
International Journal of Computational Intelligence Systems

DOI: https://doi.org/10.2991/ijcis.2019.0025
https://www.atlantis-press.com/journals/ijcis/

AEkNN: An AutoEncoder kNN–Based Classifier With Built-in
Dimensionality Reduction

Francisco J. Pulgar *, Francisco Charte, Antonio J. Rivera, María J. del Jesus

Andalusian Research Institute on Data Science and Computational Intelligence (DaSCI), Department of Computer Science, University of Jaén, Jaén, Spain

ART I C L E I N FO
Article History

Received 19 Jul 2018
Accepted 13 Feb 2019

Keywords

kNN
Deep learning
Autoencoders
Dimensionality reduction
High dimensionality

ABSTRACT
High dimensionality tends to be a challenge for most machine learning tasks, including classification. There are different classi-
fication methodologies, of which instance-based learning is one. One of the best known members of this family is the k-nearest
neighbors (kNNs) algorithm. Its strategy relies on searching a set of nearest instances. In high-dimensional spaces, the distances
between examples lose significance. Therefore, kNN, in the same way as many other classifiers, tends to worsen its performance
as the number of input variables grows. In this study, AEkNN, a new kNN-based algorithm with built-in dimensionality reduc-
tion, is presented. Aiming to obtain a new representation of the data, having a lower dimensionality but with more informational
features, AEkNN internally uses autoencoders. From this new vector of features the computed distances should be more signif-
icant, thus providing a way to choose better neighbors. An experimental evaluation of the new proposal is conducted, analyzing
several configurations and comparing them against the original kNN algorithm and classical dimensionality reductionmethods.
The obtained conclusions demonstrate that AEkNN offers better results in predictive and runtime performance.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Classification is a well-known task within the area of machine
learning [1]. The main objective of a classifier is to find a way to
predict the label to be assigned to new data patterns. To do so, usu-
ally a model is created from previously labeled data. In traditional
classification, each example has a single label. Different algorithms
have been proposed in order to address this work. One of the clas-
sic methodologies is instance-based learning (IBL) [2]. Essentially,
this methodology is based on local information provided by the
training instances, instead of constructing a global model from the
whole data. The algorithms belonging to this family are relatively
simple, however they have shown to obtain very good results in
tackling the classification problem. A traditional example of such
an algorithm is k-nearest neighbors (kNNs) [3].

The different IBL approaches, including the kNN algorithm [4],
have difficulties when faced with high-dimensional datasets. These
datasets are made of samples which contain a large number of fea-
tures. In particular, the kNN algorithm presents problems when
calculating distances in high-dimensional spaces. The main reason
is that distances are less significant as the number of dimensions
increases, tending to equate [4]. This effect is one of the causes
of the curse of dimensionality, which occurs when working with
high-dimensional data [5]. Another consequence that emerges in
this context is the Hughes phenomenon. This fact implies that the
predictive performance of a classifier decreases as the number of

features of the dataset grows, keeping the number of examples con-
stant [6]. In other words, more instances would be needed to main-
tain the same level of performance.

Several approaches have been proposed for to deal with the dimen-
sionality reduction task. Recently, a few proposals based on deep
learning (DL) [7, 8] have obtained good results while tackling this
problem. The rise of these techniques is produced by the good per-
formance that DL models have had in many research areas, such as
computer vision, automatic speech processing, or audio and music
recognition. In particular, autoencoders (AEs) are DL networks
offering good results due to their architecture and operation [9–11].

High dimensionality is usually mitigated by transforming the orig-
inal input space into a lower-dimensional one. In this paper an
instance-based algorithm, that internally generates a reduced set of
features, is proposed. Its objective is to obtain a better IBL method,
able to deal with high-dimensional data.

The present study introduces AEkNN, a kNN-based algorithmwith
built-in dimensionality reduction. AEkNN projects the training
patterns into a lower-dimensional space, relying on an AE to do
so. The goal is to perform the classification using new features of
higher quality and lower dimensionality [9]. This approach is exper-
imentally evaluated, and a comparison between AEkNN and the
kNN algorithm is performed considering predictive performance
and execution time. The results obtained demonstrate that AEkNN
offers better results in both metrics. In addition, AEkNN is com-
pared with other traditional dimensionality reduction algorithms.
This comparison offers an idea of the behavior of the AEkNN algo-
rithm when facing the task of dimensionality reduction.*Corresponding author. Email: fpulgar@ujaen.es

Pdf_Folio:1

; ISSN: ; eISSN: 1875-6883
Vol. 12(1); 2019, pp. 436–452

1875-6891

https://doi.org/10.2991/ijcis.2019.0025
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/


An important aspect of the AEkNN algorithm that must be high-
lighted is that it performs a transformation of the features of the
input data, in contrast to other traditional feature selection algo-
rithms that perform a simple selection of the most significant fea-
tures. AEkNN performs this transformation taking into account all
the characteristics of the input data, although not all will have the
same weight in the new generated space.

In short, AEkNN combines two reference methods, kNN and AE,
in order to take advantage of kNN in classification and reduce the
effects of high dimensionality by means of AE. Summarizing, the
main contributions of this study are 1. the design of a new classifica-
tion algorithm, AEkNN, which combines an efficient dimensional-
ity reductionmechanismwith a popular classificationmethod, 2. an
analysis of theAEkNNoperating parameters that allows selection of
the best algorithm configuration, 3. an experimental demonstration
of the improvement that AEkNN achieves with respect to the kNN
algorithm, 4. an experimental comparison between the use of anAE
for dimensionality reduction with respect to other classical meth-
ods such as principal components analysis (PCA) and linear dis-
criminant analysis (LDA), 5. a set of guidelines for the reader when
using the AEkNN algorithm, and 6. results on the use of AEkNN in
real cases.

This paper is organized as follows: In Section 2 some details about
the kNN algorithm,DL techniques, andAEs are provided. Section 3
describes relevant studies related to this proposal, focused on tack-
ling the problem of dimensionality reduction in kNN. In Section 4,
the proposedAEkNNalgorithm is introduced. Section 5 defines the
experimental framework, as well as the different results obtained
from the experimentation. Finally, Section 6 provides the overall
conclusions.

2. PRELIMINARIES

In general terms, machine learning is a subfield of Artificial Intel-
ligence whose aim is to develop algorithms and techniques able to
generalize behaviors from information supplied as examples. Clas-
sification is one of the tasks performed in the datamining phase. It is
a predictive task that usually develops through supervised learning
methods [12]. Its purpose is to predict, based on previously labeled
data, the class to assign to future unlabeled patterns.

Several issues can emerge while designing a classifier, with some of
them related to high dimensionality. According to the Hughes phe-
nomenon [6], the predictive performance of a classifier decreases
as the number of features increases, provided that the number
of training instances is constant. Another phenomenon that par-
ticularly affects IBL methods is the curse of dimensionality. IBL
algorithms are based on the similarity of individuals, calculating
distances between them [2]. These distances tend to lose signifi-
cance as dimensionality grows.

AEkNN, the algorithm proposed in this study, is a kNN-based clas-
sification method designed to deal with high-dimensional data.
This section outlines the essential concepts AEkNN is founded on,
such as nearest neighbors classification, DL techniques, and AEs.
The kNN algorithm is discussed in Subsection 2.1, while DL and
AEs are briefly described in Subsections 2.2 and 2.3.

2.1. The kNN Algorithm

kNN is a nonparametric algorithm developed to deal with classifi-
cation and regression tasks [3]. In classification, kNN predicts the
class for new instances using the information provided by the kNNs,
so that the assigned class will be the most common among them.
Figure 1 shows a very simple example of how kNN works with dif-
ferent k values. As can be seen, the prediction obtained with k = 3
would be B, with k = 5 would be A and with k = 11 would be A.

Figure 1 kNN algorithm in a bidimensional space.

An important feature of this algorithm is that it does not build
a model for accomplishing the prediction task. Usually, no work
is done until an unlabeled data pattern is encountered, thus the
denomination of lazy approach [13]. Once the instance to be clas-
sified is given, the information provided by its kNNs [14] is used as
explained above.

One of kNN’s main issues is its behavior with datasets which have a
high-dimensional input space. Nowadays, the generation of infor-
mation is growing in all fields of research. Therefore, when deal-
ing with many real problems it is necessary to use increasingly
larger datasets. This fact implies the need to deal with the problem
of high-dimensional space when working with machine learning
algorithms.

In particular, kNN is affected by the high dimensionality due to
the loss of significance of traditional distances as the dimension-
ality of the data increases [4]. This fact occurs because the dis-
tances from the farthest points and closest to any data pattern do
not increase as fast as the minimum of the two. This is obviously a
problem, since it indicates a poor discrimination of the closest and
farthest points with respect to the reference pattern [15]. In such
a high-dimensional space distances between individuals tend to be
the same. As a consequence similarity-/distance-based algorithms,
such as kNN, usually do not offer adequate results.

However, kNN is very popular since it has a good performance,
uses few resources, and it is relatively simple [16, 17]. The objec-
tive of this proposal is to present an algorithm that combines the
advantages of kNN in classification with DL models to reduce
dimensionality.

Pdf_Folio:2

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 437



2.2. Deep Learning

DL [7] arises with the objective of extracting higher-level represen-
tations of the analyzed data. In other words, the main goal of DL-
based techniques is to learn complex representations of data. The
main lines of research in this area are intended to define different
data representations and create models to learn them [18].

As the name suggests, models based on DL are developed as mul-
tilayered (deep) architectures, which are used to map the relation-
ships between features in the data (inputs) and the expected result
(outputs) [19, 20]. Most DL algorithms learn multiple levels of rep-
resentations, producing a hierarchy of concepts. These levels corre-
spond to different degrees of abstraction. The following are some of
the main advantages of DL:

• These models can handle a large number of variables and
generate new features as part of the algorithm itself, not as an
external step [7].

• Provides performance improvements in terms of time needed
to accomplish feature engineering, one of the most
time-consuming tasks [19].

• Achieves much better results than other methods based on
traditional techniques [21] when dealing with problems in
certain fields, such as image, speech recognition, or malware
detection.

• DL-based models have a high capacity of adaptation for facing
new problems [20, 22].

Recently, several newmethods [7, 8, 23] founded on the good results
produced by DL have been published. Some of them are focused
on certain areas, such as image processing and voice recognition
[21]. Other DL-based proposals have been satisfactorily applied in
disparate areas, gaining advantage over prior techniques [7]. Due to
the great impact of DL-based techniques, as well as the impressive
results they usually offer, new challenges are also emerging in new
research lines [8].

There are two main reasons behind the rise of DL techniques, the
large amount of data currently available and the increase in pro-
cessing power. In this context, different DL architectures have been
developed: AEs (Section 2.3), convolutional neural networks [24,
25], long short-term memory [26], recurrent neural networks [27],
gated recurrent unit [28], deep Boltzmann machines [29], deep
stacking networks [30], deep coding networks [31], deep recurrent
encoder [32], deep belief networks [33], among others [7, 20].

DL models have been widely used to perform classification tasks
obtaining good results [21]. However, the objective of this proposal
is not to perform the classification directly with these models, but
use them to the dimensionality reduction ask.

The goal of the present study is to obtain higher-level represen-
tations of the data but with a reduced dimensionality. One of the
dimensionality reduction DL-based techniques that has achieved
good results is the use of AEs [34]. An AE is an artificial neural net-
work whose purpose is to reproduce the input into the output, in
order to generate a compressed representation of the original infor-
mation [20]. Section 2.3 describes this technique in detail.

2.3. Autoencoders

An AE is an artificial neural network able to learn new information
encodings through unsupervised learning [9]. AEs are trained to
learn an internal representation that allows reproduction the input
into the output through a series of hidden layers. The goal is to
produce amore compressed representation of the original informa-
tion in the hidden layers, so that it can be used in other tasks. AEs
are typically used for dimensionality reduction tasks owing to their
characteristics and performance [10, 11, 35]. Therefore, this is the
reason to choose AEs in this paper.

The most basic structure of an AE is very similar to that of a mul-
tilayer perceptron. An AE is a feedforward neural network without
cycles, so the information always goes in the same direction. AEs
are typically formed by a series of layers: an input layer, a series of
hidden layers, and an output layer, with the units in each layer con-
nected to those in the next. The main characteristic of AEs is that
the output has the same number of nodes as the input, since the
goal is to reproduce the latter in the former throughout the learning
process [20].

Two parts can be distinguished in an AE, the encoder and the
decoder. The first is made up of the input layer and the first half of
hidden layers. The second is composed of the second half of hid-
den layers and the output layer. This is the architecture shown in
Figure 2. As can be seen, the structure of an AE always is symmet-
rical.

Figure 2 Architecture of autoencoder with three hidden layers.

The encoder and decoder parts in anAE can be defined as functions
𝜔 (Equation (1)) and 𝛽 (Equation (2)), so that:

𝜔 ∶ X → F (1)

Pdf_Folio:3

𝛽 ∶ F → X (2)

where x ∈ ℝd = X is the input to the AE, and z ∈ ℝp = F is the
mapping contained in the hidden layers of the AE. When there is
only one hidden layer (the most basic case) the AE maps the input
X onto Z. To perform this, a weight vector W and a bias parameter
b are used:

z = 𝛾1 (Wx + b) (3)

438 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452



Equation (3) corresponds to the compression function, forwhich an
encoded input representation is obtained. Here, 𝛾1 is an activation
function such as a rectified linear unit or a sigmoid function.

The next step is to decode the new representation z to obtain x’,
in the same way as x was projected into z, by means of a weight
vector W’ and a bias parameter b’. Equation (4) corresponds to the
decoder part, where the AE reconstructs the input from the infor-
mation contained in the hidden layer.

are other methods of dimensionality reduction that produce good
results, such as denoising AEs [36], restricted Boltzmann machines
(RBMs) [37], or sparse coding [38]. The objective of this proposal is
to present an algorithm that hybridizes kNN with AEs. This estab-
lishes a baseline that allows supporting studies with more complex
methods.

3. DIMENSIONALITY REDUCTION
APPROACHES

In this section, an exploration of previous studies related to the pro-
posal made in this paper is carried out. Subsection 3.1 introduces
classical proposals to tackle the dimensionality reduction problem.
Some approaches for facing the dimensionality reduction task for
kNN are outlined in Subsection 3.2.

In automatic learning, dimensionality reduction is the process
aimed to decrease the number of considered variables, by obtain-
ing a subset of main features. Usually two different dimensionality
reduction methods are considered:

• Feature selection [39], where the subset of the initial features
that provides more useful information is chosen. The final
features have no transformation in the process.

• Feature extraction [40], where the process constructs from the
initial features a set of new ones providing more useful and
nonredundant information, facilitating the next steps in
machine learning and in some cases improving understanding
by humans.

3.1. Classical Proposals for Dimensionality
Reduction

Most dimensionality reduction techniques can be grouped into two
categories, linear and nonlinear approaches [41]. Below some rep-
resentative proposals found in the literature, which can be consid-
ered as traditional methods, are shown.

Commonly, classical proposals for dimensionality reduction were
developed using linear techniques, such as the following:

• PCA [42] is a well-known solution for dimensionality
reduction. Its objective is to obtain the lower-dimensional space
where the data are embedded. In particular, the process starts
from a series of correlated variables and converts them into a
set of uncorrelated linear variables. The variables obtained are
known as principal components, and their number is less than
or equal to the original variables. Often, the internal structure
extracted in this process reflects the variance of the data used.

• Factors analysis [43] is based on the idea that the data can be
grouped according to their correlations, that is, variables with a
high correlation will be within the same group and variables
with low correlation will be in different groups. Thus, each
group represents a factor in the observed correlations. The
potential factors plus the terms error are linearly combined to
model the input variables. The objective of factor analysis is to
look for independent dimensions.

x′ = 𝛾2 (W′ z + b′) (4)

During the training process, the AE tries to reduce the reconstruc-
tion error. This operation consists of back-propagating the obtained
error through the network, and thenmodifying the weights tomin-
imize any error. Algorithm 1 shows the pseudocode of this process.

Learning a representation that allows reproducing the input into the
output could seem useless at first sight, but in this case the output
is not of interest. Instead, the concern is in the new representation
of the inputs learned in the hidden layers. Such new codification
is really interesting, because it can have very useful features [19].
The hidden layers learn a higher-level representation of the original
data, which can be extracted and used in independent processes.

Depending on the number of units the hidden layers have, two types
of AEs can be distinguished:

• Those whose hidden layer has fewer units than the input and
output layers. This type of AE is called undercomplete. Its main
objective is to force the network to learn a compressed
representation of the input, extracting new, higher-level
features.

• Those whose hidden layer has more units than the input and
output layers. This type of AE is called overcomplete. The main
problem in this case is that the network can learn to copy the
input to the output without learning anything useful, so when
it is necessary to obtain an enlarged representation of the input
it is necessary to use other tools to prevent this problem.

In conclusion, AEs are a very suitable tool for generating a new
lower-dimensional input space consisting of higher-level features.
AEs have obtained good results in performing this task. This is the
main reason to choose this technique to design the AEkNN algo-
rithm described later. However, it is important to note that there

Algorithm 1 AE training algorithm’s pseudocode.
Inputs:

TrainData ▷ Train Data
1: ▷ For each training instance:
2: for each instance in TrainData do
3: ▷ Do a feed-forward through AE to obtain output:
4: newCod ← feedForwardAE(aeModel, instance)
5: ▷ Calculate error:
6: error ← calculateError(newCod, instance)
7: ▷ Backpropagate the error through AE and perform

weight update:
8: aeModel ← backpropagateError(error)
9: end for

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 439



• Classical scaling [44] consists in grouping the data according to
their similarity level. An algorithm of this type aims to place all
data in an N-dimensional space where the distances are
maintained as much as possible.

Despite their popularity, classical linear solutions for dimensional-
ity reduction present the problem that they cannot correctly handle
complex nonlinear data [41]. For this reason, nonlinear proposals
for dimensionality reduction arose. A compilation of these is pre-
sented in [45, 46]. Some of these techniques are Isomap [47], Maxi-
mumVarianceUnfolding [48], diffusionmaps [49],manifold chart-
ing [41], among others. These techniques allow working correctly
with complex nonlinear data. This is an advantage when working
with real data, which are usually of this type.

3.2. Proposals for Dimensionality Reduction
in kNN

There are different proposals trying to deal with the problems of
kNN when working with high-dimensional data. In this section,
some of them are collected:

• A method for computing distances for kNN is presented in
[50]. The proposed algorithm performs a partition of the total
data set. Subsequently, a reference value for each partition
made is assigned. Grouping the data in different partitions
allows to obtain a space of smaller dimensionality where the
distances between the reference points are more significant.
The method depends on the division of the data performed
and the selection of the reference.

The experimentation presented in [50] shows an
improvement in efficiency. However, the methodology used
can be affected by high-dimensional data. In this type of
scenario, the distances between the data are less significant,
and therefore, the groupings can include instances with very
different features. Thus, relevant information can be lost
during the process. Likewise, performance depends on the
choice of the representative element of each subset, that is,
a bad choice can influence the final results.

• The authors of [51] analyze the curse of dimensionality
phenomenon, which states that in high-dimensional spaces the
distances between the data points become almost equal. The
objective is to investigate when the different methods proposed
reach their limits. To do this, they perform an experiment in
which different methods are compared with each other. In
particular, it is found that the kNN algorithm begins to worsen
the results when the space exceeds eight dimensions. A
proposed solution is to adapt the calculation of distances to
high-dimensional spaces. However, this approach does not
consider a transformation of the initial data to a lower-
dimensional space.

One of the most important aspects of this study is that it
demonstrates how dimensionality affects the kNN method.
However, the proposed solution consists of a modification in
the calculation of distances. In this way, the consequences of
high dimensionality can be alleviated, but solutions must be
found that make it possible to reduce the input space. The
fundamental reason is that the dimensionality will continue

to increase in the future and other methods, like AEkNN, can
be better adapted to the new data.

• The proposal in [52] is a kNN-based method called kMkNN,
whose objective is to improve the search of the nearest
neighbors in a high-dimensional space. This problem is
approached from another point of view, with the goal of
accelerating the computation of distances between elements
without modifying the input space. To do this, kMkNN relies
on k-means clustering and the triangular inequality. The study
shows a comparison with the original kNN algorithm where it
is demonstrated that kMkNN works better considering the
execution time, although it is not as effective when predictive
performance is taken into account.

The main problem with the kMkNN method is that it makes
a grouping of examples in different clusters. In this way, in
spaces of high dimensionality where distances are less
significant, instances with different characteristics can be
included in the same cluster. This implies a significant loss of
relevant information, which translates into worse predictive
results. However, the execution time is reduced when clusters
are used to classify. Despite the improvement in time, kMkNN
method is not a good option as predictive performance is
adversely affected.

• A new aspect related to the curse of dimensionality
phenomenon, occurring while working with the kNN
algorithm, is explored in [53]. It refers to the number of times
that a particular element appears as the closest neighbor of the
rest of elements. The main objective of the study is to examine
the origins of this phenomenon as well as how it can affect
dimensionality reduction methods. The authors analyze this
phenomenon and some of its effects on kNN classification,
providing a foundation which allows making different
proposals aimed to mitigate these effects.

The proposed solution is based on finding hubs, that is,
popular elements that effectively represent a set of close
neighbors. The fundamental problem of this approach is that it
does not consider all the input data, but uses a representative
for different instances. In this way, relevant information may be
removed from the process. Furthermore, the loss of useful
information can increase as the dimensionality increases, since
the distances between elements are less significant.

• In [15], the problem of finding the nearest neighbors in a
high-dimensional space is analyzed. This is a difficult problem
both from the point of view of performance and the quality of
results. In this study, a new search approach is proposed, where
the most relevant dimensions are selected according to certain
quality criteria. Thus, the different dimensions are not treated
in the same way. This can be seen as an extraction of
characteristics according to a particular criterion. Finally, an
algorithm based on the previous approach, which tackles the
problem of the nearest neighbor, is proposed.

The proposal made in this study is based on the selection of
the most relevant input features. This choice is made according
to different preestablished criteria, which implies discarding
some input features. Therefore, this process does not take into
account all the input characteristics. In certain cases, this fact
may not be relevant. However, in other cases, important
information may be lost when discarding input features. This

Pdf_Folio:5

440 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452



situation has greater effect in spaces of high dimensionality.
Therefore, proposals that generate new features by considering
all the input information could provide better results.

• A method called DNet-kNN is presented in [54]. It consists in a
nonlinear feature mapping based on Deep Neural Network,
aiming to improve classification by kNN. DNet-kNN relies on
RBMs to perform the mapping of characteristics. RBMs are
another type of DL network [55]. The study offers a solution to
the problem of high-dimensional data when using kNN by
combining this traditional classifier with DL-based techniques.
The experimentation carried out proves that DNet-kNN
improves the results of the classical kNN.

The main strength of this algorithm is the use of DL models
to carry out dimensionality reduction. In addition, DNet-kNN
combine DL model with kNN to improve predictive
performance. However, it is based on RBM and requires
pretraining the model to generate good results. This implies a
previous phase, separated from the proposed algorithm.
Another negative aspect is that the experimentation is only
based on two datasets (digits and letters) and does not include
datasets from other areas, such as medical.

In conclusion, different proposals have arisen to analyze and try to
address the problems of IBL algorithmswhen they have to deal with
high-dimensional data. These methods are affected by the curse
of dimensionality, which raises the need to find new approaches.
Among the previous proposals, there is none that presents a hybrid
method based on IBL that incorporates the reduction of dimen-
sionality intrinsically. In addition, there are not many proposals
that obtains improvements both in predictive performance as well
as in execution time. The present study is aimed to fulfilling these
aspects.

4. AEKNN: AN AUTOENCODER
KNN-BASED CLASSIFIER WITH BUILT-IN
DIMENSIONALITY REDUCTION

Once the main foundations behind our proposed algorithm have
been described, this section presents AEkNN. It is an instance-
based algorithm with a built-in dimensionality reduction method,
performed with DL techniques, in particular by means of AEs.

4.1. AEkNN Foundations

As mentioned, high dimensionality is an obstacle for most classifi-
cation algorithms. This problem is more noticeable while working
with distance-based methods, given that as the number of variables
increases these distances are less significant [6, 51]. In such situation
an IBLmethod could lose effectiveness, since the distances between
individuals are equated. As a consequence of this problem, different
methods which are able to reduce its effects have been proposed.
Some of them have been previously listed in Section 3.2.

AEkNN is a new approach in the same direction, introducing the
use of AEs to address the problem of high dimensionality. The
structure and performance of this type of neural networks makes it
suitable for this task. As explained above, AEs are trained to repro-
duce the input into the output, through a series of hidden layers.
Usually, the central layer in AEs has fewer units than the input and

output layers. Therefore, this bottleneck forces the network to learn
a more compact and higher-level representation of the informa-
tion. The coding produced by this central layer can be extracted
and used as the new set of features in the classification stage. In this
sense, there are different studies demonstrating that better results
are obtained with AEs than with traditional methods, such PCA or
multidimensional scaling [10, 41]. Also, there are studies analyzing
the use of AEs from different perspectives, either focusing on the
training of the network and its parameters [56] or on the relation-
ship between the data when building the model [35].

AEkNN is an instance-based algorithmdesigned to address classifi-
cation with a high number of variables. It starts working with anN-
dimensional space X that is projected into anM-dimensional space
Z, withM <N. This wayM new features, presumably of higher level
than the initial ones, are obtained. Once the new representation of
the input data is generated, it is possible to get more representative
distances. To estimate the output, the algorithm uses the distances
between each test example and the training ones but based on the
M higher-level features. Thus, the drawbacks of high-dimensional
data in distances computation can be significantly reduced. As can
be seen, AEkNN is a nonlazy instance-based algorithm. It starts
by generating the model in charge of producing the new features,
unlike the lazy methods that do not have a learning stage or model.
AEkNN allows enhancement of predictive performance, as well
as obtaining improvements in execution time, when working with
data which have a large number of features.

4.2. Method Description

AEkNN consists of two fundamental phases. Firstly, the learning
stage is carried out using the training data to generate the AEmodel
that enables production of a new encoding of the data. Secondly,
the classification step is performed. It uses the model generated
in the first phase to obtain the new representation of the test data
and, later, the class for each instance is estimated based on nearest
neighbors. Algorithm 2 shows the pseudocode of AEkNN, which is
discussed in detail below, while Figure 3 shows a general represen-
tation of the algorithm process.

Figure 3 Method description.
Pdf_Folio:6

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 441



The inputs to the algorithm are TrainData and TestData, the train
and test data to be processed, k, the number of neighbors, and PPL,
the percentage of elements per layer (PPL). This latter parameter
sets the structure of the AE, that is, the number of layers and ele-
ments per layer. It is a vector made of as many items as hidden lay-
ers are desired in the AE, each indicating the percentage of units in
that layer with respect to the number of input features. In Section 5,
different configurations are analyzed to find the one that offers the
best results.

The algorithm is divided into two parts. The first part of the code
(lines 2–9) corresponds to the training phase of AEkNN. The sec-
ond part (lines 11–12) refers to the classification phase. During
training AEkNN focuses on learning a new representation of the
data. This is done through an AE, using the training data to learn
the weights linking the AE’s units. This is a process that has to be
repeated for each layer in the AE, stated by the number of elements
in the PPL parameter. This loop performs several tasks:

• In line 5 the function getSizeLayer is used to obtain the number
of units in the layer. This value will depend on the number of
characteristics of the training set (TrainData) and the
percentage applied to the corresponding layer, which is
established by the PPL parameter.

• The function getAELayer (called in line 6 and defined in line
14) retrieves a layer of the AE model. The layer obtains a new
representation of the data given as first parameter (modelData).
The number of units in the AE layer generated in this iteration
will be given by the second parameter (sizeLayer). Firstly, the
AE is initialized with the corresponding structure (line 15).
The number of units in the hidden layer is given by the variable
computed in the previous step, and the weights are randomly
initialized. Secondly, for each training instance the following
steps take place:

Pdf_Folio:7

Algorithm 2 AEkNN algorithm’s pseudocode.
Inputs:

TrainData ▷ Train Data
TestData ▷ Test Data
PPL ▷ Percentage per layer
k ▷ Number of nearest neighbors

1: ▷ Training phase:
2: modelData ← TrainData
3: aeModel ← ()
4: for each layer in PPL do
5: sizeLayer ← getSizeLayer(modelData, layer)
6: aeLayer ← getAELayer(modelData, sizeLayer)
7: modelData ← applyAELayer(aeLayer, modelData)
8: aeModel ← addAEModel(aeModel, aeLayer)
9: end for
10: ▷ Classification phase:
11: result ← classification(TrainData, TestData, k, aeModel)
12: return result
13:
14: function GetAELayer(modelData, sizeLayer)
15: aeLayer ← initializeAE(modelData, sizeLayer)
16: for each instance in modelData do
17: output ← feedForwardAE(aeLayer, instance)
18: error ← calculateDeviation(instance, outPut)
19: aeLayer ← updateWeightsAE(aeLayer, error)
20: end for
21: return aeLayer
22: end function
23:
24: function CLASSIFICATION(TrainData, TestData, k, aeModel)
25: error ← 0
26: for each instance in TestData do
27: newCod ← feedForwardAE(aeModel, instance)
28: output ← distanceBased(newCod, k, TrainData)
29: if outPut ! = realOutPut(instance) then
30: error ← error + 1
31: end if
32: end for
33: result ← error / size(TestData)
34: return result
35: end function

1. The AE is used to obtain the output for the given instance
(line 17).

2. The deviation of the given output with respect to the
actual one is calculated (line 18).

3. The weights of the network are updated according to the
obtained error (line 19).

Finally, the generated AE layer is returned (line 21).

The function applyAELayer (line 7) obtains a new
representation of the data given as second parameter
(modelData). To do this, the previously generated AE layer,
represented by the first parameter (aeLayer), is used.

The last step consists in adding the AE layer generated in the
current iteration to the complete AE model (line 8).

During classification (lines 11–12) the function classification is used
(lines 24–35). The class for the test instances given as the first
parameter (TestData) is predicted. The process performed inter-
nally in this function is to transform each test instance using the AE
model generated in the training phase (aeModel), producing a new
instance, which is more compact and representative. (line 27). This
new set of features is used to predict a class with a classifier based
on distances, using for each new example its kNNs (line 28). Finally,
this function returns the error rate (result) for the total set of test
instances (line 33). As can be seen, classification is conducted in a
lower-dimensional space, mitigating the problems associated with
a high number of variables.

At this point, it should be clarified that the update of weights (lines
16–20) is carried out usingmini-batch gradient descent [57]. This is
a variation of the gradient descent algorithm that splits the training
dataset into small batches that are used to calculate the model error
and update the model coefficients. The reason for using this tech-
nique is its improved performance when dealing with large dataset.

From the previous description is can be inferred how AEkNN
accomplish the objective of addressing classification with high-
dimensional data. On the one hand, aiming to reduce the effects of
working with a large number of variables, AEs have been used to
transform such data into a lower-dimensional space. On the other
hand, the classification phase is founded on the advantages of IBL.

•

•

442 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452



4.3. AEkNN Contributions with Respect to
Previous Proposals

AEkNN presents significant differences with previous proposals
that tackled kNN while dealing with high-dimensional spaces. In
this section, the objective is to highlight the main contributions of
AEkNN with respect the proposals analyzed in Section 3.2:

• AEkNN is an IBL method that integrates dimensionality
reduction. For this reason, it does not need a preprocessing
phase where the size of the input space is reduced. This is an
improvement over classical kNN and the method presented in
[50], which requires a previous grouping of the data to select
the most representative patterns.

• AEkNN performs a fusion of features that implies the
generation of new features from the original input space. This
allows incorporation of the most relevant information of the
different characteristics. This implies advantages over the
proposal made in [15], where it selects a specific number of
original features, discarding the rest, as well as the information
that they can provide. Likewise, it is an advantage over the
proposals [50, 53] where the elements are grouped into subsets
and a representative element is selected.

• The parametrization of AEkNN allows to perform different
degrees of dimensionality reduction, according to the
characteristics of the problem and the needs of the user. This
implies being able to work with a dataset with a very large
dimensionality. In this sense, the authors of [51] propose a
modification on the calculation of distances. However, this
study does not verify its proposal with really large datasets,
where the effects of high dimensionality are very significant.

• AEkNN has been proposed to improve both the predictive
performance and the execution time of kNN with
high-dimensional data. However, the proposal made in [52]
focuses only on the improvement in time, while not effective
when analyzing the predictive performance.

• The development of AEkNN aims to provide a useful algorithm
for different types of datasets. Therefore, the experimentation
carried out in this study covers data of different nature.
Nevertheless, the proposal made in [54] is based on analyzing
only two dataset. In this way, the development of the model is
limited to focusing on the properties of specific data.

In this section, an analysis of the contributions of the AEkNN
method with respect to other previous proposals has been per-
formed. In order to justify the behavior of the method, extensive
experimentation has been designed. To do this, Section 5 analyzes
the performance of AEkNN.

5. EXPERIMENTAL STUDY

In order to demonstrate the improvements provided by AEkNN, an
experimental studywas conducted. It has been structured into three
steps, all of them using the same set of datasets:

• The objective of the first phase is to determine how the PPL
parameter in AEkNN influences the obtained results. For this

purpose, classification results for all considered configurations
are compared in Subsection 5.2. At the end, the value of the
PPL parameter that offers the best results is selected.

• The second phase aims to verify whether AEkNN with the
selected configuration improves the results provided by the
classic kNN algorithm. In Subsection 5.3, the results of both
algorithms are compared.

• The third phase of the experimentation aims to assess the
competitiveness of AEkNN against traditional dimensionality
reduction algorithms, in particular, PCA and LDA. In
Subsection 5.4, the results of the three algorithms are compared.

Subsection 5.1 describes the experimental framework and the fol-
lowing subsections present the results and their analysis.

5.1. Experimental Framework

The conducted experimentation aims to show the benefits of
AEkNN over a set of datasets with different characteristics. Their
traits are shown in Table 1. The datasets’ origin is shown in the col-
umn named Ref. For all executions, datasets are given as input to
the algorithms applying a 2 × 5 folds cross validation scheme.

Table 1 Characteristics of the datasets used in the experimentation.

58]
58]
59]
58]
58]
60]
58]
58]
61]
62]
63]
64]
58]
58]

In both phases of experimentation, the value of k for the classi-
fier kNN and for AEkNN will be 5, since it is the recommended
value in the related literature. In addition, to compare classification
results it was necessary to compute several evaluation measures. In
this experimentation, Accuracy (5), F-Score (6), and area under the
ROC curve (AUC) (9) were used.

Accuracy (5) is the proportion of true results among the total num-
ber of cases examined.

Accuracy = TP + TN
TP + TN + FP + FN (5)

whereTP stands for true positives, instances correctly identified. FP
is the false positives, instances incorrectly identified. TN represents
the true negatives, instances correctly rejected. FN corresponds to
false negatives, instances incorrectly rejected.Pdf_Folio:8

Number of
Dataset Samples Features Classes Type Ref

image 2310 19 7 Real [
drive 58509 48 11 Real [
coil2000 9822 85 2 Integer [
dota 102944 116 2 Real [
nomao 1970 118 2 Real [
batch 13910 128 6 Real [
musk 6598 168 2 Integer [
semeion 1593 256 10 Integer [
madelon 2000 500 2 Real [
hapt 10929 561 12 Real [
isolet 7797 617 26 Real [
mnist 70000 784 10 Integer [
microv1 360 1300 10 Real [
microv2 571 1300 20 Real [

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 443



F – Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

Precision = TP
TP + FP (7)

Recall = TP
TP + FN (8)

Finally, AUC is the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative
one. AUC is given by Equation 9:

AUC = ∫
–∞

∞
TPR (T) FPR (T) dT (9)

where TPR stands for the true positive rate and FPR is false positive
rate.

The significance of results obtained in this experimentation is ver-
ified by appropriate statistical tests. Two different tests are used in
the present study:

• In the first part, the Friedman test [65] is used to rank the
different AEkNN configurations and to establish if any
statistical differences exist between them.

• In the second part, the Wilcoxon [66] nonparametric sign rank
test is used. The objective is to verify if there are significant
differences between the results obtained by AEkNN and kNN.

These experiments were run in a cluster made up of 8 computers,
each with 2 CPUs (2.33 GHz) and 7 GB RAM. The AEkNN algo-
rithm and the experimentation was coded in R language [67], rely-
ing on the H2O package [68] for some DL-related functions. The
following is a list of the packages used to implement each part of the
algorithm:

• AE: The implementation of the AE has been carried out using
the resources provided by the H2O package. This allows the
use of functions to generate and train the AE model.

• kNN classifier: To perform the classification based on classical
kNN, kknn package of R has been used [69].

• R language: The kernel of the AEkNN method where the AE
model joins and the classification based on kNN has been
implemented using the R language. In this phase, the algorithm
has been developed to allow parametrization of the architecture.
Therefore, both the AE model training and the classification
performed with kNN depend on the parameters of the method.

5.2. PPL Parameter Analysis

AEkNN has a parameter, named PPL, that establishes the configu-
ration of the model. This parameter allows the selection of different
architectures, both in number of layers (depth) and number of neu-
rons per layer.

The datasets used (see Table 1) have disparate number of input fea-
tures, so the architectures will be defined according to this trait.
Table 2 shows the considered configurations. For each model the
number of hidden layers, as well as the number of neurons in each
layer, is shown. The latter is indicated as a percentage of the num-
ber of initial characteristics. Finally, the notation of the associated
PPL parameter is provided.

Table 2 Configurations used in the experimentation and PPL parameter.

Number of
Hidden Layers

Number of Neurons (%) PPL Parameter
Layer 1 Layer 2 Layer 3

AEkNN 1 1 25 — — (25)
AEkNN 2 1 50 — — (50)
AEkNN 3 1 75 — — (75)
AEkNN 4 3 150 25 150 (150, 25, 150)
AEkNN 5 3 150 50 150 (150, 50, 150)
AEkNN 6 3 150 75 150 (150, 75, 150)

PPL, percentage of elements per layer; kNN, k-nearest neighbor.

The results produced by the different configurations considered are
presented grouped by metric. Table 3 shows the results for Accu-
racy, Table 4 for F-Score, and Table 5 for AUC. These results are
also graphically represented. Aiming to optimize the visualization,
two plots with different scales have been produced for each metric.
Figure 4 represents the results for Accuracy, Figure 5 for F-Score,
and Figure 6 for AUC.

Table 3 Accuracy classification results for test data.

Dataset (0.25) (0.5) (0.75) (1.5, 0.25,
1.5)

(1.5, 0.5,
1.5)

(1.5, 0.75,
1.5)

image 0.930 0.945 0.952 0.925 0.938 0.956
drive 0.779 0.791 0.862 0.763 0.746 0.677
coil2000 0.929 0.900 0.898 0.928 0.897 0.897
dota 0.509 0.516 0.517 0.510 0.515 0.516
nomao 0.904 0.894 0.890 0.902 0.896 0.894
batch 0.995 0.995 0.995 0.996 0.996 0.996
musk 0.974 0.979 0.983 0.982 0.980 0.991
semeion 0.904 0.905 0.909 0.898 0.905 0.896
madelon 0.532 0.540 0.547 0.520 0.510 0.523
hapt 0.936 0.946 0.950 0.943 0.947 0.948
isolet 0.889 0.885 0.882 0.873 0.876 0.876
mnist 0.963 0.960 0.959 0.950 0.954 0.944
microv1 0.857 0.863 0.857 0.849 0.856 0.857
microv2 0.625 0.638 0.629 0.644 0.639 0.629

Bold values represent the best result in each case for different datasets and metrics.

The results presented in Table 3 and in Figure 4 show the Accu-
racy obtained for AEkNN with different PPL values. These results
indicate that there is no one configuration that works best for all
datasets. The configurations with 3 hidden layers obtain the best

Pdf_Folio:9

F-Score is the harmonic mean of Precision (7) and Recall (8), con-
sidering Precision as the proportions of positive results that are
true positive results and Recall as the proportion of positives that
are correctly identified as such. These measures are defined by the
Equations (6–8):

444 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452



Table 4 F-score classification results for test data.

Dataset (0.25) (0.5) (0.75) (1.5, 0.25,
1.5)

(1.5, 0.5,
1.5)

(1.5, 0.75,
1.5)

image 0.930 0.945 0.952 0.925 0.938 0.956
drive 0.782 0.796 0.863 0.772 0.746 0.683
coil2000 0.963 0.947 0.946 0.962 0.946 0.945
dota 0.481 0.487 0.486 0.481 0.488 0.485
nomao 0.905 0.897 0.893 0.904 0.898 0.897
batch 0.995 0.995 0.995 0.995 0.995 0.995
musk 0.984 0.988 0.990 0.989 0.988 0.995
semeion 0.905 0.906 0.910 0.899 0.905 0.896
madelon 0.549 0.542 0.567 0.531 0.501 0.529
hapt 0.818 0.829 0.842 0.833 0.839 0.837
isolet 0.890 0.887 0.883 0.875 0.878 0.878
mnist 0.963 0.960 0.959 0.950 0.954 0.944
microv1 0.868 0.872 0.867 0.861 0.867 0.868
microv2 0.619 0.636 0.625 0.641 0.643 0.628

Bold values represent the best result in each case for different datasets and metrics.

Table 5 Area under the ROC curve (AUC) classification results for test
data.

Dataset (0.25) (0.5) (0.75) (1.5, 0.25,
1.5)

(1.5, 0.5,
1.5)

(1.5, 0.75,
1.5)

image 0.932 0.943 0.951 0.923 0.936 0.956
drive 0.881 0.889 0.922 0.875 0.850 0.826
coil2000 0.526 0.543 0.541 0.526 0.538 0.539
dota 0.508 0.514 0.515 0.508 0.514 0.514
nomao 0.903 0.894 0.890 0.901 0.895 0.893
batch 0.997 0.997 0.997 0.997 0.997 0.997
musk 0.950 0.958 0.966 0.967 0.962 0.983
semeion 0.927 0.927 0.928 0.923 0.923 0.922
madelon 0.532 0.540 0.547 0.520 0.513 0.523
hapt 0.888 0.898 0.917 0.900 0.916 0.915
isolet 0.948 0.946 0.942 0.938 0.941 0.940
mnist 0.974 0.972 0.975 0.965 0.968 0.958
microv1 0.928 0.934 0.931 0.932 0.927 0.927
microv2 0.891 0.897 0.887 0.897 0.890 0.885

Bold values represent the best result in each case for different datasets and metrics.

0.85

0.90

0.95

1.00

batch coil2000 HAPT Image isolet MicroV1 MNIST musk nomao semeion
Dataset

A
cc

ur
ac

y

0.5

0.6

0.7

0.8

dota drive madelon MicroV2

A
ccuracy

AE configuration
0.25

0.5

0.75

1.5_0.25_1.5

1.5_0.5_1.5

1.5_0.75_1.5

Figure 4 Accuracy classification results for test data.

results in 4 out of 14 datasets, whereas the configurationswith 1 hid-
den layer win in 10 out of 14 datasets. This trend can also be seen
in the graphs.

Table 4 and Figure 5 show the F-Score obtained byAEkNNwith dif-
ferent PPL values. The values indicate that the configurations with
one single hidden layer obtain better results in 11 out of 14 datasets.
The configuration with PPL = (0.25) and with PPL = (0.75) are the
ones winning more times (5). The version with PPL = (0.25) shows

Figure 5 F-score classification results for test data.

Figure 6 Area under the ROC curve (AUC) classification
results for test data.

disparate results, the best values for some cases and bad results for
other cases, for example, with hapt, image, ormicrov2. Although the
version with PPL = (0.75) wins the same number of times, its results
are more balanced.

In Table 5 the results for AUC obtained with AEkNN can be seen.
Figure 6 represents those results. For this metric, it can be appreci-
ated that single hidden layer structures work better, obtaining top
results in 12 out of 14 datasets. However, a configuration that works
best for all cases has not been found.

Summarizing, the results presented above show the metrics
obtained for AEkNN with different PPL values. These results show
some variability. The PPL value that obtains the best performance
cannot be determined exactly, since for each dataset there is a set-
ting that works best. However, some initial trends can be drawn:

• Single-layer configuration: Better results than configurations
with three hidden layers. For Accuracy and F-Score 71% of the
best results are with 1 hidden layer, and for AUC this rises to
85%.

• Configurations with PPL = (0.75): For AUC 50% of the best
results are with this configuration. Their values are close to the
best in most cases.

• Configurations with PPL = (0.5): 29% of the best results are
obtained with this parametrization if AUC is considered. In
general, results are good in many cases.

• Other configurations: Some good results but at other times
they are far from the best values.

Once the results have been obtained, it is necessary to determine
if there are statistically significant differences for each one of them
in order to select the best configuration. To do this, the Friedman
test [65] will be applied. Average ranks obtained by applying the
Friedman test for Accuracy, F-Score, and AUC measures are shown
in Table 6. In addition, Table 7 shows the different p-values obtained
by the Friedman test.Pdf_Folio:10

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 445



Table 6 Average rankings of the different PPL values by measure.

Accuracy F-Score AUC
PPL Ranking PPL Ranking PPL Ranking

(0.75) 2.679 (0.5) 2.923 (0.75) 2.357
(0.5) 2.857 (0.75) 3.000 (0.5) 2.786
(0.25) 3.714 (0.25) 3.429 (1.5, 0.25, 1.5) 3.786
(1.5, 0.75, 1.5) 3.821 (1.5, 0.5, 1.5) 3.500 (0.25) 3.857
(1.5, 0.5, 1.5) 3.892 (1.5, 0.25, 1.5) 4.071 (1.5, 0.5, 1.5) 4.000
(1.5, 0.25, 1.5) 4.036 (1.5, 0.75, 1.5) 4.071 (1.5, 0.75, 1.5) 4.214

PPl, percentage of elements per layer; AUC, area under the ROC curve.

Table 7 Results of Friedman’s test (p-values).

Accuracy F-Score AUC

0.236 0.423 0.049

AUC, area under the ROC curve.

As can be observed in Table 7, for AUC (which is considered a
stronger performance metric) there are statistically significant dif-
ferences between the considered PPL values if we set the p-value
threshold to the usual range [0.05, 0.1]. However, for Accuracy and
F-Score there are no statistically significant differences. In addition,
in the rankings obtained, it can be seen that there are two specific
configurations that offer better results than the remaining ones. In
the three rankings presented, the results with PPL = (0.75) and PPL
= (0.5) appear first, clearly highlighted with respect to the other val-
ues. Therefore, it is considered that these two configurations are the
best ones. Thus, the results of AEkNNwith both configurations will
be compared against the kNN algorithm.

5.3. AEkNN versus kNN

This second part is focused on determining whether the results
obtained with the proposed algorithm, AEkNN, improve those
obtained with the kNN algorithm. To do so, a comparison will be
made between the results obtainedwithAEkNN, using the values of
the PPL parameter selected in the previous section, and the results
obtained with kNN algorithm on the same datasets.

First, Table 8 shows the results for each one of the datasets and
considered measures, including running time. The results for both
algorithms are presented jointly, and the best ones are highlighted
in bold. Two plots have been generated for each metric, aiming to
optimize data visualization, as in the previous phase, since the range
of results was very broad. Figure 7 represents the results for Accu-
racy, Figure 8 for F-Score, Figure 9 for AUC, and Figure 10 for
runtime.

The results shown inTable 8 indicate that AEkNNworks better than
kNN for most datasets considering Accuracy. On the one hand, the
version of AEkNN with PPL = (0.75) improves kNN in 11 out of 14
cases, obtaining the best overall results in 6 of them. On the other
hand, the version of AEkNN with PPL = (0.5) obtains better results
than kNN in 11 out of 14 cases, and is the best configuration in
6 of them. In addition, kNN only obtains one best result. Figure 7
confirms this trend. It can be observed that the right bars, where
AEkNN results are represented, are higher in most datasets.

0.80

0.85

0.90

0.95

1.00

batch coil2000 HAPT Image isolet MicroV1 MNIST musk nomao semeion
Dataset

A
cc

ur
ac

y

0.5

0.6

0.7

0.8

dota drive madelon MicroV2

A
ccuracy

AE configuration kNN AEkNN PPL=0.75 AEkNN PPL=0.5

Figure 7 Accuracy results for test data.

Figure 8 F-score results for test data.

Figure 9 Area under the ROC curve (AUC) results for test data.

Figure 10 Time results for test data.

Analyzing the data corresponding to the metric F-Score, presented
in Table 8, it can be observed that AEkNN produces an overall
improvement over kNN. The AEkNN version with PPL = (0.75)
improves kNN in 11 out of 14 cases, obtaining the best overall
results in 5 of them. The version of AEkNNwith PPL= (0.5) obtains
better results than kNN in 10 out of 14 cases, and is the best con-
figuration in 7 of them. kNN does not obtain any best result. How
the results of the versions corresponding to AEkNNproduce higher
values than those corresponding to kNN can be seen in Figure 8.

The data related to AUC, presented in Table 8, also show that
AEkNN works better than kNN. In this case, the two versions of
AEkNN improve kNN in 11 out of 14 cases each one, obtaining
the best results in 13 out of 14 cases. Figure 9 shows that the trend
is increasing towards the versions of the new algorithm. kNN only
obtains one best result, specifically with the coil2000 dataset, whichPdf_Folio:11

446 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452



may be due to the low number of features in this dataset. Nonethe-
less, AEkNN performs better than kNN in the rest of metrics for
coil2000 dataset.

The running times for both algorithms are presented in Table 8 and
Figure 10. As can be seen, the configuration that takes less time
to classify is the one corresponding to AEkNN with PPL = (0.5),
obtaining the lowest value for all datasets. This is due to the higher
compression of the data achieved by this configuration. In the same
way, AEkNN with PPL = (0.75) obtains better results than the algo-
rithm kNN in all cases.

Summarizing, the following conclusions can be drawn from the pre-
vious analysis:

• Accuracy: 93% of the best results are obtained with AEkNN.
Both AEkNN configurations considered behave in a similar
way. kNN only improves in one case.

• F-Score: AEkNN obtains the best results in 100% of the cases.
The configurations used have a similar performance. kNN ties
with AEkNN in three cases.

• AUC: The best results are obtained with AEkNN in 93% of the
datasets. The configuration with PPL = (0.75) stands out,
achieving the best results in 64% of cases. kNN improves in one
case.

• Time: Both AEkNN configurations improve kNN in 100% of
cases. AEkNN with PPL = (0.5) obtains the best results in all
cases.

To sum up, AEkNN performs a transformation of the input space
to reduce dimensionality. In spite of this, the quality of the results
in terms of classification performance are better than those of kNN
in most cases. In addition, in terms of classification time, it can be
noted how AEkNN, with higher compression of information, sig-
nificantly reduces the time spent on classification, without having a
negative impact on the other measures.

To determine if there are statistically significant differences between
the obtained results, the proper statistical test has been conducted.
For this purpose, the Wilcoxon test will be performed, comparing
each version ofAEkNNagainst the results of the classical kNNalgo-
rithm. In Table 9, the results obtained forWilcoxon tests are shown.

Table 9 Result of Wilcoxon’s test (p-values) comparing kNN versus
AEkNN.

Accuracy F-Score AUC Time

AEkNN with PPL = (0.75) 0.0017 0.0003 0.0085 0.0002
AEkNN with PPL = (0.5) 0.0023 0.0245 0.0107 0.0001
kNN, k-nearest neighbor; AUC, area under the ROC curve, PPL, percentage of elements
per layer.

As can be seen the p-values are rather low, so statistically signifi-
cant differences between the two AEkNN versions and the original
kNN algorithm in all considered measures exist can be concluded,
considering the p-value threshold within the usual [0.05, 0.1] range.
On the one hand, taking into account Accuracy, F-Score, and AUC,
the configuration with best results is that with 75% of feature reduc-
tion. Therefore, this is the optimal solution from the point of view
of predictive performance. The reason for this might be that there
is less compression of the data, therefore, there is less loss of infor-
mation compared to the other considered configuration (50%). On
the other hand, considering running time, the configuration with
best results is that with 50% of feature reduction. It is not surprising
that having fewer features allows to compute distances in less time.

5.4. AEkNN vs PCA/LDA

The objective of this third part is to assess the competitiveness of
AEkNN against traditional dimensionality reduction algorithms.
Specifically, the algorithms used will be PCA [42] and LDA [70],
since they are traditional algorithms that offer good results in this

Bold values represent the best result in each case for different datasets and metrics.
Pdf_Folio:12

Table 8 Classification results of AEkNN (with different PPL) and kNN algorithm for test data.

Accuracy F-Score AUC Time (Seconds)
kNN AEkNN kNN AEkNN kNN AEkNN kNN AEkNN

Dataset (0.75) (0.5) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5)

image 0.937 0.952 0.945 0.937 0.952 0.945 0.934 0.951 0.943 0.074 0.073 0.052
drive 0.691 0.862 0.791 0.615 0.863 0.796 0.700 0.922 0.889 139.623 36.977 20.479
coil2000 0.897 0.898 0.900 0.945 0.946 0.947 0.547 0.541 0.543 3.753 3.262 1.886
dota 0.507 0.517 0.516 0.479 0.486 0.487 0.416 0.515 0.514 772.219 578.437 370.599
nomao 0.891 0.890 0.894 0.892 0.893 0.897 0.891 0.890 0.894 0.582 0.252 0.200
batch 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.997 0.997 7.433 4.829 2.459
musk 0.956 0.983 0.979 0.974 0.990 0.988 0.934 0.966 0.958 5.317 3.613 2.144
semeion 0.908 0.909 0.905 0.910 0.910 0.906 0.927 0.928 0.927 0.865 0.601 0.381
madelon 0.531 0.547 0.540 0.549 0.567 0.542 0.532 0.547 0.540 3.267 3.150 2.109
hapt 0.951 0.950 0.946 0.842 0.842 0.829 0.903 0.917 0.898 41.673 30.625 16.365
isolet 0.872 0.882 0.885 0.874 0.883 0.887 0.943 0.942 0.946 27.563 24.748 19.538
mnist 0.947 0.959 0.960 0.946 0.959 0.960 0.965 0.975 0.972 1720.547 1213.168 904.223
microv1 0.800 0.857 0.863 0.806 0.867 0.872 0.890 0.931 0.934 1.776 0.977 0.709
microv2 0.607 0.629 0.638 0.603 0.625 0.636 0.873 0.887 0.897 1.542 1.425 0.933

PPL, percentage of elements per layer; kNN, k-nearest neighbors; AUC, area under the ROC curve.
Pdf_Folio:12

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 447



task [71]. To do so, a comparison will be made between the results
obtained with AEkNN, using the values of the PPL parameter
selected in Section 5.3, and the results obtained with PCA and LDA
algorithmon the samedatasets. It is important to note that the num-
ber of features selected with these methods will be the same as with
the AEkNN algorithm, so there are two executions for each algo-
rithm.

First, Table 10 shows the results for each one of the datasets and
considered measures. The results for the three algorithms are pre-
sented jointly, and the best ones are highlighted in bold. One plot
have been generated for each metric aiming to optimize data visu-
alization. In this case, the graphs represent the best value of the
two configurations for each algorithm in order to better visualize
the differences between the threemethods. Figure 11 represents the
results for Accuracy, Figure 12 for F-Score, and Figure 13 for AUC.

0.25

0.50

0.75

1.00

batch coil2000 dota drive HAPT Image isolet madelon MicroV1 MicroV2 MNIST2 musk nomao semeion
Dataset

A
cc

ur
ac

y

Algorithm AEkNN PCA LDA

Figure 11 Accuracy results for test data.

Analyzing the data corresponding to the metric F-Score, presented
in Table 10, it can be observed that AEkNN produces an overall
improvement over PCA and LDA. The AEkNN version with PPL
= (0.75) improves PCA in 12 out of 14 cases and LDA in 10 out of
14 cases, obtaining the best overall results in 6 of them. The version
of AEkNN with PPL = (0.5) obtains better results than PCA in all
cases and LDA in 8 out of 14 cases, and is the best configuration in
4 of them. PCA does not obtain any best result and LDA obtains the
best result in 4 cases. How the results of the versions corresponding
to AEkNN show values higher than those corresponding to kNN
can be seen in Figure 12.

The data related to AUC, presented in Table 10, also show that
AEkNNworks better than PCAandLDA. TheAEkNNversionwith
PPL = (0.75) improves PCA in 13 out of 14 cases and LDA in 10 out
of 14 cases, obtaining the best overall results in 7 of them. The ver-
sion of AEkNN with PPL = (0.5) obtains better results than PCA in
13 out of 14 cases and LDA in 8 out of 14 cases, and is the best con-
figuration in 4 of them. LDA only obtains the best result in 4 cases.
Figure 13 confirms this trend.

Summarizing, these results show some trends that are listed below:

• Accuracy: 71% of the best results are obtained by AEkNN. LDA
improves AEkNN in 29% of the cases. AEkNN is always close
to the best result. PCA does not surpass AEkNN in any case.

• F-Score: AEkNN obtains the best results in 79% of the cases.
LDA generates better performance in 21% of the cases. AEkNN
always improves PCA.

• AUC: The best results are obtained by AEkNN in 71% of the
datasets. LDA achieves the best results in 29% of cases. PCA
does not improve in any dataset.

The quality of the results withAEkNN in terms of classification per-
formance are better than those of PCA and LDA inmost cases. This
means that the high-level features obtained by the AEkNN algo-
rithm provides more relevant information than those obtained by
the PCA and LDA algorithms.

Previously, the data obtained in the experimentation have been pre-
sented and a comparison between them is made. However, it is nec-
essary to verify whether there are significant differences between
the data corresponding to the different algorithms. To do so, the
Friedman test [65] will be applied. Average ranks obtained by apply-
ing the Friedman test for Accuracy, F-Score, and AUCmeasures are
shown in Table 11. In addition, Table 12 shows the different p-values
obtained by the Friedman test.

As can be observed in Table 12, for Accuracy, F-Score, and AUC
there are statistically significant differences between the different
PPL values if we set the p-value threshold to the usual range [0.05,
0.1]. It can be seen that AEkNN with PPL = (0.75) offer better
results than the remaining ones. In the three rankings presented, the
AEkNN configurations with PPL = (0.75) and PPL = (0.5) appear
first, clearly highlighted with respect to the other values. Therefore,
it is considered that AEkNN obtains better predictive performance,
since the reduction of dimensionality generates more significant
features.

Figure 12 F-score results for test data.

Figure 13 Area under the ROC curve (AUC) results for test
data.

The results shown in Table 10 indicate that AEkNN works better
than PCA and LDA formost datasets considering Accuracy. On the
one hand, the version of AEkNN with PPL = (0.75) improves PCA
in 12 out of 14 cases and LDA in 9 out of 14 cases, obtaining the
best overall results in 7 of them. On the other hand, the version of
AEkNN with PPL = (0.5) obtains better results than PCA in 13 out
of 14 cases and LDA in 8 out of 14 cases, and is the best configura-
tion in 4 of them. In addition, LDA only obtains the best result in 4
cases. Figure 11 confirms this trend. It can be observed that the bars,
where AEkNN results are represented, are higher in most datasets.

448 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452



Table 10 Accuracy, F-Sscore, and AUC classification results of AEkNN (with different PPL), LDA, and PCA for test data.

Dataset (0.75) (0.5) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5)
image 0.952 0.945 0.563 0.862 0.676 0.866 0.952 0.945 0.580 0.867 0.672 0.866 0.951 0.943 0.734 0.893 0.780 0.862
drive 0.862 0.791 0.091 0.092 0.091 0.091 0.863 0.796 0.023 0.030 0.015 0.015 0.922 0.889 0.500 0.491 0.500 0.500
coil2000 0.898 0.900 0.825 0.899 0.895 0.895 0.946 0.947 0.861 0.946 0.944 0.944 0.541 0.543 0.523 0.532 0.545 0.549
dota 0.517 0.516 0.514 0.517 0.519 0.520 0.486 0.487 0.486 0.486 0.489 0.493 0.515 0.514 0.513 0.515 0.517 0.519
nomao 0.890 0.894 0.798 0.869 0.818 0.889 0.893 0.897 0.821 0.871 0.851 0.891 0.890 0.894 0.797 0.869 0.817 0.889
batch 0.995 0.995 0.195 0.206 0.189 0.152 0.995 0.995 0.176 0.190 0.053 0.044 0.997 0.997 0.502 0.510 0.500 0.500
musk 0.983 0.979 0.942 0.931 0.982 0.982 0.990 0.988 0.962 0.945 0.989 0.989 0.966 0.958 0.912 0.930 0.965 0.965
semeion 0.909 0.905 0.598 0.706 0.907 0.890 0.910 0.906 0.624 0.718 0.906 0.893 0.928 0.927 0.732 0.792 0.926 0.913
madelon 0.547 0.540 0.506 0.511 0.501 0.512 0.567 0.542 0.519 0.503 0.503 0.491 0.547 0.540 0.523 0.510 0.505 0.505
hapt 0.950 0.946 0.179 0.443 0.959 0.960 0.842 0.829 0.180 0.478 0.841 0.841 0.917 0.898 0.553 0.690 0.903 0.899
isolet 0.882 0.885 0.424 0.590 0.886 0.902 0.883 0.887 0.504 0.638 0.888 0.903 0.942 0.946 0.660 0.748 0.951 0.957
mnist 0.959 0.960 0.740 0.640 0.949 0.943 0.959 0.960 0.704 0.704 0.949 0.943 0.975 0.972 0.828 0.798 0.966 0.954
microv1 0.857 0.863 0.135 0.135 0.818 0.861 0.867 0.872 0.116 0.116 0.823 0.871 0.931 0.934 0.532 0.532 0.898 0.929
microv2 0.629 0.638 0.058 0.082 0.649 0.690 0.625 0.636 0.005 0.037 0.644 0.695 0.887 0.897 0.500 0.537 0.891 0.916

kNN, k-nearest neighbor; AUC, area under the ROC curve, PPL, percentage of elements per layer; LDA, linear discriminant analysis; PCA, principal components analysis.

Bold values represent the best result in each case for different datasets and metrics.

Table 11 Average rankings of the different dimensionality reduction algorithms by measure.

Accuracy F-Score AUC
Algorithm Ranking Algorithm Ranking Algorithm Ranking

AEkNN PPL = 0.75 2.286 AEkNN PPL = 0.75 2.143 AEkNN PPL = 0.75 1.929
AEkNN PPL = 0.5 2.357 AEkNN PPL = 0.5 2.214 AEkNN PPL = 0.5 2.500
LDA PPL = 0.5 3.000 LDA PPL = 0.75 3.429 LDA PPL = 0.5 2.929
LDA PPL = 0.75 3.571 LDA PPL = 0.5 3.429 LDA PPL = 0.75 3.500
PCA PPL = 0.5 4.321 PCA PPL = 0.5 4.429 PCA PPL = 0.5 4.679
PCA PPL = 0.75 5.464 PCA PPL = 0.75 5.357 PCA PPL = 0.75 5.464

kNN, k-nearest neighbor; AUC, area under the ROC curve, PPL, percentage of elements per layer; LDA, linear discriminant analysis; PCA, principal components analysis.

Table 12 Results of Friedman’s test (p-values).

Accuracy F-Score AUC

1.266e-05 7.832e-06 7.913e-07

AUC, area under the ROC curve.

5.5. General Guidelines on the Use of
AEkNN

AEkNN could be considered as a robust algorithm on the basis of
the previous analysis. The experimental study demonstrates that
it has good performance with the two PPL considered values.
From the conducted experimentation some guidelines can also be
extracted:

• When working with very high-dimensional datasets, it is
recommended to use AEkNN with the PPL = (0.5)
configuration. In this study, this configuration has obtained the
best results for datasets containing more than 600 features. The
reason is that the input data has a larger number of features and
allows a greater reduction without losing relevant information.
Therefore, AEkNN can compress more in these cases.

• When using binary datasets with a lower dimensionality, the
AEkNN algorithm with the PPL = (0.5) configuration continues

to be the best choice. In our experience, this configuration has
shown to work better for binary datasets with a number of
features around 100. In these cases, the compression may be
higher since it is easier to discriminate by class.

• For all other datasets, the choice of configuration for AEkNN
depends on the indicator to be enhanced. On the one hand, if
the goal is to achieve the best possible predictive performance,
the configuration with PPL = (0.75) must be chosen. In these
cases, AEkNN needs to generate more features. On the other
hand, when the interest is to optimize the running time, while
maintaining improvements in predictive performance with
respect to kNN, the configuration with PPL = (0.5) is the best
selection. The reason is in the higher compression of the data.
AEkNN needs less time to classify lower-dimensional data.

Summarizing, the configuration of AEkNN must be adapted to the
data traits to obtain optimal results. For this, a series of tips have
been established.

Pdf_Folio:14

Accuracy F-Score AUC
AEkNN PCA LDA AEkNN PCA LDA AEkNN PCA LDA

5.6. AEkNN Application to Real Cases

The main objective of this section is to present the results of apply-
ing AEkNN to real cases. To do this, two datasets with a large num-
ber of features have been used:

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 449



Table 13 AEkNN versus kNN results in real cases and %percent improvement.

Accuracy F-Score AUC Time (Seconds)
kNN AEkNN % kNN AEkNN % kNN AEkNN % kNN AEkNN %

arcene 0.682 0.714 4.692 0.679 0.712 4.861 0.689 0.722 4.789 34.582 11.834 65.779
gisette 0.823 0.841 2.187 0.824 0.844 2.427 0.823 0.849 3.159 256.231 119.723 53.275

AUC, area under the ROC curve; kNN, k-nearest neighbor.

• Arcene: This dataset belongs to the medical field. The objective
is to derive patterns corresponding to patients with cancer. The
dataset have 10000 features and 900 instances [61].

• Gisette: It is an image recognition dataset. It consists in
separating the digits 4 and 9. This set contains 5,000
characteristics and 13500 examples [61].

Following the recommendations established in the Section 5.5, the
configuration of AEkNN used is with PPL = (0.5), since both are
datasets with a very high dimensionality. Next, the results obtained
with AEkNN and kNN are shown for both datasets.

Table 13 shows the behavior of AEkNN when applying it to real
cases. In both datasets the results obtained with AEkNNobtain bet-
ter performance than those obtained with the classic kNN algo-
rithm. For Arcene, the improvement of AEkNN with respect to
kNN in the three metrics considered is higher than 4% and for
Gisette it is higher than 2%. In terms of execution time, the reduc-
tion obtained is very significant in excess of 50% in both cases.

In summary, the analysis of the application of AEkNN to real cases
shows the improvements obtained with the method proposed in
this work. Additionally, it provides the reader with an application
example for other similar problems.

6. CONCLUDING REMARKS

In this paper, a new classification algorithm calledAEkNNhas been
proposed. This algorithm is based on kNN but aims to mitigate
the problem that arises when working with high-dimensional data.
To do so, AEkNN internally incorporates a model-building phase
aimed at achieving a reduction of the feature space, using AEs for
this purpose. The main reason that has led to the design of AEkNN
are the good results that have been obtained by AEs when they are
used to generate higher-level features. AEkNN relies on an AE to
extract a reduced representation of a higher level that replaces the
original data.

In order to determine if the proposed algorithm has better behav-
ior than the kNN algorithm, an experimentation process has been
followed. Firstly, the analysis of different AE architectures have
allowed to determine which structure works better. In this sense,
single-layer configurations obtain the best performance in more
than 71% of the datasets considering the different metrics.

Furthermore, in the second part of the conducted experimentation,
AEkNNwith the best configurations have been comparedwith clas-
sical kNN. As has been stated, the results of AEkNN improve those
obtained by kNN in all metrics. Specifically, AEkNN obtains the
best performance in more than 93% for all metrics. In addition,
AEkNN offers a considerable improvement with respect to the time

invested in the classification. In this sense, AEkNN works better
than kNN in 100% of the datasets.

In addition, a comparison has been made with other traditional
methods applied to this problem, in order to verify that the AEkNN
algorithm improves behavior when carrying out the dimensional-
ity reduction task. For this, AEkNN has been compared with LDA
and PCA. The results show that the proposed AEkNN algorithm
improves performance in classification formost of the dataset used.
In more detail, AEkNN always improves PCA and exceeds at least
71% of the dataset to LDA, according to the considered metrics.
This occurs because the features generated with the proposed algo-
rithm are more significant and provide more relevant information
to the classification using distance-based algorithms.

Finally, AEkNN has been applied to solve real problems. Given two
datasets corresponding to different fields, AEkNN has been applied
following the guidelines set out in the article. This analysis shows
clear improvements in terms of predictive performance and execu-
tion time with respect to the classic kNN algorithm. It is important
to highlight that all the conclusions reached throughout the experi-
mentation have been confirmed by statistical tests where significant
differences are obtained.

In conclusion, AEkNN is able to reduce the adverse effects of high-
dimensional data while performing instance-based classification,
improving both running time and classification performance. This
paper shows that the use of AEs can be helpful to solve this kind of
obstacle, opening up new possibilities of future work in which they
are applied to help solve similar problems presented by other tradi-
tional models.

ACKNOWLEDGMENT

The work of F. Pulgar was supported by the Spanish Ministry of Education
under the FPU National Program (Ref. FPU16/00324). This work was par-
tially supported by the Spanish Ministry of Science and Technology under
project TIN2015-68454-R.

REFERENCES

[1] R.O. Duda, P.E. Hart, D.G Stork, Pattern Classification, Wiley,
New York, 1973.

[2] D.W. Aha, D.Kibler, M.K. Albert, Instance-based learning algo-
rithms, Mach. Learn. 6(1) (1991), 37–66.

[3] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE
Trans. Inf. Theory. 13(1) (1967), 21–27.

[4] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is
“Nearest Neighbor” meaningful? in International Conference on
Database Theory, 7th International Conference, Jerusalem, Israel,
1999, pp. 217–235.

Pdf_Folio:15

450 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452

http://dx.doi.org/10.1007/bf00153759
http://dx.doi.org/10.1007/bf00153759
http://dx.doi.org/10.1109/tit.1967.1053964
http://dx.doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1007/3-540-49257-7_15


[5] R. Bellman, Dynamic Programming, Princeton University Press,
New York, 1957.

[6] G.F. Hughes, On the mean accuracy of statistical pattern recog-
nizers, IEEE Trans. Inf. Theory. 14(1) (1968), 55–63.

[7] L. Deng, Deep learning: methods and applications, Foundations
Trends Signal Process. 7(3–4) (2014), 197–387.

[8] Y. Bengio, Deep learning of representations: looking forward, in
International Conference on Statistical Language and Speech Pro-
cessing, 2013, pp. 1–37.

[9] D. Charte, F. Charte, S. García, M.J. del Jesus, F. Herrera, A prac-
tical tutorial on autoencoders for nonlinear feature fusion: tax-
onomy, models, software and guidelines, Inf. Fusion. 44 (2018),
78–96.

[10] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of
data with neural networks, Science. 313(5786) (2006), 504–507.

[11] S. Mabu, K. Kobayashi, M. Obayashi, T. Kuremoto, Unsupervised
image classification using multi-autoencoder and k-means++, J.
Robot. Netw. Artif. Life. 5 (2018), 75.

[12] S.B. Kotsiantis, Supervised machine learning: a review of classifi-
cation techniques, Informatica. 31 (2007), 249–268.

[13] C.G. Atkeson, A.W. Moorey, S. Schaalz, A.W. Moore, S. Schaal,
Locally weighted learning, Artif. Intell. 11 (1997), 11–73.

[14] B.V. Dasarathy, Nearest Neighbor Norms: NN Pattern Classifica-
tionTechniques, IEEEComputer Society Press, LosAlamitos, CA,
1991.

[15] A. Hinneburg, C.C. Aggarwal, D.A. Keim, What is the nearest
neighbor in high dimensional spaces?, in Proceedings of the Inter-
national Conference onVery LargeDatabases, Cairo, Egypt, 2000,
p. 506–515.

[16] J. Maillo, J. Luengo, S. García, F. Herrera, I. Triguero, Exact fuzzy
k-nearest neighbor classification for big datasets, in IEEE Inter-
national Conference on Fuzzy Systems, IEEE, Naples, Italy. 2017,
p. 1–6.

[17] Z. Deng, X. Zhu, D. Cheng, M. Zong, S. Zhang, Efficient knn clas-
sification algorithm for big data, Neurocomputing. 195 (2016),
143–148.

[18] Y. Bengio, A. Courville, P. Vincent, Representation learning: a
review and new perspectives, Pattern Anal. Mach. Intell. IEEE
Trans. 35(8) (2013), 1798–1828.

[19] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT
Press, Cambridge, MA. 2016.

[20] Y. Bengio, Learning deep architectures forAI, Foundations Trends
Mach. Learn. 2(1) (2009), 1–127.

[21] P. Li, J. Xie, Z. Li, T. Liu, W. Yan, Facial peculiarity retrieval
via deep neural networks fusion, Int. J. Comput. Intell. Syst. 11
(2018), 58.

[22] J. Liu, Y. An, R. Dou, H. Ji, Dynamic deep learning algorithm
based on incremental compensation for fault diagnosis model,
Int. J. Comput. Intell. Syst. 11(1) (2018), 846–860.

[23] L. Guan, Y. Wu, J. Zhao, Scan: semantic context aware network
for accurate small object detection, Int. J. Comput. Intell. Syst. 11
(2018), 936.

[24] S. Tabik, D. Peralta, A. Herrera-Poyatos, F. Herrera, A snapshot
of image pre-processing for convolutional neural networks: case
study of mnist, Int. J. Comput. Intell. Syst. 10 (2017), 555–568.

[25] Y. Zhang, X. Cui, Y. Liu, B. Yu, Tire defects classification using
convolution architecture for fast feature embedding, Int. J. Com-
put. Intell. Syst. 11 (2018), 1056.

[26] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural
Comput. 9(8) (1997, Nov.), 1735–1780.

[27] H. Sak, A. Senior, F. Beaufays, Long short-termmemory recurrent
neural network architectures for large scale acoustic modeling,
in Proceedings of the Annual Conference of the International
Speech Communication Association, 2014, Sept., Singapore, pp.
338–342.

[28] J. Chung, C. Gülçehre, K. Cho, Y. Bengio, Gated feedback recur-
rent neural networks, in Proceedings of the International Con-
ference on Machine Learning, Lille, France, 2015, p. 2067–2075.
http://dl.acm.org/citation.cfm?id=3045118.3045338.

[29] G. Hinton, R. Salakhutdinov, A better way to pretrain
deep Boltzmann machines, in Advances in Neural Infor-
mation Processing Systems, 2012, vol. 3, pp. 2447–2455.
http://papers.nips.cc/paper/4610-a-better-way-to-pretrain-deep-
boltzmann-machines.pdf.

[30] L. Deng, D. Yu, Deep convex net: a scalable architecture for speech
pattern classification, in Proceedings of the Annual Conference of
the International Speech Communication Association, Florence,
Italy, 2011, pp. 2285–2288.

[31] Y. Lin, T. Zhang, S. Zhu, K. Yu, Deep coding network, in Advances
in Neural Information Processing Systems, Vancouver, Canada,
2010, pp. 1405–1413. http://papers.nips.cc/paper/3929-deep-
coding-network.pdf.

[32] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. Grue Simonsen,
J.-Y. Nie, A hierarchical recurrent encoder-decoder for generative
context-aware query suggestion, in Proceedings of the 24th ACM
International on Conference on Information and Knowledge
Management, ACM, Melbourne, Australia, 2015, pp. 553–562.

[33] H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep
belief networks for scalable unsupervised learning of hierarchical
representations, in Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ACM Press, Montreal,
Quebec, Canada, 2009, vol. 2008, pp. 609–616.

[34] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, D.-R. Liou, Autoencoder for
words, Neurocomputing. 139 (2014, Sept.), 84–96.

[35] S. Rifai, X. Muller, Contractive auto-encoders: explicit invariance
during feature extraction, in Proceedings of the 28th Interna-
tional Conference on Machine Learning, Bellevue, WA, 2011, vol.
85, pp. 833–840. https://dl.acm.org/citation.cfm?id=3104587.

[36] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting
and composing robust features with denoising autoencoders, in
Proceedings of the 25th International Conference on Machine
Learning, ACM, Helsinki, Finland, 2008, pp. 1096–1103.

[37] R. Salakhutdinov, A. Mnih, G. Hinton, Restricted boltzmann
machines for collaborative filtering, in Proceedings of the 24th
International Conference on Machine learning, ACM, Corvalis,
OR, 2007, pp. 791–798.

[38] X. Shaohua, X. Jiwei, L. Xuegui, A sparse auto encoder deep pro-
cess neural network model and its application, Int. J. Comput.
Intell. Syst. 10(1) (2017), 1116–1131.

[39] H. Liu, H. Motoda, Computational Methods of Feature Selection,
CRC Press, London, 2007.

[40] H. Liu, H. Motoda, Feature Extraction, Construction and Selec-
tion: A Data Mining Perspective, vol. 453, Springer Science &
Business Media, Berlin, Heidelberg, Germany, 1998.

[41] L.J.P. Van Der Maaten, E.O. Postma, H.J. Van Den Herik,
Dimensionality reduction: a comparative review, J. Mach.
Learn. Res. 10 (2009), 1–41. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.112.5472.

[42] K. Pearson, LIII. On lines and planes of closest fit to systems of
points in space, Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11)
(1901, Nov.), 559–572.

Pdf_Folio:16

Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452 451

http://dx.doi.org/10.1109/tit.1968.1054102
http://dx.doi.org/10.1109/tit.1968.1054102
https://doi.org/10.1561/2000000039
https://doi.org/10.1561/2000000039
https://doi.org/10.1007/978-3-642-39593-2_1
https://doi.org/10.1007/978-3-642-39593-2_1
https://doi.org/10.1007/978-3-642-39593-2_1
http://dx.doi.org/10.1016/j.inffus.2017.12.007
http://dx.doi.org/10.1016/j.inffus.2017.12.007
http://dx.doi.org/10.1016/j.inffus.2017.12.007
http://dx.doi.org/10.1016/j.inffus.2017.12.007
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.2991/jrnal.2018.5.1.17
http://dx.doi.org/10.2991/jrnal.2018.5.1.17
http://dx.doi.org/10.2991/jrnal.2018.5.1.17
http://dx.doi.org/10.1023/a:1006559212014
http://dx.doi.org/10.1023/a:1006559212014
https://doi.org/10.1109/FUZZ-IEEE.2017.8015686
https://doi.org/10.1109/FUZZ-IEEE.2017.8015686
https://doi.org/10.1109/FUZZ-IEEE.2017.8015686
https://doi.org/10.1109/FUZZ-IEEE.2017.8015686
http://dx.doi.org/10.1016/j.neucom.2015.08.112
http://dx.doi.org/10.1016/j.neucom.2015.08.112
http://dx.doi.org/10.1016/j.neucom.2015.08.112
http://dx.doi.org/10.1109/tpami.2013.50
http://dx.doi.org/10.1109/tpami.2013.50
http://dx.doi.org/10.1109/tpami.2013.50
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.2991/ijcis.11.1.5
https://doi.org/10.2991/ijcis.11.1.5
https://doi.org/10.2991/ijcis.11.1.5
http://dx.doi.org/10.2991/ijcis.11.1.64
http://dx.doi.org/10.2991/ijcis.11.1.64
http://dx.doi.org/10.2991/ijcis.11.1.64
https://doi.org/10.2991/ijcis.11.1.72
https://doi.org/10.2991/ijcis.11.1.72
https://doi.org/10.2991/ijcis.11.1.72
http://dx.doi.org/10.2991/ijcis.2017.10.1.38
http://dx.doi.org/10.2991/ijcis.2017.10.1.38
http://dx.doi.org/10.2991/ijcis.2017.10.1.38
https://doi.org/10.2991/ijcis.11.1.80
https://doi.org/10.2991/ijcis.11.1.80
https://doi.org/10.2991/ijcis.11.1.80
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
http://dx.doi.org/10.1016/j.neucom.2013.09.055
http://dx.doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/1273496.1273596
http://dx.doi.org/10.2991/ijcis.2017.10.1.74
http://dx.doi.org/10.2991/ijcis.2017.10.1.74
http://dx.doi.org/10.2991/ijcis.2017.10.1.74
https://doi.org/10.1007/978-1-4615-5725-8
https://doi.org/10.1007/978-1-4615-5725-8
https://doi.org/10.1007/978-1-4615-5725-8
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720


[43] C. Spearman, “General Intelligence,” objectively determined and
measured, Am. J. Psychol. 15(2) (1904), 201–292.

[44] W.S. Torgerson,Multidimensional scaling: I. Theory andmethod,
Psychometrika. 401(4) (1952), 401–419.

[45] C.J.C. Burges, Geometric Methods for Feature Extraction and
Dimensional Reduction, Springer, Boston, MA, 2005, pp. 59–91.

[46] L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, D.D. Lee, Spec-
tral Methods for Dimensionality Reduction, The MIT Press,
Cambridge, MA, 2006, pp. 292–308.

[47] J.B. Tenenbaum, A global geometric framework for nonlinear
dimensionality reduction, Science. 290(5500) (2000), 2319–2323.

[48] K.Q. Weinberger, L.K. Saul, An introduction to non-
linear dimensionality reduction by maximum variance
unfolding, in Proceedings of the 21st National Confer-
ence on Artificial Intelligence, 2006, vol. 2, pp. 1683–1686.
https://dl.acm.org/citation.cfm?id=1597471.

[49] R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F.
Warner, S.W. Zucker, Geometric diffusions as a tool for harmonic
analysis and structure definition of data: diffusion maps, Proc.
Natl. Acad. Sci. 102(21) (2005, May), 7426–7431.

[50] C. Yu, B. Chin Ooi, K.-Lee Tan, H.V. Jagadish, Index-
ing the distance: an efficient method to KNN process-
ing, in International Conference on Very Large Databases,
2001, pp. 421–430. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.28.8162

[51] N. Kouiroukidis, G. Evangelidis, The effects of dimen-
sionality curse in high dimensional kNN search,
in Proceedings of the 15th Panhellenic Conference
on Informatics, IEEE, Kastonia, Greece, 2011, Sept.,
pp. 41–45.

[52] X. Wang, A fast exact k-nearest neighbors algorithm for high
dimensional search using k-means clustering and triangle
inequality, in Proceedings of the International Joint Conference
on Neural Networks, IEEE, San Jose, CA, 2011, pp. 1293–1299.

[53] M. Radovanović, A. Nanopoulos, M. Ivanović, Hubs in
space: popular nearest neighbors in high-dimensional
data, J. Mach. Learn. Res. 11 (2010), 2487–2531.
https://dl.acm.org/citation.cfm?id=1953015.

[54] R. Min, D.A. Stanley, Z. Yuan, A. Bonner, Z. Zhang, A deep
non-linear feature mapping for large-margin kNN classification,
in Proceedings of the International Conference on Data Mining,
IEEE, Miami, FL, 2009, Dec., pp. 357–366.

[55] G.E. Hinton, Training products of experts by minimizing con-
trastive divergence, Neural Comput. 14(8) (2002), 1771–1800.

[56] W. Wang, Y. Huang, Y. Wang, L. Wang, Generalized autoencoder:
a neural network framework for dimensionality reduction, in Pro-
ceedings of the IEEEConference onComputer Vision and Pattern
Recognition Workshops, Columbus, OH, 2014, pp. 496–503.

[57] G. Hinton, A practical guide to training restricted boltzmann
machines, Momentum. 9(1) (2010), 926.

[58] K. Bache, M. Lichman, UCI Machine Learning Repository,
School of Information and Computer Sciences, University of
California, Irvine, CA, 2013. http://archive.ics.uci.edu/ml.

[59] P. Van Der Putten, M. Van Someren, A bias-variance analysis
of a real world learning problem: the coil challenge 2000, Mach.
Learn. 57(1) (2004), 177–195.

[60] A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R.
Huerta, Chemical gas sensor drift compensation using classifier
ensembles, Sens. Actuators B Chem. 166 (2012, May), 320–329.

[61] I. Guyon, S. Gunn, A. Ben-Hur, G. Dror, Result analysis
of the NIPS 2003 feature selection challenge, in Proceed-
ings of Neural Information Processing Systems, Vancou-
ver, British Columbia, Canada, 2004, vol. 4, pp. 545–552.
https://papers.nips.cc/paper/2728-result-analysis-of-the-nips-
2003-feature-selection-challenge.

[62] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, D. Anguita,
Transition-Aware human activity recognition using smartphones,
Neurocomputing. 171 (2016, Jan.), 754–767.

[63] R. Cole,M. Fanty, Spoken letter recognition, in Proceedings of the
Workshop on Speech and Natural Language, 1990, pp. 385–390.

[64] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learn-
ing applied to document recognition, Proc. IEEE. 86(11) (1998),
2278–2324.

[65] M. Friedman, The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance, J. Am. Stat. Assoc.
32(200) (1937), 675–701.

[66] D.J. Sheskin, Handbook of parametric and nonparametric statis-
tical procedures, Technometrics. 46 (2004), 1193.

[67] R Core Team, R: A Language and Environment for Statis-
tical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2016. http://softlibre.unizar.es/manuales/
aplicaciones/r/fullrefman.pdf.

[68] S. Aiello, T. Kraljevic, Petr Maj, and with Contributions
from the H2O.ai Team, H2o: R Interface for H2O, 2016. R
package version 3.8.1.3. http://h2o-release. s3. amazonaws.
com/h2o/master/3233/docs ⋯

[69] K. Schliep, K. Hechenbichler, kknn: Weighted k-Nearest Neigh-
bors, 2016. R package version 1.3.1.

[70] K. Fukunaga, Introduction to Statistical Pattern Recognition,
Academic Press, Cambridge, MA, 2013.

[71] A.M. Martínez, A.C. Kak, PCA versus LDA, IEEE Trans. Pattern
Anal. Mach. Intell. 23(2) (2001), 228–233.

Pdf_Folio:17

~

452 Francisco J. Pulgar et al. / International Journal of Computational Intelligence Systems 12(1) 436–452

http://dx.doi.org/10.2307/1412107
http://dx.doi.org/10.2307/1412107
http://dx.doi.org/10.1007/bf02288916
http://dx.doi.org/10.1007/bf02288916
https://doi.org/10.1007/0-387-25465-X_4
https://doi.org/10.1007/0-387-25465-X_4
http://dx.doi.org/10.7551/mitpress/9780262033589.003.0016
http://dx.doi.org/10.7551/mitpress/9780262033589.003.0016
http://dx.doi.org/10.7551/mitpress/9780262033589.003.0016
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1073/pnas.0500334102
http://dx.doi.org/10.1073/pnas.0500334102
http://dx.doi.org/10.1073/pnas.0500334102
http://dx.doi.org/10.1073/pnas.0500334102
https://doi.org/10.1109/PCI.2011.45
https://doi.org/10.1109/PCI.2011.45
https://doi.org/10.1109/PCI.2011.45
https://doi.org/10.1109/PCI.2011.45
https://doi.org/10.1109/PCI.2011.45
https://doi.org/10.1109/IJCNN.2011.6033373
https://doi.org/10.1109/IJCNN.2011.6033373
https://doi.org/10.1109/IJCNN.2011.6033373
https://doi.org/10.1109/IJCNN.2011.6033373
https://doi.org/10.1109/ICDM.2009.27
https://doi.org/10.1109/ICDM.2009.27
https://doi.org/10.1109/ICDM.2009.27
https://doi.org/10.1109/ICDM.2009.27
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
https://doi.org/10.1109/CVPRW.2014.79
https://doi.org/10.1109/CVPRW.2014.79
https://doi.org/10.1109/CVPRW.2014.79
https://doi.org/10.1109/CVPRW.2014.79
https://doi.org/10.1007/978-3-642-35289-8_32.
https://doi.org/10.1007/978-3-642-35289-8_32.
http://dx.doi.org/10.1023/b:mach.0000035476.95130.99
http://dx.doi.org/10.1023/b:mach.0000035476.95130.99
http://dx.doi.org/10.1023/b:mach.0000035476.95130.99
https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/10.1016/j.snb.2012.01.074
http://dx.doi.org/10.1016/j.neucom.2015.07.085
http://dx.doi.org/10.1016/j.neucom.2015.07.085
http://dx.doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.3115/116580.116725
https://doi.org/10.3115/116580.116725
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1109/34.908974
http://dx.doi.org/10.1109/34.908974

	AEkNN: An AutoEncoder kNN–Based Classifier With Built-in Dimensionality Reduction
	1. INTRODUCTION
	2. PRELIMINARIES
	2.1. The kNN Algorithm
	2.2. Deep Learning
	2.3. Autoencoders

	3. DIMENSIONALITY REDUCTION APPROACHES
	3.1. Classical Proposals for Dimensionality Reduction
	3.2. Proposals for Dimensionality Reduction in kNN

	4. AEkNN: AN AUTOENCODER kNN-BASED CLASSIFIER WITH BUILT-IN DIMENSIONALITY REDUCTION
	4.1. AEkNN Foundations
	4.2. Method Description
	4.3. AEkNN Contributions with Respect to Previous Proposals

	5. EXPERIMENTAL STUDY
	5.1. Experimental Framework
	5.2. PPL Parameter Analysis
	5.3. AEkNN versus kNN
	5.4. AEkNN vs PCA/LDA
	5.5. General Guidelines on the Use of AEkNN
	5.6. AEkNN Application to Real Cases

	6. CONCLUDING REMARKS




