24], when the input features are not sufficient to correctly
differentiate among instances of different classes; or irregularities [25],
situations where the distribution of data points, the sampling of the
data space to generate the training set, and the characteristics that
describe each data point deviate from what might have been ideal,
being biased, skewed, incomplete and/or misleading.

Over the last years, decomposition strategies for addressing classi-
fication problems have been widely studied in the literature [26]. The
same underlying idea is behind all proposals for decomposition: to solve
a multi-class problem using binary classifiers. Decomposition strategies
have proven to be efficient in dealing with the difficulties presented
above and that is why, in this paper, we propose a decomposition
algorithm adapted to LDL restrictions. The devised technique is inspired
by one of the most renowned strategies in decomposition: the One-vs-
One (OVO) [27] scheme, where the original problem is divided into
binary problems that distinguish between the different pairs of classes,
every single division will be trained with a base classifier. This method
usually requires an additional step to fuse the outputs from single
classifiers in order to produce the final result.

We design a decomposition strategy that can handle label distribu-
tion, capable of dealing with real values instead of multi-class outputs.
While OVO uses a binary classifier as base learner (the learning algo-
rithm used for solving binary problems), in our proposal we will rather
rely on a specific LDL learner. In addition to these, we also propose
a fusion method, capable of providing an output according to the
LDL constraints, and that also will allow us to discard non-competent
classifiers when their output is probably not of interest.

Decomposition-Fusion for LDL, from now DF-LDL, is our decomposi-
tion proposal for LDL type problems. In order to evaluate the proposal
proficiency, we will carry out two types of experiments: on the one
hand we will compare the results obtained by the base learners with
our DF-LDL algorithm using the same learner as base classifier and, on
the other hand, we will compare our proposal with the state-of-the-art
LDL algorithms, measuring in all cases six aspects of their performance.
We will repeat the experiment over 17 real-world datasets and validate
the results of the empirical comparisons using Wilcoxon, Friedman rank
and Bayesian Sign tests [28,29].

In summary, the main contributions of this paper are:

• A decomposition strategy to handle LDL problems.
• A fusion method custom-designed to provide an output compli-

ant with LDL restrictions and that also allows to exclude non-
competent classifiers.

• From a technical point of view, the proposed solution could be
implemented in a very fast way taking advantage of any existing
LDL learner.

The rest of the paper is organized as follows. First, a brief review
and discussion of the foundations of LDL and decomposition strategies
for classification are given in Section 2. The proposed Decomposition-
Fusion for LDL method is described in Section 3. Then the details
of the experiments are reported in Section 4. Finally, the results and
conclusions are drawn in Section 5 and Section 6, respectively.

2. Preliminaries

In this section, the foundations, as well as the most relevant studies
carried out on LDL (Section 2.1), are presented. Furthermore, some
basic concepts on decomposition strategies for classification are intro-
65

duced (Section 2.2), providing the necessary background required to i
properly present the study carried out in this paper. We will conclude
this section by explaining the motivations for applying decomposition
strategies to LDL-type problems.

2.1. Foundations of label distribution learning

We can formalize an LDL problem as a set of m training samples 𝑆 =
{(𝑥1, 𝐷1),… , (𝑥𝑚, 𝐷𝑚)}, where 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑞} is a q-dimensional
vector. For each instance 𝑥𝑖, the label distribution is denoted by 𝐷𝑖 =
{𝑑𝑦1𝑥𝑖 , 𝑑

𝑦2
𝑥𝑖 ,… , 𝑑𝑦𝑐𝑥𝑖 } where 𝑦𝑖 ∈ 𝑌 |𝑖 ∈ {𝑖,… , 𝑐}, such that 𝑌 = {𝑦1,… , 𝑦𝑐}

denotes the complete set of labels. The constant c is the number of
possible labels and 𝑑

𝑦𝑗
𝑥𝑖 is the description degree of the particular jth

label 𝑦𝑗 for a particular ith instance 𝑥𝑖. According to the definition,
each description degree should meet the constraints 𝑑𝑦𝑥 ∈ [0, 1] and

𝑐
𝑦=1 𝑑

𝑦
𝑥 = 1.

Solving an LDL problem can be approached from different per-
pectives. Depending on the approach chosen, the algorithm to be
eveloped will vary considerably, either a completely new algorithm
eveloped specifically to deal with LDL constraints, or an adaptation
f existing classification algorithms, reformulated to work with these
onstraints. The LDL study published in [9] proposed six algorithms
lassified in three categories. The first one is Problem Transforma-
ion (PT), a straightforward way to transform an LDL problem into

Single-Label Learning or SLL [30] problem is to change the train-
ng examples into weighted single-label examples. In this way, any
LL algorithm can be applied. Two representative algorithms are PT-
ayes and PT-SVM. The second one is Algorithm Adaptation (AA),
here algorithms are adapted to existing learning algorithms to deal
irectly with the label distribution. Two suitable algorithms were pre-
ented: AA-kNN, an adaptation of the well-known k-nearest neighbors
ethod [31], and AA-BP, a tree-layer backpropagation neural network.

inally, Specialized Algorithms (SAs), unlike the indirect strategy of
roblem transformation and algorithm adaptation, match directly the
DL problem. SA-IIS and SA-BFGS are two specialized algorithms that
earn by optimizing an energy function based on the maximum entropy
odel.

Further studies have succeeded in improving the results obtained
y these original algorithms using different strategies. The methods
DLogitBoost and AOSO-LDLogitBoost proposed in [19], are a combi-
ation of the boosting method and the logistic regression applied to
DL model. Deep label distribution learning (DLDL) [18] and Label
istribution Learning Based on ensemble neural networks [32] are two
ood examples of success applying neural networks on LDL. Inspired by
ifferentiable decision trees [33], an end-to-end strategy LDL forests
roposed in [17] which served as the basis for Structured Random
orest (StructRF) [20]. BC-LDL [34] and DBC-LDL [35] use the binary
oding techniques to deal with the large-scale LDL problem. Classifi-
ation with LDL (LDL4C) [21] is another interesting proposition when
earned label distribution model is generally treated as a classification
odel. Feature selection on LDL [36,37] shows promising results by

pplying selection of characteristics on label distribution problems.

.2. Decomposition strategies for classification

Decomposition strategies for addressing multi-class problems have
een widely studied in the literature [38]. The same underlying idea is
ehind all proposals for decomposition: to solve a multi-class problem
sing binary classifiers. Following the ‘‘divide and rule’’ paradigm, the
roblem of multiple classes is divided into simpler binary classification
roblems. However, this method needs an additional step because of
he simplification of the base classifiers: their outputs must be recom-
ined to obtain the final result. How this aggregation is carried out
s crucial to the quality of the final result. An exhaustive comparison
f decomposition strategies and aggregation methods can be found

n [38].
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The most common decomposition strategies are One-vs-All (OVA)
[39] and One-vs-One (OVO) [27], which can be included within Error
Correcting Output Codes (ECOC) framework [40]. The first learns a
binary classifier to discern between each pair of classes, while the
second builds a binary classifier to separate each class from all the other
classes.

The One-vs-All (OVA) [39] approach consists in dividing the multi-
ple 𝑐 class problem into binary 𝑐 classification problems. Each binary
classifier is faced up by a binary classifier which is responsible of
distinguishing one of the classes from all other classes. The training
phase of each classifier is carried out using the complete training set,
considering as positive the samples of the single class and as negative
all other samples. In the validation phase, the example is classified
using each of the binary classifiers. The classifier that obtains a positive
output will show the output class. Note that the output may not be
unique and in these cases some sort of tiebreaker mechanism must be
used. For example, we can calculate the confidence of each classifier to
decide the final output by predicting the class from the classifier with
the highest confidence.

The One-vs-One (OVO) [27] decomposition scheme divides a prob-
lem of 𝑐 classes into 𝑐(𝑐 − 1)∕2 binary problems. Each problem is
addressed by a binary classifier that distinguishes between the different
pairs of classes. The learning phase of each classifier is carried out using
a subset of instances containing one of the two output classes. Instances
with a different class are ignored.

In the prediction phase, the sample to be validated is predicted by
each of the classifiers trained previously, thus obtaining a score matrix
𝑅:

𝑅 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑟𝑟2 𝑟13 ... 𝑟1𝑐
𝑟21 − 𝑟23 ... 𝑟2𝑐
. . . . .
. . . . .
𝑟𝑐1 𝑟𝑐2 𝑟𝑐3 ... −

⎞

⎟

⎟

⎟

⎟

⎟

⎠

The output of a classifier given by 𝑟𝑗𝑖 ∈ [ 0, 1] is the confidence
f the binary classifier discriminating classes 𝑖 and 𝑗 in favor of the
revious class. The confidence of the classifier for 𝑗 is calculated as
𝑗𝑖 = 1− 𝑟𝑖𝑗 if the classifier does not provide it (the class with the larger
onfidence is the selected output class of a classifier).

The final prediction is calculated based on the score matrix using
ifferent aggregation models. The weighted voting strategy is the most
sed strategy, where confidences are aggregated class by class (by rows)
nd the one with the highest sum is selected as output. There is a
isadvantage, known as the ‘‘non-competent classifier problem’’ [41] in
he OVO system. The classifiers in the OVO system are not sufficiently
ompetent to classify all the classes in the problem, as they are only
earned through examples of two classes. However, all binary classifiers
ill be triggered for a given test model, because the competence cannot
e known a priori, which can lead to incorrect decisions. To mitigate
his problem there exist dynamic selection techniques that are able
o distinguish between competent sorters directly in the prediction
hase. The studies carried out in [42] and [43] provide a review of the
ost popular dynamic selection techniques to avoid the non-competent

lassifiers problem. On their side, [44,45] are some examples of how
o successfully apply the OVO technique.

ECOC [40] provides a suitable matrix framework for modeling the
ecomposition of a multi-class classification problem into simpler sub-
roblems. How to perform the decomposition to fit better the data using
small number of classifiers has been a key point of the research, as
ell as the decoding step, which deals with the combination of the sub-
roblems. The research [46] proposes an evidential unified framework
66

hat handles both the coding and decoding steps.
.3. Motivation for using decomposition strategies on LDL

LDL is a generalization of the classification model and as such
s exposed to the same problems as classic classification algorithms:
mbalanced datasets, noisy data, overlapping or irregularities. OVO and
VA strategies have proven to be efficient in dealing with these kinds
f difficulties. In [22,47] we can find a complete review of how to
pply decomposition strategies to imbalanced datasets that solve the
isproportion of the number of examples of the different classes. The
esults obtained in [26,48] show that using the OVO strategy lead
o better performances and more robust classifiers when dealing with
oisy data, especially with the most disruptive noise schemes. Decom-
osition performed by OVO in [49] helps to increase the separation
etween classes, creating more regular decision boundaries where there
re overlapping samples. Other irregularities, such as the problem of
he ‘‘difficult classes’’, have also been successfully addressed using the
VO decomposition strategy [50].

Applying a decomposition technique to an LDL-type dataset, com-
aring output labels and breaking relationships between non-working
airs, could lead to better performance of the base LDL algorithms due
o the proven improvement achieved by these techniques when they
ave been applied on datasets presenting the above problems. How-
ver, it should be recalled at this point that the LDL paradigm differs
ignificantly from a multi-class problem, what we have is an output
abel distribution. Therefore, the OVO strategy would not serve us as
t is. On the one hand, we need a new decomposition strategy capable
f dealing with real values instead of labels and on the other hand, a
ew aggregation strategy capable of providing an output according to
he LDL constraints. As base learner we can use any of the LDL-specific
earners.

. DF-LDL: Decomposition-Fusion for Label Distribution Learning

DF-LDL is our decomposition proposal for LDL type of problems. The
ain idea of this method is to decompose the original 𝑐-label problem

by dividing it into 𝑐(𝑐 − 1) problems, that is, comparing one to one all
the labels that make up the output as we will explain in Section 3.1.
The next step is to combine the outputs to obtain the final prediction,
for this, we have conceived the competent fusion method which will
be exposed in Section 3.2. Finally, we will illustrate how it works in
Section 3.3.

3.1. Decomposition strategy

As opposed to a multi-class classification problem that would de-
compose the problem into 𝑐(𝑐 − 1)∕2 problems (one for each possible
lass pair), in LDL we need a decomposition mechanism able to carry
ut a comparison between the real values of each label. The strategy
onsists in making an inequality comparison (𝑎 ≥ 𝑏) between each

pair of output labels, creating subsets of samples containing only the
samples whose label value is greater than the value of the compared
label. The goal is to create subsets that break up relationships between
pairs of labels that do not work. In this way, we will obtain the
double of classifiers that in the original OVO strategy (because we are
comparing real values and not grouping them into pairs of classes), that
is 𝑐(𝑐 − 1) subsets on which we will start the training phase obtaining

matrix of learners like:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 𝑙12 𝑙13 ... 𝑙1𝑐
𝑙21 − 𝑙23 ... 𝑙2𝑐
𝑙31 𝑙32 − ... 𝑙3𝑐
. . . . .
. . . . .
. . . . .
𝑙𝑐1 𝑙𝑐2 𝑙𝑐3 ... −

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The detailed process is summarized in Algorithm 1.
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Algorithm 1: Training stage of DF-LDL
Function Fit(S, m, c, l):

1 input : 𝑆 ← Training Dataset ;
𝑚 ← Number of Samples ;
𝑐 ← Number of Labels ;
𝑙 ← Base Learner ;

2 output: 𝐿 ← Matrix of learners ;

3 for i=1 to c do
4 for j=i+1 to c do

#Create the subsets of samples
5 𝑆𝑆1 = ∅ ;
6 𝑆𝑆2 = ∅ ;
7 for k=1 to m do
8 if 𝑑𝑦𝑖𝑥𝑘 ≥ 𝑑

𝑦𝑗
𝑥𝑘 then

9 Append: (𝑥𝑘, 𝐷𝑘) to 𝑆𝑆1 ;
else

10 Append: (𝑥𝑘, 𝐷𝑘) to 𝑆𝑆2 ;
end

end
#Fit the base learners using the subsets

11 𝑙.setTrainingSet(SS1);
12 𝑙.fit();
13 𝐿𝑖𝑗 = 𝑙;
14 𝑙.setTrainingSet(SS2);
15 𝑙.fit();
16 𝐿𝑗𝑖 = 𝑙;

end
end

End Function

Starting from the total set of training samples 𝑆 (containing 𝑚
samples in total), we classify each sample (𝑥𝑘, 𝐷𝑘) into the subsets
𝑆𝑆1 or 𝑆𝑆2 depending on whether the value of label 𝑖 (represented
by 𝑑𝑦𝑖𝑥𝑘 ) is greater or lesser than the value of label 𝑗 (represented by
𝑑
𝑦𝑗
𝑥𝑘 ). Therefore, the subset 𝑆𝑆1 will contain the samples that maximize

the value of the output label 𝑖 with respect to the output label 𝑗, 𝑆𝑆2
is consequently the complementary set to 𝑆𝑆1. Each subset is trained
separately using the base classifier 𝑙. This process is repeated 𝑐(𝑐−1)∕2
times obtaining as result the 𝐿 learner matrix that will contain a total of
𝑐(𝑐−1) learners. Note that the base learner 𝑙 can be any LDL-compatible
learning algorithm.

3.2. Competent fusion method

In the prediction phase, the sample to be validated is usually
predicted by each one of the classifiers trained previously but, as
we have previously stated, our aim has been to design a dynamic
competent aggregation or fusion method that allows us to build the
final solution using only the learners that can minimize the error.
We have been inspired by the dynamic classifier selection for One-vs-
One strategy proposed in [43] that tries to avoid the non-competent
classifiers when their output is probably not of interest. We consider
an initial prediction of each instance to decide whether a classifier may
be competent or not. Obviously, this initial prediction must be very
run-time efficient in order to not penalize the total prediction time.
For these reasons the technique chosen for this initial prediction is the
AA-kNN [9] that obtains a prediction with an appropriate quality/time
trade-off.

The competent fusion procedure summarized in Algorithm 2 works
as follow: (1) Predict the example 𝑥0 using AA-kNN and obtaining the
initial prediction 𝑝𝑘𝑛𝑛. Given the instance 𝑥0, its 𝑘 nearest neighbors are
first found in the training set. Then, the mean of the label distributions
67
of all the 𝑘 nearest neighbors is calculated as the label distribution of
𝑥0, i.e.,

𝑝𝑘𝑛𝑛(𝑦𝑗 |𝑥0) =
1
𝑘

∑

𝑖∈𝑁𝑘(𝑥0)
𝑑
𝑦𝑗
𝑥𝑖 , (𝑗 = 1, 2,… , 𝑐),

where 𝑁𝑘(𝑥0) is the index set of the 𝑘 nearest neighbors of 𝑥0 in the
raining set. (2) Use this initial prediction to compare one by one the
utput values of the labels. If the value of the label 𝑖, 𝑝𝑦𝑖𝑘𝑛𝑛, is greater or
qual than the value of the label 𝑗, 𝑝𝑦𝑗𝑘𝑛𝑛, then we mark as selected the
earner 𝐿𝑖𝑗 , otherwise we select the opposite learner 𝐿𝑗𝑖. (3) Predict
he label distribution of the example 𝑥0 using the selected learner in
revious step and add this prediction to the final output 𝑝. (4) Repeat
oints 2 and 3 for each pair of labels. (5) The final label distribution
is calculated as the average of predictions obtained by all selected

earners:

(𝑦𝑗 |𝑥0) =
1

𝑐(𝑐 − 1)∕2
∑

𝑖𝑗∈𝐿(𝑥0)
𝑝
𝑦𝑗
𝑙𝑖𝑗
, (𝑗 = 1, 2,… , 𝑐),

where 𝐿(𝑥0) is the index set of selected learners for 𝑥0. In total 𝑐(𝑐−1)∕2
learners will participate in the prediction.

Algorithm 2: Predict an example in DF-LDL
Function Predict(S, c, L, 𝑥0, 𝑘):

1 input : 𝑆 ← Training Dataset ;
𝑐 ← Number of Labels ;
𝐿 ← Matrix of learners ;
𝑥0 ← Example to predict ;

2 output: 𝑝 ← Prediction ;

#Initial prediction using AA-kNN
3 AA-𝑘NN.setTrainingSet(S);
4 𝑝𝑘𝑛𝑛 = AA-𝑘NN.predict(𝑥0);

#Select learners and predict
5 𝑝 = 0;
6 for i=1 to c do
7 for j=i+1 to c do
8 if 𝑝𝑦𝑖𝑘𝑛𝑛 ≥ 𝑝

𝑦𝑗
𝑘𝑛𝑛 then

9 𝑝 = 𝑝 + 𝐿𝑖𝑗 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥0);
else

10 𝑝 = 𝑝 + 𝐿𝑗𝑖.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥0);
end

end
end

11 return 𝑝∕(𝑐 ∗ (𝑐 − 1)∕2) ;
End Function

3.3. An illustrative example

In order to show how the proposal works, let us take the toy dataset
𝑆 = {(𝑥1, 𝐷1), (𝑥2, 𝐷2), (𝑥3, 𝐷3)} illustrated below containing 𝑚 = 3
amples with 𝑞 = 2 features and 𝑐 = 3 output labels:

𝑆 =

⎧

⎪

⎨

⎪

⎩

𝑥1 𝐷1
𝑥2 𝐷2
𝑥3 𝐷3

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

(0.4, 0.7) (0.1, 0.85, 0.05)
(0.01, 0.9) (0.75, 0.25, 0)
(0.5, 0.5) (0.05, 0.05, 0.9)

⎫

⎪

⎬

⎪

⎭

.

Following the process described in Section 3.1 we need to obtain a
3 × 3 matrix of learners. In order to build the first learner 𝑙12, we will
compare the output label 1 and 2 of each sample. In our case:

⎛

⎜

⎜

⎜

⎝

𝑑11 𝑑21
𝑑12 𝑑22
𝑑13 𝑑23

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0.1 0.85
0.75 0.25
0.05 0.05

⎞

⎟

⎟

⎟

⎠

.

As 𝑑12 ≥ 𝑑22 and 𝑑13 ≥ 𝑑23 , the subset of samples used for learner 𝑙12
will be (𝑥2, 𝐷2), (𝑥3, 𝐷3). Therefore the subset of samples for learner 𝑙21

will be (𝑥1, 𝐷1), (𝑥3, 𝐷3).
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Repeating this procedure for each pairs of labels we obtain the
learner matrix below, for each learner we are showing the subset of
samples selected:

𝐿 =
⎛

⎜

⎜

⎝

− {(𝑥2, 𝐷2), (𝑥3, 𝐷3)} {(𝑥1, 𝐷1), (𝑥2, 𝐷2)}
{(𝑥1, 𝐷1), (𝑥3, 𝐷3)} − {(𝑥1, 𝐷1), (𝑥2, 𝐷2)}

{(𝑥3, 𝐷3)} {(𝑥3, 𝐷3)} −

⎞

⎟

⎟

⎠

Once we have trained each of the classifiers using the subsets
enerated, we will predict the distribution of labels of a test instance,
0 = (0.2, 0.8), according to the method explained in Section 3.2. Let
s remember that the process consisted of five steps: (1) we predicted
he output values through a AA-kNN algorithm using the whole training
et. The k-NN prediction obtained for 𝑥0 is:

𝑘𝑛𝑛 = (0.3, 0.38, 0.32)

hen, in step (2), we use that prediction to discard incompetent learners
y comparing each pair of output labels. In order to check if the first
earner 𝑙12 will be part of the final prediction, we will compare the
utput label 1 and 2. Value 0.3 is not greater or equal to 0.38, then
earner 𝑙12 will be discarded and, consequently, the opposite one 𝑙21
ill be selected.

In step (3), 𝑥0 will be predicted by the selected learner, adding this
rediction to the final output 𝑝𝑥0 . Repeating this process for each pair
f labels, step (4), the learners that will be considered to obtain the
inal prediction are:

− ��𝑙12 ��𝑙13
l𝟐𝟏 − l𝟐𝟑
l𝟑𝟏 ��𝑙32 −

⎞

⎟

⎟

⎟

⎠

Finally, as described in step (5), the final label distribution 𝑝𝑥0 is
ivided by 3 (the total of learners that have been involved in building
he solution). Assuming that the values obtained by each of the learners
re as follows:

𝑙21 = (0.2, 0.7, 0.1)

𝑙23 = (0.4, 0.6, 0)

𝑙31 = (0.25, 0.5, 0.25)

he final label distribution 𝑝𝑥0 will be:

𝑥0 = (0.28, 0.6, 0.12)

. Experimental framework

This section is devoted to introducing the experimental framework
sed in the different empirical studies of the paper. In our experiments,
e have included 17 datasets of a wide variety of real-world problems,
escribed in the following Section 4.1.

In order to evaluate the learners proficiency, we will employ six
easures (described in Section 4.2) for the different aspects of their
erformance. For each dataset and learner, these measures were com-
uted over a merged set from the test predictions of a 10-fold cross
alidation set (10-fcv).

We have run two different kinds of experiments. The first one
onsists in comparing the results provided by the base learners with the
F-LDL method using the same base learner. The selected base learners
ave been SA-BFGS [9] and Structured tree (StructTree), this second
ne has been extracted from the Structured random forest (Struc-
RF) [20] proposal but by training a single tree. The second experiment
irectly compares the DF-LDL proposal with other LDL state-of-the-
rt algorithms, such as: SA-BFGS, label distribution learning forests
LDLFs) [17] and StructRF.

The non-parametric statistical Wilcoxon, Friedman rank and
ayesian Sign tests [28,29] are used to validate the results of the
mpirical comparisons. In the Bayesian Sign test, a distribution of the
68

ifferences of the results achieved using methods L (base learner in
able 1
atasets used in experiments.
No. Datasets Examples (m) Features (q) Labels (c) Type

1 Yeast_alpha 2465 24 18 LDL
2 Yeast_cdc 2465 24 15 LDL
3 Yeast_diau 2465 24 7 LDL
4 Yeast_elu 2465 24 14 LDL
5 Yeast_heat 2465 24 6 LDL
6 Yeast_spo 2465 24 6 LDL
7 SJAFFE 213 243 6 LDL
8 SBU_3DFE 2500 243 6 LDL
9 Movie 7755 1869 5 LDL
10 Natural_Scene 2000 294 9 LDL
11 Human_Gene 30 542 36 68 LDL
12 Optdigits 5620 64 10 Multi-class
13 Semeion 1593 256 10 Multi-class
14 Ecoli 327 7 5 Multi-class
15 LED7digit 500 7 10 Multi-class
16 Wq 1060 16 14 Multi-target
17 Jura 359 15 3 Multi-target

first experiment) and R (DF-LDL) is computed into a graphical space
divided in 3 regions: left, rope and right. The location of most of the
distribution in these sectors indicates the final decision: the superiority
of algorithm L, statistical equivalence and the superiority of algorithm
R, respectively. KEEL package [51] has been used to compute the
Wilcoxon and Friedman rank tests and the R package rNPBST [52] was
used to extract the graphical representations of the Bayesian Sign tests
analyzed in the following empirical studies. The Rope limit parameter
used to represent the Bayesian Sign test is 0.0001.

4.1. Datasets

There are a total of 17 real-world datasets employed in the experi-
ments. The summary of their characteristics is shown in Table 1.

The first 11 datasets are originally LDL problems. To complete the
experiment, we have also added 4 multi-class classification datasets
and 2 multi-target regression datasets, with a double purpose: to see
how LDL learners behave on other types of classification problems and
because purely LDL datasets are still scarce. Note that non-LDL datasets
have been adapted to satisfy LDL restrictions. This transformation is
described below along with the description of each set.

The first six datasets have been collected from biological experi-
ments on the budding yeast Saccharomyces cerevisiae [7]. It includes
2465 yeast genes, and an associated phylogenetic profile vector with a
length of 24 is utilized to represent each gene. In a biological exper-
iment, the gene expression level is usually disparate at each discrete
time point, so the labels correspond to the time point.

Datasets JAFFE [53] and BU_3DFE [54] are two widely used facial
expression image datasets. There are 213 gray-scale expression images
in the JAFFE dataset while BU_3DFE contains 2500 facial expression
images. The images in JAFFE have been scored by 60 people using
the six primary emotion labels with a 5-level scale, i.e., fear, disgust,
happiness, anger, sadness, surprise, and the images in BU_3DFE have
been scored by 23 people using the same scale as used in JAFFE. Each
dataset is represented by a 243-dimensional feature vector extracted
using the Local Binary Patterns method (LBP) [55]. The score for each
emotion is regarded as the description degree, and the description
degrees (normalized gene expression level) of all the six emotions
constitute a label distribution for a particular facial expression image.

Dataset Movie includes 7755 movies. There is a total of 54,243,292
ratings from 478,656 different users on a scale from 1 to 5 integral
stars from ®Netflix. The percentage of each rating level is regarded as
the label distribution. There are numeric and categorical attributes in
the dataset such as genre, director, country, year, budget and so on.
After transforming the categorical attributes into binary vectors, the

final feature vector of each movie is 1869-dimensional.
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Fig. 1. Bayesian sign test comparing StructTree(L) vs. DF-LDL(R).
Table 2
Evaluation measure for LDL learners. ↓ means that the lowest value is the best and ↑

eans the opposite.
Name Formula

Chebyshev(Cheby)↓ 𝐷𝑖𝑠(𝐷, �̂�) = 𝑚𝑎𝑥𝑗 |𝑑𝑗 − 𝑑𝑗 |

Clark↓ 𝐷𝑖𝑠(𝐷, �̂�) =
√

∑𝑐
𝑗=1

(𝑑𝑗−𝑑𝑗 )2

(𝑑𝑗+𝑑𝑗 )2

Canberra(Can)↓ 𝐷𝑖𝑠(𝐷, �̂�) =
∑𝑐

𝑗=1
|𝑑𝑗−𝑑𝑗 |
𝑑𝑗+𝑑𝑗

Kullback–Leibler(KL)↓ 𝐷𝑖𝑠(𝐷, �̂�) =
∑𝑐

𝑗=1 𝑑𝑗 ln
𝑑𝑗
𝑑𝑗

Cosine(Cos)↑ 𝑆𝑖𝑚(𝐷, �̂�) =
∑𝑐

𝑗=1 𝑑𝑗𝑑𝑗
√

∑𝑐
𝑗=1 𝑑

2
𝑗

√

∑𝑐
𝑗=1 𝑑

2
𝑗

Intersection(Inter)↑ 𝑆𝑖𝑚(𝐷, �̂�) =
∑𝑐

𝑗=1 𝑚𝑖𝑛(𝑑𝑗 , 𝑑𝑗 )

The Natural Scene dataset is collected from 2000 natural scene
mages that have been ranked inconsistently by ten human rankers. A
94-dimensional feature vector extracted in [1] represents each image
nd is associated with a multi-label selected from 9 possible labels,
.e., sun, sky, water, cloud, mountain, snow, desert, building, and plant.
hen rankers are required to rank the relevant labels in descending
rder of relevance. As expected, the rankings for the same image from
ifferent rankers are highly inconsistent. So, a nonlinear programming
rocess [56] is applied to achieve the label distribution.

The Human Gene dataset is much larger than the other datasets used
n this experiment. This dataset is collected from biological research on
he relationship between human genes and diseases. Each of the 30,542
uman genes is represented by the 36 numerical descriptors for a gene
equence proposed in [57].

The following 4 datasets correspond to standard multi-class classi-
ication problems, all of them extracted from UCI Machine Learning
epository [58]. Therefore we need a pre-processing step to transform

hem into LDL type datasets. Since we only have information from the
lass, we need to transform the classifier scores into accurate multiclass
robability estimates following the process described in [59]. A base
lassifier is fit on the training set of the cross-validation generator and
he test set is used for calibration. The probabilities for each of the
olds are then averaged for prediction. We have made use of 4 different
ase classifiers: SVC [60], k-NN [31], a decision tree classifier [61] and
aussian Naive Bayes classifier [62].

The selected multi-class datasets are: Optidigits (Optical Recog-
69

ition of Handwritten Digits), Semeion (Semeion Handwritten Digit
Table 3
Summary of the parameters.

Algorithm Parameter Description Value

AA-kNN k Number of selected neighbors 4

SA-BFGS 𝜖 Convergence criterion: must be less than 𝜖 10−5

before successful termination

LDLFs Trees Number of trees 5
Depth Maximum depth of the tree 7
out. feat. Output unit number of the feature learning

function
64

iters. leaf Iteration times to update leaf node
predictions

20

Batches Number of mini-batches to update leaf node
predictions

100

Iters Maximum iterations 2500

StructTree max. depth Maximum depth of the tree 20
min. leaf Minimum size of the leaf 5

StructRF Trees Number of trees 50
Sampling Sampling ratio of data 0.8
max. depth Maximum depth of the tree 20
min. leaf Minimum size of the leaf 5

Dataset, where 1593 handwritten digits from around 80 persons were
scanned and documented), Ecoli, an E.Coli bacteria protein classifica-
tion and LED7digit, a simple domain containing 7 boolean attributes,
one for each light-emitting diode of a 7-segment display.

Jura and Wq are two multi-target regression datasets collected from
the Mulan website [63]. The Jura dataset consists of measurements
of concentrations of seven heavy metals (cadmium, cobalt, chromium,
copper, nickel, lead, and zinc), recorded at 359 locations in the topsoil
of a region of the Swiss Jura. We are interested in the distribution
prediction of the concentration of metals that are more expensive to
measure (primary variables) using measurements of metals that are
cheaper to sample (secondary variables). The Water Quality dataset has
14 target attributes that refer to the relative representation of plant and
animal species in Slovenian rivers and 16 input attributes that refer
to physical and chemical water quality parameters. LDL algorithms
can deal directly with multi-target datasets, the only prerequisite is to
normalize the output vector in such a way that the sum is equal to 1.
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Fig. 2. Bayesian Sign test comparing BFGS(L) vs. DF-LDL(R).
4.2. Evaluation measure selection

We use a set of six measures when comparing different LDL al-
gorithms: Chebyshev Distance, Clark Distance, Canberra Metric and
Kullback–Leibler Divergence for distance calculation; Cosine Coeffi-
cient and Intersection for Similarity as shown in Table 2. Each of these
measures come from a different syntactic family summarized in [64]
and are relatively widely used in the related areas. Thus, they can
adequately represent the different aspects of the algorithms.

4.3. Parameters

The DF-LDL proposal itself is parameter-free, but the AA-kNN algo-
rithm used in the competent fusion method requires a value for k, set
o 4 neighbors (we have selected a small value for k in order to provide
he most flexible fit, with a low bias). For the SA-BFGS algorithm,
he convergence criterion 𝜖 has been set up to 10−5. Regarding the
arameters used for the StructRF and LDLFs algorithms we have kept
he same values as those used in the original proposal papers, for LDLFs
he maximum number of iterations has been adapted to meet the time
onstraints. Since StructTree starts from the same base as StructRF,
he parameters used are exactly the same except that we use a single
lassification tree. An overview of all these parameters can be found in
able 3.

. Results and analysis

This section presents the results of the empirical studies and their
nalyses. We have differentiated between two types of experiments:
irst we will compare the results obtained by the base learners with the
esults obtained by DF-LDL using the same base learner (Section 5.1),
hen we will compare our DF-LDL proposal with other state-of-the-art
DL algorithms, showing their different strengths (Section 5.2).

In each of the result tables the best outcome is highlighted in bold.
he last column is the mean of each row. The best average is also
ighlighted in bold. As those algorithms have been tested using 10-fcv,
he performance is represented using ‘‘mean±standard deviation’’.
70
5.1. Evaluation of DF-LDL vs. base learners

Comparing DF-LDL with the base classifiers SA-BFGS and StructTree
we reach the following conclusions:

• The results of the different measures shown in Tables 4 and 5
highlights the best ranking of DF-LDL in the large majority of the
datasets and measures.

• The Wilcoxon Signed Ranks test corroborate the significance of
the differences between our approach and the base learners.
Table 6 includes the outcome of the Wilcoxon test comparing DF-
LDL with the base learners. All the hypotheses of equivalence are
rejected with small p-values.

• With regard to the Bayesian Sign test, Figs. 1 and 2 graphically
represent the difference between using DF-LDL or directly the
base learner and its statistical significance in terms of precision.
The following heat-maps clearly indicate the significant superior-
ity of DF-LDL, as the computed distributions are always located
in the right region.

Special mention about the excellent results obtained with our pro-
posal for the SJAFFE dataset, for which we obtained an outstanding
improvement over the base algorithms.

Nevertheless the outcomes obtained for the Clark and Canberra
measures on the StructTree method deserve special attention. We note
that the values obtained when using these two measures differ greatly
from those obtained for the others. To understand this peculiarity we
must look previously at the label distribution of each dataset, when
this distribution has many zeros in its composition and we train this
set with the StructTree algorithm the probability of obtaining label
values equal to zero increases, falsifying the total computation of
the distances. Therefore these measures are not representative of the
quality of the algorithm for the specific case of the StructTree method
and the datasets that present this peculiarity.

5.2. Evaluation of DF-LDL vs. LDL state-of-the-art algorithms

We will now see how DF-LDL behaves compared to three other state-
of-the-art algorithms as SA-BFGS, LDLFs and StructRF. Note than the
selected base learner used by DF-LDL for this comparison is StructTree.
We reach the following conclusions:

• The results of the different measures shown in Table 7 highlight
the best average score of DF-LDL in all cases.



Information Fusion 66 (2021) 64–75M. González et al.

t
a
b
c
𝑞

Table 4
Experimental results DF-LDL (using StructTree as base learner) vs. StructTree (mean ± std).

Measure Method Datasets

Yeast_alpha Yeast_cdc Yeast_diau Yeast_elu Yeast_heat Yeast_spo

Cheby↓ StructTree 0.0168 ± 0.0005 0.0204 ± 0.0009 0.0459 ± 0.0015 0.0201 ± 0.0007 0.0518 ± 0.0008 0.0734 ± 0.0032
DF-LDL 0.0133 ± 0.0008 0.0162 ± 0.0009 0.0367 ± 0.0013 0.0161 ± 0.0005 0.0418 ± 0.0008 0.0609 ± 0.0024

Clark↓ StructTree 0.2615 ± 0.0082 0.2729 ± 0.0123 0.2474 ± 0.0076 0.2476 ± 0.0082 0.2239 ± 0.0035 0.3078 ± 0.0135
DF-LDL 0.2084 ± 0.0125 0.2158 ± 0.0134 0.1990 ± 0.0062 0.1977 ± 0.0053 0.1813 ± 0.0028 0.2575 ± 0.0124

Can↓ StructTree 0.8506 ± 0.0298 0.8216 ± 0.0380 0.5321 ± 0.0181 0.7302 ± 0.0221 0.4481 ± 0.0058 0.6369 ± 0.0280
DF-LDL 0.6772 ± 0.043 0.6472 ± 0.0406 0.4279 ± 0.0155 0.5804 ± 0.0153 0.3629 ± 0.0057 0.5295 ± 0.0251

KL↓ StructTree 0.0086 ± 0.0006 0.0113 ± 0.0009 0.0209 ± 0.0015 0.0087 ± 0.0004 0.0200 ± 0.0004 0.0310 ± 0.0030
DF-LDL 0.0054 ± 0.0006 0.0070 ± 0.0009 0.0132 ± 0.0010 0.0061 ± 0.0004 0.0126 ± 0.0005 0.0270 ± 0.0023

Cos↑ StructTree 0.9916 ± 0.0006 0.9894 ± 0.0008 0.9811 ± 0.0013 0.9907 ± 0.0006 0.9817 ± 0.0005 0.9627 ± 0.0029
DF-LDL 0.9947 ± 0.0006 0.9934 ± 0.0008 0.9878 ± 0.0009 0.9941 ± 0.0003 0.9880 ± 0.0005 0.9746 ± 0.0019

Inter↑ StructTree 0.9530 ± 0.0016 0.9460 ± 0.0025 0.9262 ± 0.0026 0.9485 ± 0.0015 0.9265 ± 0.0009 0.8948 ± 0.0043
DF-LDL 0.9626 ± 0.0024 0.9574 ± 0.0026 0.9406 ± 0.0023 0.9591 ± 0.0011 0.9405 ± 0.0010 0.9126 ± 0.0038

Measure Method Datasets

SJAFFE SBU_3DFE Movie Natural_Scene Human_Gene Optdigits

Cheby↓ StructTree 0.1392 ± 0.0263 0.1520 ± 0.0062 0.1294 ± 0.0053 0.3581 ± 0.0216 0.0828 ± 0.0143 0.1214 ± 0.0073
DF-LDL 0.1044 ± 0.0160 0.1198 ± 0.0064 0.1123 ± 0.0050 0.2672 ± 0.0117 0.0499 ± 0.0039 0.0874 ± 0.0040

Clark↓ StructTree 0.4759 ± 0.0691 0.4515 ± 0.0160 0.5649 ± 0.0222 1.6344 ± 0.0350 2.5795 ± 0.1732 0.7966 ± 0.0170
DF-LDL 0.3792 ± 0.0527 0.3783 ± 0.0188 0.5081 ± 0.0267 2.3719 ± 0.0221 2.0755 ± 0.0433 1.0088 ± 0.0199

Can↓ StructTree 0.9775 ± 0.1426 0.9084 ± 0.0314 1.0954 ± 0.0456 3.7282 ± 0.1147 17.9475 ± 1.3568 1.7797 ± 0.0344
DF-LDL 0.7839 ± 0.1088 0.7881 ± 0.0378 0.9737 ± 0.0515 6.3743 ± 0.0934 14.0834 ± 0.7432 2.5748 ± 0.0573

KL↓ StructTree 0.1084 ± 0.0330 0.1157 ± 0.0080 0.1322 ± 0.0098 2.1534 ± 0.1533 0.3896 ± 0.0646 0.3063 ± 0.0255
DF-LDL 0.0589 ± 0.0145 0.0705 ± 0.0064 0.0961 ± 0.0072 0.6300 ± 0.0265 0.2289 ± 0.0239 0.0827 ± 0.0053

Cos↑ StructTree 0.8973 ± 0.0311 0.8857 ± 0.0075 0.9154 ± 0.0063 0.6487 ± 0.0222 0.7342 ± 0.0374 0.9166 ± 0.0086
DF-LDL 0.9438 ± 0.0139 0.9298 ± 0.0065 0.9367 ± 0.0043 0.7889 ± 0.0098 0.8497 ± 0.0167 0.9837 ± 0.0021

Inter↑ StructTree 0.8254 ± 0.0286 0.8268 ± 0.0065 0.8157 ± 0.0075 0.5409 ± 0.0203 0.7143 ± 0.0267 0.8698 ± 0.0073
DF-LDL 0.8660 ± 0.0192 0.8568 ± 0.0072 0.8397 ± 0.0069 0.6061 ± 0.0102 0.8009 ± 0.0123 0.9035 ± 0.0042

Measure Method Datasets

Semeion Ecoli LED7digit Wq Jura Average

Cheby↓ StructTree 0.2355 ± 0.0193 0.0953 ± 0.0378 0.0568 ± 0.0141 0.3465 ± 0.0230 0.0886 ± 0.0162 0.1196 ± 0.0117
DF-LDL 0.1799 ± 0.0079 0.0749 ± 0.0272 0.0503 ± 0.0087 0.2840 ± 0.0171 0.0791 ± 0.0144 0.0938 ± 0.0076

Clark↓ StructTree 1.0923 ± 0.0463 0.4596 ± 0.0879 0.3028 ± 0.0577 2.6063 ± 0.0596 0.2998 ± 0.0353 0.7544 ± 0.0396
DF-LDL 1.2406 ± 0.0286 0.4245 ± 0.069 0.3040 ± 0.0477 3.1031 ± 0.0425 0.2768 ± 0.0255 0.7842 ± 0.0264

Can↓ StructTree 2.5888 ± 0.1278 0.7740 ± 0.1648 0.6971 ± 0.1468 7.6999 ± 0.2775 0.4280 ± 0.0529 2.5085 ± 0.1551
DF-LDL 3.3518 ± 0.0929 0.7230 ± 0.1348 0.7093 ± 0.1240 10.6209 ± 0.2191 0.3829 ± 0.0399 2.6230 ± 0.1087

KL↓ StructTree 0.5342 ± 0.0542 0.1022 ± 0.0692 0.0555 ± 0.0272 1.0220 ± 0.0500 0.0336 ± 0.0101 0.2973 ± 0.0301
DF-LDL 0.1756 ± 0.0125 0.0502 ± 0.0336 0.0305 ± 0.0075 0.9255 ± 0.0413 0.0266 ± 0.0063 0.1439 ± 0.0112

Cos↑ StructTree 0.8091 ± 0.0177 0.9572 ± 0.0331 0.9760 ± 0.0109 0.5178 ± 0.0230 0.9809 ± 0.0070 0.8904 ± 0.0124
DF-LDL 0.9468 ± 0.0077 0.9785 ± 0.0181 0.9844 ± 0.0052 0.6672 ± 0.0091 0.9848 ± 0.0053 0.9369 ± 0.0061

Inter↑ StructTree 0.7344 ± 0.0206 0.9013 ± 0.0403 0.9343 ± 0.0157 0.4081 ± 0.0180 0.9114 ± 0.0162 0.8281 ± 0.0130
DF-LDL 0.7948 ± 0.0095 0.9220 ± 0.0292 0.9423 ± 0.0102 0.4828 ± 0.0134 0.9209 ± 0.0144 0.8593 ± 0.0088
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• Table 8 includes the outcome of the Friedman rank and Holm tests
in relation to the obtained results over the computed measures.
DF-LDL is ranked first compared to SA-BFGS, LDLFs and StructRF.
Although DF-LDL has a better ranking than StructRF, both yield
very competitive results.

• Note also that the results vary considerably depending on the
dataset used. LDLFs proves to be very effective on the Yeast
datasets but decreases in strength on the other sets. In this ex-
periment, DF-LDL uses the same base algorithm than StructRF,
so when the number of learners used by DF-LDL is much lower
than the used by StructRF, this last one provides a better accuracy
(remember that the number of learners is related to the number
of output labels in DF-LDL while it remains a fix value in the case
of StructRF).

Another measure that is of interest to compare is the execution
ime. At this point we will focus only on the two proposals that have
chieved the best results. In our experiment, DF-LDL uses the same
ase algorithm than StructRF, Struct Tree. Hence the computational
omplexity of the training phase is similar for both methods: 𝑂(𝑚2 ×

2
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× 𝑡𝑟𝑒𝑒𝑠) in StructRF and 𝑂(𝑚 × 𝑞 × 𝑐(𝑐 − 1)) in DF-LDL. If 𝑐(𝑐 − 1) a
s less than the number of trees used in StructRF, our proposal DF-
DL will be faster to train and vice versa. As for the prediction, the
omputational complexity for StructRF is 𝑂(𝑞 × 𝑡𝑟𝑒𝑒𝑠). For DF-LDL it
s also necessary to add the time of the previous prediction AA-KNN,
esulting in a complexity of 𝑂(𝑞 × 𝑐(𝑐 −1)∕2+𝑚𝑞). We have two factors
hat can make one algorithm more efficient predicting than the other.
n the one hand, if 𝑐(𝑐 − 1)∕2 is less than the number of trees used in
tructRF, our proposal DF-LDL will use fewer prediction trees and vice
ersa. But in the case of DF-LDL it is also necessary to add the time of
he previous prediction AA-KNN.

We can see an overview of the runtimes on each dataset in Table 9
hat corroborate this fact, obtaining prediction times that improve
tructRF in the vast majority of cases.

. Conclusion

In this paper, we proposed a novel decomposition strategy that
dapts to LDL constraints. We have based the design of this algorithm
n techniques like OVO that have already demonstrated their potential.
he DF-LDL algorithm can use any of the already existing LDL learners

s base to build a stronger classifier. In addition, the developed fusion



Information Fusion 66 (2021) 64–75M. González et al.
Table 5
Experimental results DF-LDL (using SA-BFGS as base learner) vs. SA-BFGS (mean ± std).

Measure Method Datasets

Yeast_alpha Yeast_cdc Yeast_diau Yeast_elu Yeast_heat Yeast_spo

Cheby↓ SA-BFGS 0.0135 ± 0.0008 0.0163 ± 0.0009 0.0370 ± 0.0014 0.0163 ± 0.0006 0.0423 ± 0.0008 0.0584 ± 0.0037
DF-LDL 0.0134 ± 0.0008 0.0162 ± 0.0009 0.0369 ± 0.0012 0.0163 ± 0.0005 0.0421 ± 0.0007 0.0603 ± 0.0028

Clark↓ SA-BFGS 0.2107 ± 0.0126 0.2165 ± 0.0129 0.2008 ± 0.0079 0.1992 ± 0.0055 0.1828 ± 0.0027 0.2500 ± 0.0164
DF-LDL 0.2103 ± 0.0127 0.2166 ± 0.0129 0.2001 ± 0.0067 0.1989 ± 0.0053 0.1819 ± 0.0025 0.2552 ± 0.0132

Can↓ SA-BFGS 0.6847 ± 0.0432 0.6493 ± 0.0394 0.4310 ± 0.0186 0.5838 ± 0.0159 0.3647 ± 0.0058 0.5137 ± 0.0335
DF-LDL 0.6832 ± 0.0435 0.6501 ± 0.0393 0.4298 ± 0.0166 0.5831 ± 0.0157 0.3631 ± 0.0057 0.5246 ± 0.0269

KL↓ SA-BFGS 0.0055 ± 0.0006 0.0070 ± 0.0008 0.0131 ± 0.0011 0.0062 ± 0.0004 0.0126 ± 0.0004 0.0246 ± 0.0029
DF-LDL 0.0055 ± 0.0006 0.0070 ± 0.0008 0.0131 ± 0.0011 0.0062 ± 0.0004 0.0126 ± 0.0004 0.0260 ± 0.0025

Cos↑ SA-BFGS 0.9946 ± 0.0006 0.9933 ± 0.0007 0.9879 ± 0.0010 0.9940 ± 0.0004 0.9880 ± 0.0004 0.9769 ± 0.0026
DF-LDL 0.9946 ± 0.0006 0.9933 ± 0.0007 0.9879 ± 0.0010 0.9940 ± 0.0004 0.9881 ± 0.0004 0.9755 ± 0.0021

Inter↑ SA-BFGS 0.9622 ± 0.0024 0.9573 ± 0.0026 0.9403 ± 0.0027 0.9588 ± 0.0011 0.9401 ± 0.0010 0.9154 ± 0.0053
DF-LDL 0.9623 ± 0.0024 0.9572 ± 0.0025 0.9404 ± 0.0024 0.9589 ± 0.0011 0.9404 ± 0.0010 0.9135 ± 0.0041

Measure Method Datasets

SJAFFE SBU_3DFE Movie Natural_Scene Human_Gene Optdigits

Cheby↓ SA-BFGS 0.1603 ± 0.0160 0.1100 ± 0.0039 0.1398 ± 0.0161 0.3549 ± 0.0159 0.0533 ± 0.0036 0.0744 ± 0.0032
DF-LDL 0.1007 ± 0.0126 0.1110 ± 0.0004 0.1309 ± 0.0101 0.3359 ± 0.0159 0.0523 ± 0.0041 0.0675 ± 0.0028

Clark↓ SA-BFGS 0.6466 ± 0.0462 0.3784 ± 0.0122 0.6035 ± 0.0560 2.3817 ± 0.0239 2.1111 ± 0.0820 1.6751 ± 0.0167
DF-LDL 0.3787 ± 0.0416 0.3667 ± 0.0106 0.5635 ± 0.0390 2.3824 ± 0.0239 2.0906 ± 0.0711 1.4124 ± 0.0176

Can↓ SA-BFGS 1.3595 ± 0.1100 0.7831 ± 0.0246 1.1679 ± 0.1163 6.5546 ± 0.0914 14.4531 ± 0.6124 4.4333 ± 0.0553
DF-LDL 0.7776 ± 0.0798 0.7593 ± 0.0186 1.0846 ± 0.0785 6.5532 ± 0.0914 14.3439 ± 0.7324 3.7289 ± 0.0544

KL↓ SA-BFGS 0.1639 ± 0.0245 0.0634 ± 0.0038 0.1543 ± 0.0405 1.1120 ± 0.0999 0.2365 ± 0.0184 0.0896 ± 0.0048
DF-LDL 0.0583 ± 0.0117 0.0622 ± 0.0035 0.1266 ± 0.0203 1.0047 ± 0.0999 0.2301 ± 0.0135 0.0702 ± 0.0034

Cos↑ SA-BFGS 0.8739 ± 0.0179 0.9389 ± 0.0034 0.9072 ± 0.0188 0.6724 ± 0.0149 0.8343 ± 0.0102 0.9831 ± 0.0019
DF-LDL 0.9454 ± 0.0111 0.9385 ± 0.0035 0.9173 ± 0.0120 0.6711 ± 0.0149 0.8399 ± 0.0099 0.9873 ± 0.0016

Inter↑ SA-BFGS 0.7788 ± 0.0162 0.8616 ± 0.0041 0.8040 ± 0.0199 0.5248 ± 0.0145 0.7842 ± 0.0092 0.9142 ± 0.0035
DF-LDL 0.8682 ± 0.0131 0.8637 ± 0.0036 0.8163 ± 0.0140 0.5248 ± 0.0145 0.7898 ± 0.0081 0.9223 ± 0.0031

Measure Method Datasets

Semeion Ecoli LED7digit Wq Jura Average

Cheby↓ SA-BFGS 0.1368 ± 0.0084 0.0875 ± 0.0188 0.0981 ± 0.0086 0.3026 ± 0.0223 0.0732 ± 0.0046 0.1044 ± 0.0076
DF-LDL 0.1462 ± 0.0062 0.0753 ± 0.0156 0.0754 ± 0.0084 0.3006 ± 0.0216 0.0728 ± 0.0057 0.0973 ± 0.0067

Clark↓ SA-BFGS 1.4282 ± 0.0208 0.8979 ± 0.0439 1.2670 ± 0.0419 3.1255 ± 0.0427 0.2592 ± 0.0248 0.9432 ± 0.0276
DF-LDL 1.2428 ± 0.0185 0.7059 ± 0.0372 0.8589 ± 0.0280 3.1257 ± 0.0422 0.2540 ± 0.0243 0.8614 ± 0.0240

Can↓ SA-BFGS 3.7601 ± 0.0579 1.6400 ± 0.0938 3.2747 ± 0.0991 10.7824 ± 0.2188 0.3674 ± 0.0308 3.0473 ± 0.0980
DF-LDL 3.2911 ± 0.0616 1.2878 ± 0.0804 2.2037 ± 0.0652 10.7794 ± 0.2164 0.3616 ± 0.0303 2.8474 ± 0.0975

KL↓ SA-BFGS 0.1652 ± 0.0132 0.0730 ± 0.0254 0.0932 ± 0.0145 1.0540 ± 0.0714 0.0231 ± 0.0035 0.1940 ± 0.0192
DF-LDL 0.1460 ± 0.0093 0.0466 ± 0.0124 0.0538 ± 0.0108 1.0266 ± 0.0604 0.0226 ± 0.0036 0.1717 ± 0.0150

Cos↑ SA-BFGS 0.9512 ± 0.0078 0.9847 ± 0.0078 0.9732 ± 0.0084 0.6248 ± 0.0134 0.9875 ± 0.0023 0.9215 ± 0.0066
DF-LDL 0.9574 ± 0.0053 0.9889 ± 0.0055 0.9806 ± 0.0064 0.6300 ± 0.0128 0.9875 ± 0.0026 0.9281 ± 0.0053

Inter↑ SA-BFGS 0.8330 ± 0.0095 0.9073 ± 0.0199 0.8737 ± 0.0117 0.4431 ± 0.0170 0.9628 ± 0.0046 0.8448 ± 0.0085
DF-LDL 0.8270 ± 0.0067 0.9211 ± 0.0162 0.9041 ± 0.0102 0.4490 ± 0.0166 0.9272 ± 0.0057 0.8521 ± 0.0074
Table 6
Wilcoxon Signed Ranks test comparing DF-LDL vs. base learners.

Measure DF-LDL vs. StructTree DF-LDL vs. SA-BFGS

𝑅+ 𝑅− p-value 𝑅+ 𝑅− p-value

Cheby 153 0 1.5258 × 10−5 109.5 26.5 0.0313
Clark 93 60 ≥ 0.2 135.5 17.5 0.0035
Can 94 59 ≥ 0.2 142 11 0.0001
KL 153 0 1.5258 × 10−5 124 12 0.0021
Cos 153 0 1.5258 × 10−5 110 26 0.0290
Inter 153 0 1.5258 × 10−5 102.5 33.5 0.0786

method allows us to combine the outputs in a way that discards the
less competent classifiers.

In order to verify the effectiveness of the solution designed, it
has been compared, firstly, with the base learners where we have
demonstrated a clear superiority of DF-LDL over practically all the
datasets and measures used, and secondly, with the state-of-the-art
learner in the LDL scope where DF-LDL achieves improvements in many
of the cases.
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We also want to highlight the performance improvement obtained
in prediction times with respect to other multiple learning approaches
thanks to the fusion method devised that only makes use of the most
competent classifiers for each case.

As future work we want to extend the current proposal with some
ideas that have emerged during the course of this study. We can
anticipate some of them such as the following:

• DF-LDL can be considered an LDL-oriented framework, compat-
ible with any LDL learning algorithm. In this study, we have
experimented with two different LDL base learners but in future
work we would like to complete the analysis with further ones.
For instance, the LDLogitBoost [19] and the Label Distribution
Learning Based on ensemble neural networks [32] are two en-
semble proposals from which we can extract the underlying base
classifier and use it in our DF-LDL framework.

• DF-LDL needs to train a large number of learners, especially when
the number of output labels is high. An interesting approach could
be to design a decomposition strategy based on ECOC [40] in
order to perform the decomposition to fit better the data using
a small number of classifiers.
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Table 7
Experimental results DF-LDL vs. LDL state-of-the-art algorithms (mean ± std).

Measure Method Datasets

Yeast_alpha Yeast_cdc Yeast_diau Yeast_elu Yeast_heat Yeast_spo

Cheby↓

SA-BFGS 0.0135 ± 0.0008 0.0163 ± 0.0009 0.0370 ± 0.0014 0.0163 ± 0.0006 0.0423 ± 0.0008 0.0584 ± 0.0037
LDLFs 0.0129 ± 0.0003 0.0159 ± 0.0007 0.0344 ± 0.0017 0.0156 ± 0.0005 0.0392 ± 0.0011 0.0561 ± 0.0020
StructRF 0.0134 ± 0.0008 0.0162 ± 0.0009 0.0359 ± 0.0015 0.0161 ± 0.0005 0.0407 ± 0.0009 0.0578 ± 0.0030
DF-LDL 0.0133 ± 0.0008 0.0162 ± 0.0009 0.0367 ± 0.0013 0.0161 ± 0.0005 0.0418 ± 0.0008 0.0609 ± 0.0024

Clark↓

SA-BFGS 0.2107 ± 0.0126 0.2165 ± 0.0129 0.2008 ± 0.0079 0.1992 ± 0.0055 0.1828 ± 0.0027 0.2500 ± 0.0164
LDLFs 0.2021 ± 0.0031 0.2126 ± 0.0065 0.1872 ± 0.0112 0.1908 ± 0.0052 0.1706 ± 0.0040 0.2427 ± 0.0082
StructRF 0.2095 ± 0.0125 0.2158 ± 0.0134 0.1947 ± 0.0076 0.1974 ± 0.0054 0.1770 ± 0.0028 0.2467 ± 0.0139
DF-LDL 0.2084 ± 0.0125 0.2158 ± 0.0134 0.1990 ± 0.0062 0.1977 ± 0.0053 0.1813 ± 0.0028 0.2575 ± 0.0124

Can↓

SA-BFGS 0.6847 ± 0.0432 0.6493 ± 0.0394 0.4310 ± 0.0186 0.5838 ± 0.0159 0.3647 ± 0.0058 0.5137 ± 0.0335
LDLFs 0.6555 ± 0.0099 0.6385 ± 0.0146 0.4011 ± 0.0221 0.5595 ± 0.0148 0.3408 ± 0.0076 0.4969 ± 0.0173
StructRF 0.6812 ± 0.0434 0.6472 ± 0.0410 0.4177 ± 0.0178 0.5780 ± 0.0156 0.3541 ± 0.0063 0.5066 ± 0.0274
DF-LDL 0.6772 ± 0.043 0.6472 ± 0.0406 0.4279 ± 0.0155 0.5804 ± 0.0153 0.3629 ± 0.0057 0.5295 ± 0.0251

KL↓

SA-BFGS 0.0055 ± 0.0006 0.0070 ± 0.0008 0.0131 ± 0.0011 0.0062 ± 0.0004 0.0126 ± 0.0004 0.0246 ± 0.0029
LDLFs 0.0051 ± 0.0002 0.0067 ± 0.0004 0.0115 ± 0.0013 0.0057 ± 0.0003 0.0111 ± 0.0005 0.0231 ± 0.0016
StructRF 0.0055 ± 0.0006 0.0070 ± 0.0009 0.0125 ± 0.0010 0.0061 ± 0.0004 0.0120 ± 0.0004 0.0243 ± 0.0024
DF-LDL 0.0054 ± 0.0006 0.0070 ± 0.0009 0.0132 ± 0.0010 0.0061 ± 0.0004 0.0126 ± 0.0005 0.0270 ± 0.0023

Cos↑

SA-BFGS 0.9946 ± 0.0006 0.9933 ± 0.0007 0.9879 ± 0.0010 0.9940 ± 0.0004 0.9880 ± 0.0004 0.9769 ± 0.0026
LDLFs 0.9950 ± 0.0001 0.9935 ± 0.0003 0.9895 ± 0.0011 0.9945 ± 0.0003 0.9894 ± 0.0004 0.9786 ± 0.0014
StructRF 0.9946 ± 0.0006 0.9933 ± 0.0008 0.9885 ± 0.0010 0.9941 ± 0.0003 0.9886 ± 0.0004 0.9773 ± 0.0021
DF-LDL 0.9947 ± 0.0006 0.9934 ± 0.0008 0.9878 ± 0.0009 0.9941 ± 0.0003 0.9880 ± 0.0005 0.9746 ± 0.0019

Inter↑

SA-BFGS 0.9622 ± 0.0024 0.9573 ± 0.0026 0.9403 ± 0.0027 0.9588 ± 0.0011 0.9401 ± 0.0010 0.9154 ± 0.0053
LDLFs 0.9638 ± 0.0006 0.9580 ± 0.0009 0.9445 ± 0.0028 0.9606 ± 0.0010 0.9441 ± 0.0012 0.9186 ± 0.0028
StructRF 0.9624 ± 0.0024 0.9574 ± 0.0027 0.9421 ± 0.0026 0.9592 ± 0.0011 0.9419 ± 0.0011 0.9167 ± 0.0042
DF-LDL 0.9626 ± 0.0024 0.9574 ± 0.0026 0.9406 ± 0.0023 0.9591 ± 0.0011 0.9405 ± 0.0010 0.9126 ± 0.0038

Measure Method Datasets

SJAFFE SBU_3DFE Movie Natural_Scene Human_Gene Optdigits

Cheby↓

SA-BFGS 0.1603 ± 0.0160 0.1100 ± 0.0039 0.1398 ± 0.0161 0.3549 ± 0.0159 0.0533 ± 0.0036 0.0744 ± 0.0032
LDLFs 0.1158 ± 0.0153 0.1302 ± 0.0046 0.1170 ± 0.0033 0.3604 ± 0.0260 0.0531 ± 0.0159 0.6270 ± 0.0129
StructRF 0.1094 ± 0.0108 0.1183 ± 0.0058 0.1104 ± 0.0048 0.2738 ± 0.0116 0.0553 ± 0.0048 0.1034 ± 0.0048
DF-LDL 0.1044 ± 0.0160 0.1198 ± 0.0064 0.1123 ± 0.0050 0.2672 ± 0.0117 0.0499 ± 0.0039 0.0874 ± 0.0040

Clark↓

SA-BFGS 0.6466 ± 0.0462 0.3784 ± 0.0122 0.6035 ± 0.0560 2.3817 ± 0.0239 2.1111 ± 0.0820 1.6751 ± 0.0167
LDLFs 0.4175 ± 0.0361 0.4011 ± 0.0110 0.5269 ± 0.0123 2.4841 ± 0.0300 2.1240 ± 0.0637 2.5616 ± 0.0242
StructRF 0.3900 ± 0.0350 0.3680 ± 0.0173 0.5039 ± 0.0233 2.3946 ± 0.0227 2.1776 ± 0.1232 1.0620 ± 0.0225
DF-LDL 0.3792 ± 0.0527 0.3783 ± 0.0188 0.5081 ± 0.0267 2.3719 ± 0.0221 2.0755 ± 0.0433 1.0088 ± 0.0199

Can↓

SA-BFGS 1.3595 ± 0.1100 0.7831 ± 0.0246 1.1679 ± 0.1163 6.5546 ± 0.0914 14.4531 ± 0.6124 4.4333 ± 0.0553
LDLFs 0.8797 ± 0.0804 0.8610 ± 0.0253 0.9995 ± 0.0233 6.8694 ± 0.1319 14.5737 ± 0.4372 7.8649 ± 0.0948
StructRF 0.8089 ± 0.0769 0.7817 ± 0.0354 0.9595 ± 0.0441 6.4559 ± 0.0950 14.8633 ± 0.8857 2.7195 ± 0.0638
DF-LDL 0.7839 ± 0.1088 0.7881 ± 0.0378 0.9737 ± 0.0515 6.3743 ± 0.0934 14.0834 ± 0.7432 2.5748 ± 0.0573

KL↓

SA-BFGS 0.1639 ± 0.0245 0.0634 ± 0.0038 0.1543 ± 0.0405 1.1120 ± 0.0999 0.2365 ± 0.0184 0.0896 ± 0.0048
LDLFs 0.0707 ± 0.0132 0.0765 ± 0.0045 0.0988 ± 0.0043 0.9453 ± 0.0569 0.2398 ± 0.0719 1.0301 ± 0.0446
StructRF 0.0603 ± 0.0089 0.0659 ± 0.0054 0.0901 ± 0.0061 0.6436 ± 0.0211 0.2480 ± 0.0265 0.1056 ± 0.0081
DF-LDL 0.0589 ± 0.0145 0.0705 ± 0.0064 0.0961 ± 0.0072 0.6300 ± 0.0265 0.2289 ± 0.0239 0.0827 ± 0.0053

Cos↑

SA-BFGS 0.8739 ± 0.0179 0.9389 ± 0.0034 0.9072 ± 0.0188 0.6724 ± 0.0149 0.8343 ± 0.0102 0.9831 ± 0.0019
LDLFs 0.9334 ± 0.0125 0.9249 ± 0.0040 0.9347 ± 0.0028 0.6653 ± 0.0185 0.8353 ± 0.0251 0.6879 ± 0.0193
StructRF 0.9429 ± 0.0083 0.9348 ± 0.0055 0.9407 ± 0.0039 0.7895 ± 0.0091 0.8202 ± 0.0205 0.9758 ± 0.0035
DF-LDL 0.9438 ± 0.0139 0.9298 ± 0.0065 0.9367 ± 0.0043 0.7889 ± 0.0098 0.8497 ± 0.0167 0.9837 ± 0.0021

Inter↑

SA-BFGS 0.7788 ± 0.0162 0.8616 ± 0.0041 0.8040 ± 0.0199 0.5248 ± 0.0145 0.7842 ± 0.0092 0.9142 ± 0.0035
LDLFs 0.8501 ± 0.0151 0.8450 ± 0.0046 0.8350 ± 0.0040 0.4605 ± 0.0220 0.7833 ± 0.0235 0.3619 ± 0.0131
StructRF 0.8622 ± 0.0132 0.8592 ± 0.0065 0.8432 ± 0.0060 0.5919 ± 0.0097 0.7739 ± 0.0159 0.8871 ± 0.0050
DF-LDL 0.8660 ± 0.0192 0.8568 ± 0.0072 0.8397 ± 0.0069 0.6061 ± 0.0102 0.8009 ± 0.0123 0.9035 ± 0.0042

Measure Method Datasets

Semeion Ecoli LED7digit Wq Jura Average

Cheby↓

SA-BFGS 0.1368 ± 0.0084 0.0875 ± 0.0188 0.0981 ± 0.0086 0.3026 ± 0.0223 0.0732 ± 0.0046 0.1044 ± 0.0076
LDLFs 0.3569 ± 0.0459 0.4888 ± 0.0329 0.4719 ± 0.0461 0.3065 ± 0.0116 0.1115 ± 0.0168 0.1949 ± 0.0140
StructRF 0.2099 ± 0.0042 0.0716 ± 0.0240 0.0532 ± 0.0114 0.2859 ± 0.0185 0.0689 ± 0.0090 0.0965 ± 0,0069
DF-LDL 0.1799 ± 0.0079 0.0749 ± 0.0272 0.0503 ± 0.0087 0.2840 ± 0.0171 0.0791 ± 0.0144 0.0938 ± 0.0076

Clark↓

SA-BFGS 1.4282 ± 0.0208 0.8979 ± 0.0439 1.2670 ± 0.0419 3.1255 ± 0.0427 0.2592 ± 0.0248 0.9432 ± 0.0276
LDLFs 1.6710 ± 0.0889 1.5454 ± 0.0502 1.9121 ± 0.1527 3.1115 ± 0.0295 0.3429 ± 0.0348 1.0767 ± 0.0336
StructRF 1.3193 ± 0.0197 0.4650 ± 0.0748 0.3293 ± 0.0591 3.1006 ± 0.0443 0.2416 ± 0.0216 0.7996 ± 0.0305
DF-LDL 1.2406 ± 0.0286 0.4245 ± 0.069 0.3040 ± 0.0477 3.1031 ± 0.0425 0.2768 ± 0.0255 0.7842 ± 0.0264

Can↓

SA-BFGS 3.7601 ± 0.0579 1.6400 ± 0.0938 3.2747 ± 0.0991 10.7824 ± 0.2188 0.3674 ± 0.0308 3.0473 ± 0.0980
LDLFs 4.7213 ± 0.3042 3.2622 ± 0.1264 5.5698 ± 0.5812 10.7510 ± 0.1516 0.5034 ± 0.0588 3.5264 ± 0.1236
StructRF 3.5802 ± 0.0661 0.7990 ± 0.1509 0.7832 ± 0.156 10.6299 ± 0.2312 0.3406 ± 0.0309 2.7004 ± 0.1169
DF-LDL 3.3518 ± 0.0929 0.7230 ± 0.1348 0.7093 ± 0.1240 10.6209 ± 0.2191 0.3829 ± 0.0399 2.6230 ± 0.1087

(continued on next page)
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Table 7 (continued).
Measure Method Datasets

Yeast_alpha Yeast_cdc Yeast_diau Yeast_elu Yeast_heat Yeast_spo

KL↓

SA-BFGS 0.1652 ± 0.0132 0.0730 ± 0.0254 0.0932 ± 0.0145 1.0540 ± 0.0714 0.0231 ± 0.0035 0.1940 ± 0.0192
LDLFs 0.4456 ± 0.0874 0.7172 ± 0.0748 0.7356 ± 0.0945 1.1061 ± 0.0372 0.0435 ± 0.0099 0.3278 ± 0.0296
StructRF 0.2135 ± 0.0095 0.0448 ± 0.0267 0.0326 ± 0.0095 0.9391 ± 0.0406 0.0206 ± 0.0031 0.1489 ± 0.0101
DF-LDL 0.1756 ± 0.0125 0.0502 ± 0.0336 0.0305 ± 0.0075 0.9255 ± 0.0413 0.0266 ± 0.0063 0.1439 ± 0.0112

Cos↑

SA-BFGS 0.9512 ± 0.0078 0.9847 ± 0.0078 0.9732 ± 0.0084 0.6248 ± 0.0134 0.9875 ± 0.0023 0.9215 ± 0.0066
LDLFs 0.8451 ± 0.0406 0.6986 ± 0.0341 0.6735 ± 0.0359 0.5887 ± 0.0104 0.9744 ± 0.0076 0.8648 ± 0.0126
StructRF 0.9316 ± 0.0065 0.9831 ± 0.0141 0.9835 ± 0.0053 0.6634 ± 0.0101 0.9880 ± 0.0033 0.9347 ± 0.0056
DF-LDL 0.9468 ± 0.0077 0.9785 ± 0.0181 0.9844 ± 0.0052 0.6672 ± 0.0091 0.9848 ± 0.0053 0.9369 ± 0.0061

Inter↑

SA-BFGS 0.8330 ± 0.0095 0.9073 ± 0.0199 0.8737 ± 0.0117 0.4431 ± 0.0170 0.9628 ± 0.0046 0.8448 ± 0.0085
LDLFs 0.6098 ± 0.0480 0.4876 ± 0.0315 0.4854 ± 0.0451 0.3999 ± 0.0118 0.8885 ± 0.0168 0.7469 ± 0.0144
StructRF 0.7656 ± 0.0062 0.9251 ± 0.0026 0.9389 ± 0.0132 0.4745 ± 0.0149 0.9311 ± 0.0090 0.8548 ± 0.0082
DF-LDL 0.7948 ± 0.0095 0.9220 ± 0.0292 0.9423 ± 0.0102 0.4828 ± 0.0134 0.9209 ± 0.0144 0.8593 ± 0.0088
Table 8
Friedman rank and Holm test applied to the results among the tested algorithms.

Measure Control method: DF-LDL (2.1176) Measure Control method: DF-LDL (1.9706)

i Algorithm (Rank) Z p-value i Algorithm (Rank) Z p-value

Cheby
3 SA-BFGS (3) 1.9926 0.0463

Clark
3 SA-BFGS (3.2941) 2.9889 0.0028

2 LDLFs (2.7059) 1.3284 0.1840 2 LDLFs (2.7059) 1.6605 0.0968
1 StructRF (2.1765) 0.1328 0.8943 1 StructRF (2.0294) 0.1328 0.8943

Measure Control method: DF-LDL (1.9706) Measure Control method: DF-LDL (2.1765)

i Algorithm (Rank) Z p-value i Algorithm (Rank) Z p-value

Can
3 SA-BFGS (3.2941) 2.9889 0.0028

KL
3 SA-BFGS (2.8824) 1.5941 0.1109

2 LDLFs (2.7059) 1.6605 0.0968 2 LDLFs (2.7059) 1.1956 0.2319
1 StructRF (2.0294) 0.1328 0.8943 1 StructRF (2.2353) 0.1328 0.8943

Measure Control method: DF-LDL (2.2353) Measure Control method: DF-LDL (2.1471)

i Algorithm (Rank) Z p-value i Algorithm (Rank) Z p-value

Cos
3 SA-BFGS (2.7941) 1.2620 0.2069

Inter
3 SA-BFGS (2.8824) 1.6605 0.0968

2 LDLFs (2.7059) 1.0627 0.2879 2 LDLFs (2.7647) 1.3948 0.1631
1 StructRF (2.2647) 0.0664 0.9470 1 StructRF (2.2059) 0.1328 0.8943
Table 9
Execution times (in seconds), measured on a machine with®Intel Core i7-7300HQ
rocessor (4 cores, 6 MB cache, 2.5 GHz–3.5 GHz) and 16 GB DDR4 2400 MHz
AM.
Datasets Fit time Prediction time

StructRF DF-LDL StructRF DF-LDL

Yeast_alpha 574.35 4709.50 0.10 0.52
Yeast_cdc 736.34 2196.00 0,12 0,29
Yeast_diau 717.97 421.10 0.11 0,09
Yeast_elu 712.89 1365.01 0.11 0,24
Yeast_heat 710.97 203.28 0.10 0.06
Yeast_spo 522.11 201.99 0.10 0.06
SJAFFE 143.77 86.00 0.05 0.01
SBU_3DFE 2272.50 1370.02 0.07 0.04
Movie 10413.56 4160.43 0.39 0.20
Natural_Scene 2866.39 4122.04 0.08 0.06
Human_Gene 4317.67 390,365.00 0.78 35.34
Optdigits 1432.00 2335.03 0.24 0.22
Semeion 630.05 1161.71 0.06 0.05
Ecoli 42.28 11.52 0.008 0.006
LED7digit 2866.38 5058.16 0.08 0.07
Wq 306.38 717.15 0.03 0.06
Jura 54.53 4.23 0.007 0.001
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