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Abstract—The interpretability of the results obtained and the
quality measures used both to extract and evaluate the rules are
two key aspects of Subgroup Discovery. In this study, we analyse
the influence of the type of rule used to extract knowledge in
Subgroup Discovery, and the quality measures more adapted to
the evolutionary algorithms for Subgroup Discovery developed
so far. The adaptation of the NMEF-SD algorithm to extract
disjunctive formal norm rules is also presented.

I. INTRODUCTION

Data mining (DM) is the stage within Knowledge Discov-
ery in Databases (KDD) [1] responsible for high level auto-
matic knowledge discovery using real data. Two approaches
can be distinguished in the DM process: predictive induction,
whose objective is the discovery of knowledge for classifica-
tion or prediction [2], and descriptive induction, whose main
objective is the extraction of interesting knowledge from the
data. This work focuses on subgroup discovery (SD) [3], a
descriptive DM task including some features of predictive
DM. It can be considered that SD is between the extraction
of association rules and the obtaining of classification rules.
The goal of SD is the discovery of interesting individual
patterns in relation to a specific property which is of interest
to the user.

The interpretability of the results obtained is an important
issue in SD because the goal of the SD task is to find
significant, relevant and previously unknown information
about groups of interest. In this sense, rules are a suitable
tool for the representation of knowledge in the extraction of
information describing subgroups. This is the reason we are
interested in the description of subgroups through rules.

The use of genetic algorithms (GAs) [4] and fuzzy logic
[5] is interesting for the SD task. GAs explore the search
space thoroughly and handle the relations between variables
appropriately, and therefore develop searches particularly
suited to rule extraction. Fuzzy logic, and particularly the
use of descriptive fuzzy rules, allows us to represent and use
knowledge in a similar way to human reasoning. With the use
of fuzzy rules we obtain more interpretable and actionable
solutions in the field of SD, and in general in the analysis of
data in order to establish relationships and identify patterns
[6]. So we are interested in the extraction of fuzzy rules to
describe subgroups and in the use of GAs to obtain this type
of rule.
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In the design of any algorithm for the extraction of rules
for SD there are different questions to consider: the type of
rule used to represent the knowledge, the quality measures
used to evaluate the rules and the way to consider them in
the DM process.

There are different types of fuzzy rules: canonical rules,
disjunctive normal form (DNF) rules, rules with degrees of
certainty or rules with weights [7]. For SD, fuzzy rules with
weights or degrees of certainty are not considered because
they are less interpretable.

The quality measures used to obtain and evaluate rule sets
is a very important issue in SD. There are different measures
which can be used for this purpose, but currently there is no
consensus on which of them are most appropriate for this
rule induction task.

The extraction of fuzzy rules for SD can be considered as
a multi-objective problem rather than a single objective one,
since –as mentioned– there are different quality measures
which can be used for evaluating a rule in SD. In the
literature there are several evolutionary proposals for the SD
task; one of these, SDIGA [8], uses an aggregation of the
objective functions, and another, MESDIF [9], uses elitism
in the multi-objective evolutionary search.

The main objective of our work is to analyse the influence
of the type of rule used to represent knowledge and the
quality measures used to evaluate rules, in the context of
the Genetic Fuzzy System (GFS) for SD developed up to
the moment. To complete this objective, we also present the
extension of the NMEF-SD algorithm [10] in order to use
not only canonical but also DNF rules.

The paper is organised as follows: In Section II, SD and
GFSs in SD are presented. The evolutionary approach for
SD using canonical and DNF rules is explained in Section
III. In Section IV the results obtained with the evolutionary
algorithms are analysed. Finally, conclusions are outlined in
Section V.

II. PRELIMINARIES

In this section the SD task and some considerations on the
use of GFSs in rule induction processes focusing on the type
of approach best adapted for SD are briefly described.

A. Subgroup Discovery

The concept of SD was initially formulated by Klösgen
[11] and Wrobel [12]: Given a population of individuals and
a property of those individuals we are interested in, find
population subgroups that are statistically “most interesting”,
e.g., are as large as possible and have the most unusual



statistical characteristics with respect to the property of
interest.

Therefore, the objective in SD is to discover characteristics
of the subgroups by constructing simple rules with high
support and significance.

A rule Ri can be described as:
Ri : Condi → Classj

where the antecedent describes the subgroup in canonical
or DNF form.

To describe a fuzzy rule, we consider a SD problem with:
• {Xm/m = 1, . . . , nv}, a set of features used to describe

the subgroups, where nv is the number of features.
These variables can be categorical or numerical.

• {Classj/j = 1, . . . , nc}, a set of values for the target
variable, where nc is the number of values.

• {Ek = (ek
1 , e

k
2 , . . . , e

k
nv

)/k = 1, . . . , N}, a set of exam-
ples, where classj is the value of the target variable for
the example Ek (i.e., the class for this example) and N
is the number of examples for the descriptive induction
process.

• Xm : {LL1
m, LL

2
m, . . . , LL

lm
m }, a set of linguistic labels

for the numerical variables. The number of linguistic
labels and the definition for the corresponding fuzzy
sets depend on each variable: the variable Xm has lm
different linguistic labels to describe its domain in an
understandable way.

Then, a fuzzy rule in DNF form can be expressed as:

R1 : If X1 = (LL1
1 or LL

2
1) and X6 = LL3

6 then Classj

where LL1
1 is the linguistic label number 1 of the

variable number 1.
One of the most important aspects in SD is the quality

measures used both to extract and evaluate the rules. As
previously mentioned, there is no a consensus in the field
about what are most adapted measures for the SD process,
but the most used measures are:
• Significance [11]. Indicates the significance of a finding,

if measured by the likelihood ratio of a rule:

Sig(Condi → Classj) = (1)

2 ·
nc∑

k=1

n(Classk · Condi) · log
n(Classk · Condi)
n(Classk) · p(Condi)

where n(Classk · Condi) is the number of examples
which satisfy the conditions for the antecedent and
belong to Classk, n(Classk) is the number of
examples for the target variable indicated in the
consequent part of the rule and p(Condi) is used as a
normalising factor.

• Unusualness [13]. Measures the balance between the
coverage of the rule and its accuracy gain:

WRAcc(Condi → Classj) = (2)

=
n(Condi)

N

(
n(Classj · Condi)

n(Condi)
− n(Classj)

N

)
where n(Condi) is the number of examples which
satisfy the antecedent and N is the number of
examples. The weighted relative accuracy of a
rule can be described as the coverage using
the first part of the expression (n(Condi)/N )
and the accuracy gain using the second part
(n(Classj · Condi)/n(Condi))− (n(Classj)/N).

• Support [13]. Is defined as the frequency of correctly
classified examples covered by the rule:

SupcN(Ri) =
n(Classj · Condi)

n(Classj)
(3)

• Fuzzy Confidence [8]. Determines the relative frequency
of examples which verify the complete rule among those
which satisfy only the antecedent part:

FCnf(Ri) =

∑
Ek∈E/Ek∈Classj

APC(Ek, Ri)∑
Ek∈E APC(Ek, Ri)

(4)

where the antecedent part compatibility (APC) is the
degree of compatibility between an example and the
antecedent part of a fuzzy rule:
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where T is the t − norm selected to represent the
meaning of the AND operator (the fuzzy intersection,
in our case the minimum) and TC is the t − conorm
selected to represent the meaning of the OR operator
(the fuzzy union, in our case the maximum).

For a set of rules the value of each quality measure is
computed as the average of the values for each rule.

B. Genetic fuzzy systems for subgroup discovery

A GFS is essentially a fuzzy system enhanced by a
learning process based on a GA [14], [15]. Currently, GFSs
are being applied to a wide range of real-world problems.
The research related to this area is growing, and a number
of open problems and future directions can be found in [16],
[17], [18].

The genetic representation of solutions is the most de-
terminant aspect of any GFS proposal. In this sense, the
proposals in the specialised literature follow two approaches
in order to encode rules within a population of individuals
[14]: The “Chromosome = Rule” approach, in which each
individual codifies a single rule; and the “Chromosome =
Set of rules” approach, also called the Pittsburgh approach,
in which each individual represents a set of rules.

There is a large body of literature which focuses on the
extraction of fuzzy rules in descriptive data mining. This
is widely applied to association rule extraction. The use of
fuzzy sets in fuzzy rules extends the types of relationships



that may be represented, facilitates the interpretation of rules
in linguistic terms, and avoids unnatural boundaries in the
partitioning of attribute domains. Proposals for the extraction
of fuzzy association rules include [19], [20], [21], [22].

There are different evolutionary proposals in literature for
extracting fuzzy rules in SD. This task can be considered
as a multi-objective problem and the evolutionary proposals
are represented with aggregation of the objective functions
or with a multi-objective approach. The GFSs developed for
the SD task are introduced below:

• SDIGA [8], [23] is an evolutionary fuzzy rule induction
approach for SD which uses support and confidence
as quality measures. A later version of this algorithm,
SDIGA-II, instead uses support and unusualness as
quality measures. This algorithm employs canonical and
DNF representation.

• MESDIF [9] is a multi-objective evolutionary algorithm
for SD based on the SPEA2 approach [24]. It considers
linguistic fuzzy rules and defines support and confidence
as quality measures. This algorithm uses canonical and
DNF representation.

• NMEF-SD [10] is a multi-objective evolutionary
algorithm which follows the NSGA-II [25] approach.
This algorithm uses unusualness and support as quality
measures and is implemented for obtaining canonical
rules.

Next section describes the adaptation of the NMEF-SD
algorithm for the obtaining of DNF rules. In this way, we
can complete the study over the evolutionary algorithms
for SD presented at the moment, with canonical and DNF
representation of the rules.

III. NMEF-SD: NON-DOMINATED MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM BASED ON THE

EXTRACTION OF FUZZY RULES FOR SUBGROUP
DISCOVERY

NMEF-SD algorithm extracts descriptive fuzzy or crisp
rules –depending on the nature of the features of the prob-
lem (continuous and/or nominal variables)– which describe
subgroups.

When the features are continuous the algorithm uses fuzzy
rules, and the fuzzy sets corresponding to the linguistic labels
are defined by means of the corresponding membership
functions. These can be specified by the user or defined
by means of a uniform partition if expert knowledge is not
available. In our work, uniform partitions with triangular
membership functions are used as shown in Fig. 1 for a
variable with five linguistic labels.

The objective of this evolutionary process is to extract a
variable number of different rules which give information
about the examples from the original set for each value of
the target variable. As the objective is to obtain a set of
rules which describe subgroups for all the values of the target
variable, the algorithm must be executed as many times as
the number of different values the target variable contains.

Fig. 1. Example of fuzzy partition for a continuous variable

Each candidate solution is codified according to the “chro-
mosome = rule” approach, in which each individual codifies
a single rule.

The extension presented in this study allows NMEF-SD
to use not only canonical rules but also DNF rules. For a
canonical rule the antecedent of a rule is composed of a
conjunction of value-variable pairs, and the value 0 is used
to indicate that the variable is not considered for the rule
(Fig. 2). For a DNF rule, a fixed-length binary representation
is used in which one bit for each of the possible values of
every feature is stored. In this way, if the corresponding bit
contains the value 0 it indicates that the value is not used in
the rule, and if the bit contains the value 1 it indicates that
the value is used in the rule (Fig. 3).

Genotype
2 0 1 0

⇓
Phenotype

IF (x1 = Medium) AND (x3 = Low) THEN (xObj = FixedV alue)

Fig. 2. Representation of a canonical rule in NMEF-SD

Genotype
x1 x2 x3

1 1 0 0 0 0 1 0 0

⇓
Phenotype

IF (x1 = (Low OR Medium)) AND (x3 = Low) THEN
(xObj = FixedV alue)

Fig. 3. Representation of a DNF rule in NMEF-SD

In this extraction process the objective is to obtain in-
terpretable rules with high precision and generality. To do
so, unusualness (Eq. 2) and support (Eq. 3) are the quality
measures considered in the algorithm.

NMEF-SD is based on the NSGA-II approach [25], and its
main purpose is to evolve the population based on the non-
dominated sort of the solutions in fronts of dominance. The
first front is composed of the non-dominated solutions of the
population (the Pareto front), the second is composed of the
solutions dominated by one solution, the third of solutions
dominated by two, and so on.

Fig. 4 shows the evolutionary algorithm of the NMEF-SD
algorithm.



BEGIN
Create P0 with biased initialisation
REPEAT

Qt ← Ø
Tournament Selection (Pt)
Qtc ← Multi-point Crossover (Pt)
Qtm ← Biased Mutation (Qtc)
Qt ← Qtc +Qtm

Qt ← Qt+ offspring
Rt ← Join(Pt,Qt)
Fast-non-dominated-sort(Rt)
IF Paretofront evolves

Introduce fronts in Pt+1

ELSE
Re-initialisation based on coverage Pt+1

WHILE (num-eval < Max-eval)
RETURN Paretofront

END
Fig. 4. The NMEF-SD algorithm

NMEF-SD tries to obtain a set rules with high precision,
high generality and proper differentiation among them with
different operators. Generality is obtained both with an
operator which performs a biased initialisation process and
with biased genetic operators, while diversity is introduced
with the crowding distance [25] and with re-initialisation
based on coverage.

The most important parts of the algorithm are next
described:

• Initialisation: First step of the algorithm, which gener-
ates a biased population with a maximum of 75% of
the total of the individuals generated with 25% of the
variables in the rule. The remaining individuals (25%)
are randomly generated.

• Genetic operators: Generate the offspring population.
These operators are tournament selection [26], multi-
point crossover [27] and biased mutation [8].

• Fast-non-dominated sort: Performs a sort in fronts of
population based on non-dominance. The first front (F1)
is the Pareto front.

• Re-initialisation based on coverage: Performs a re-
initialisation of the population, except the Pareto front,
with individuals which cover new examples of the data
set not previously covered. This operator is applied
when the Pareto front does not evolve during a per-
centage (5%) of the maximum number of evaluations.

• Stop condition: Is determined for a maximum number of
evaluations. At this point, the algorithm returns the set
of rules which overcome a given confidence threshold.

IV. EXPERIMENTATION

This study examines the evolutionary algorithms of SD
described in the specialised bibliography in order to analyse
the influence on the results of the type of rule, the quality

measures used to evaluate the rules and the way these quality
measures are considered in the evolutionary process. To do
this, different data sets from the UCI repository [28] have
been used. These data sets are classified in groups according
to the type of variables: discrete with two classes, continuous
with two classes, discrete with more than two classes, and
continuous with more than two classes.

As the evolutionary algorithms are non-deterministic, they
are run five times and a ten-fold cross validation is per-
formed.

The parameters used in NMEF-SD are: population size of
25 individuals, maximum number of evaluations of 10000,
crossover probability of 0.6 and mutation probability of 0.1.
In MESDIF, SDIGA and SDIGA-II the population size is
100, crossover probability is 0.6, and the mutation probability
is 0.01.

Tables I-IV show the average values obtained for the
different data sets: number of rules (]Rul), number of
variables (]V ar), significance (SIGN , Eq. 1), unusualness
(WRAcc, Eq. 2) , support (SUPcN , Eq. 3) and fuzzy
confidence (FCNF , Eq. 4). The best results are marked in
bold characters. We consider that an algorithm stands out
when its global results are the best in the quality measures
described in Section II-A. The best algorithm is marked in
the table with bold-italic characters in the name.

In our study an analysis of tables I-IV is performed with
respect to:
1) Type of rule. The choice of the type of rule depends on
the way the expert wishes to represent the knowledge. In the
absence of preferences we can see:
• For data sets with discrete features either canonical and

DNF representation can be used.
• For data sets with continuous features, it must be

considered whether the algorithm is multi-objective
or not. Canonical representation shows better results
for multi-objective algorithms, and for mono-objective
algorithms DNF representation obtains better results.

2) Quality measures to be considered in the evolutionary
process. According to Eqs. 2-4:
• Significance (SIGN ) is a statistical criterion which

measures the significance of the antecedent part of the
rule. It must be noted that it computes the distributional
unusualness without bias toward any particular class,
although the rule has specific class in the consequent.

• Unusualness (WRAcc) considers not only the distribu-
tional unusualness (as does Significance) but also the
coverage of the rule.

• Support (SUPcN ) measures the percentage of examples
belonging to the class indicated in the consequent which
is described by the rule. It must be noted that this is a
coverage measure with an accuracy component due to
the fact that it considers only positive examples.

• Fuzzy confidence (FCNF ) measures the rule accuracy.
For SD, a DM task between prediction and description,
unusualness and support measures are the best choice



because they represent a good balance between precision,
interest and coverage. In tables I-IV it can be observed
that algorithms NMEF-SD and SDIGA-II (which use these
quality measures) obtain the best results.

3) Evolutionary process. As expected in any problem with
different objectives, the evolutionary algorithms with a multi-
objective approach obtain better results than those which
consider an aggregation of the objectives.
In addition, considering only the multi-objective approaches,
NMEF-SD is the algorithm which obtains the best results.
This could be the result of the quality measures used and the
structure of the evolutionary algorithm performed by NMEF-
SD.
It must be highlighted that NMEF-SD obtains smaller rule
sets, and so more interpretable ones, a very important char-
acteristic for SD.

V. CONCLUSIONS

In this study, an analysis of the influence of the type of
rule and the quality measures used in the context of GFSs for
SD is developed. Moreover, the adaptation of the NMEF-SD
algorithm to extract DNF rules is also presented.

An analysis of the results obtained with different data
sets and different evolutionary algorithms for SD shows
that unusualness and support are the most suitable quality
measures to be included in a SD algorithm.

Furthermore, some tendencies in the type of fuzzy rules
related with mono-objective and multi-objective approaches
should be highlighted. The best results are obtained using
multi-objective approaches with canonical representation.
For mono-objective approaches the subgroup descriptions
with DNF rules are the best choice.

The experiments show that the best results for all the data
sets are obtained with the NMEF-SD algorithm.
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TABLE I
RESULTS OF THE EXPERIMENTATION FOR DISCRETE DATA SETS WITH

TWO CLASSES

Algorithm ]Rul ]V ar SIGN WRAcc SUPcN FCNF
Tic-tac-toe (9 discrete variables, 2 classes, 958 examples)

NMEF-SD Can 1.00 2.00 5.240 0.069 0.584 0.799
NMEF-SD DNF 2.26 2.79 4.455 0.077 0.764 0.774

MESDIF Can 6.00 3.14 5.005 0.042 0.304 0.747
MESDIF DNF 7.72 3.14 4.929 0.045 0.406 0.721

SDIGA Can 7.42 3.86 6.084 0.030 0.194 0.817
SDIGA DNF 6.72 3.64 6.133 0.030 0.408 0.780

SDIGA-II Can 2.73 2.01 3.406 0.042 0.498 0.633
SDIGA-II DNF 2.25 2.00 0.556 0.002 0.795 0.516

Breast-w (9 discrete variables, 2 classes, 699 examples)
NMEF-SD Can 2.90 2.38 22.722 0.162 0.846 0.955

NMEF-SD DNF 8.48 5.04 22.412 0.174 0.943 0.932
MESDIF Can 11.90 2.42 19.409 0.116 0.710 0.896
MESDIF DNF 18.90 3.38 16.987 0.116 0.746 0.870

SDIGA Can 2.42 2.36 18.046 0.124 0.715 0.890
SDIGA DNF 4.28 5.54 19.891 0.129 0.667 0.804

SDIGA-II Can 2.04 1.76 1.597 0.009 0.064 0.095
SDIGA-II DNF 3.38 5.13 19.961 0.155 0.933 0.826

Vote (16 discrete variables, 2 classes, 435 examples)
NMEF-SD Can 1.10 2.05 21.974 0.217 0.946 0.979
NMEF-SD DNF 2.22 2.95 21.884 0.217 0.946 0.980

MESDIF Can 7.86 3.44 19.937 0.187 0.827 0.957
MESDIF DNF 13.40 3.45 17.968 0.170 0.788 0.927

SDIGA Can 3.06 3.19 18.243 0.180 0.802 0.891
SDIGA DNF 2.28 2.17 20.335 0.208 0.931 0.923

SDIGA-II Can 2.93 2.27 18.843 0.199 0.920 0.905
SDIGA-II DNF 2.93 2.25 18.525 0.198 0.919 0.903

TABLE II
RESULTS OF THE EXPERIMENTATION FOR CONTINUOS DATA SETS WITH

TWO CLASSES

Algorithm ]Rul ]V ar SIGN WRAcc SUPcN FCNF
Ion (34 continuous variables, 2 classes, 351 examples)

NMEF-SD Can 8. 72 4.01 7.513 0.144 0.966 0.879
NMEF-SD DNF 11.16 5.04 1.101 0.012 0.474 0.761

MESDIF Can 19.74 5.26 3.809 0.056 0.638 0.734
MESDIF DNF 16.52 5.42 3.116 0.043 0.638 0.785

SDIGA Can 3.60 4.84 2.769 0.036 0.367 0.662
SDIGA DNF 8.34 5.08 2.553 0.029 0.266 0.649

SDIGA-II Can 2.08 2.11 1.612 0.029 0.298 0.298
SDIGA-II DNF 2.01 5.01 6.662 0.099 0.955 0.700

Haberman (3 continuous variables, 2 classes, 306 examples)
NMEF-SD Can 1.00 2.00 0.767 0.050 0.933 0.803
NMEF-SD DNF 14.12 2.87 0.580 0.006 0.659 0.746

MESDIF Can 18.10 3.05 0.721 0.013 0.525 0.569
MESDIF DNF 7.46 2.49 0.719 0.015 0.739 0.558

SDIGA Can 2.00 2.00 1.258 0.042 0.837 0.635
SDIGA DNF 2.10 3.08 0.733 0.022 0.965 0.564

SDIGA-II Can 2.12 2.00 0.792 0.018 0.796 0.541
SDIGA-II DNF 2.00 3.13 0.395 0.022 0.991 0.521

Heart (13 continuous variables, 2 classes, 270 examples)
NMEF-SD Can 4.10 2.61 3.622 0.104 0.769 0.777
NMEF-SD DNF 16.10 4.24 2.680 0.055 0.478 0.750

MESDIF Can 20.00 3.58 3.068 0.058 0.584 0.775
MESDIF DNF 19.84 3.94 3.117 0.062 0.454 0.774

SDIGA Can 2.00 2.08 2.426 0.078 0.678 0.628
SDIGA DNF 2.00 3.36 2.426 0.083 0.968 0.601

SDIGA-II Can 2.24 2.12 1.317 0.056 0.888 0.596
SDIGA-II DNF 2.00 3.92 3.271 0.092 0.957 0.611

TABLE III
RESULTS OF THE EXPERIMENTATION FOR DISCRETE DATA SETS WITH

MORE THAN TWO CLASSES

Algorithm ]Rul ]V ar SIGN WRAcc SUPcN FCNF
Car (6 discrete variables, 4 classes, 1728 examples)

NMEF-SD Can 1.10 2.00 37.848 0.092 0.439 1.000
NMEF-SD DNF 3.46 2.52 25.569 0.082 0.606 0.902

MESDIF Can 10.50 3.34 13.511 0.026 0.353 0.308
MESDIF DNF 25.68 4.34 22.238 0.039 0.509 0.568

SDIGA Can 16.80 5.03 1.935 0.002 0.048 0.238
SDIGA DNF 4.04 3.88 33.018 0.045 0.703 0.413

SDIGA-II Can 5.21 2.00 20.708 0.048 0.590 0.490
SDIGA-II DNF 4.53 3.79 33.468 0.055 0.919 0.594

Dermatology (33 discrete variables, 6 classes, 366 examples)
NMEF-SD Can 2.06 6.38 23.688 0.199 0.986 0.934
NMEF-SD DNF 8.68 6.14 16.486 0.119 0.849 0.920

MESDIF Can 29.96 9.64 15.404 0.098 0.802 0.794
MESDIF DNF 23.44 5.24 11.415 0.064 0.709 0.540

SDIGA Can 6.00 .2.02 0.119 0.000 0.002 0.009
SDIGA DNF 6.00 1.95 0.232 0.000 0.001 0.003

SDIGA-II Can 6.00 1.93 0.171 0.000 0.001 0.008
SDIGA-II DNF 6.00 1.94 0.144 0.000 0.000 0.001

Lymp (18 discrete variables, 4 classes, 148 examples)
NMEF-SD Can 11.38 3.72 3.238 0.094 0.516 0.630
NMEF-SD DNF 24.24 4.78 2.276 0.092 0.716 0.633

MESDIF Can 38.68 4.78 1.516 0.045 0.343 0.401
MESDIF DNF 19.84 3.35 1.802 0.058 0.529 0.564

SDIGA Can 4.02 1.84 0.149 0.004 0.078 0.071
SDIGA DNF 6.94 4.63 1.632 0.048 0.307 0.397

SDIGA-II Can 4.00 1.89 0.143 0.003 0.089 0.058
SDIGA-II DNF 4.80 3.73 0.755 0.024 0.466 0.302

TABLE IV
RESULTS OF THE EXPERIMENTATION FOR CONTINUOS DATA SETS WITH

MORE THAN TWO CLASSES

Algorithm ]Rul ]V ar SIGN WRAcc SUPcN FCNF
Led (7 continuous variables, 10 classes, 500 examples)

NMEF-SD Can 4.70 3.37 17.227 0.064 0.786 0.624
NMEF-SD DNF 30.58 6.23 12.772 0.048 0.553 0.768

MESDIF Can 78.54 3.56 17.006 0.045 0.818 0.377
MESDIF DNF 30.80 2.90 14.598 0.031 0.890 0.225

SDIGA Can 10.04 4.55 15.998 0.058 0.713 0.720
SDIGA DNF 12.10 4.50 15.196 0.057 0.731 0.728

SDIGA-II Can 10.00 2.01 18.423 0.036 0.908 0.199
SDIGA-II DNF 10.00 2.00 0.931 0.002 0.988 0.110

Cleveland (13 continuous variables, 5 classes, 303 examples)
NMEF-SD Can 1.40 3.00 10.034 0.135 0.681 0.860
NMEF-SD DNF 7.90 4.11 4.268 0.053 0.487 0.739

MESDIF Can 48.26 4.48 3.951 0.020 0.496 0.277
MESDIF DNF 17.08 3.19 3.408 0.016 0.685 0.251

SDIGA Can 5.18 2.16 0.559 0.007 0.093 0.079
SDIGA DNF 17.32 6.03 1.012 0.007 0.117 0.137

SDIGA-II Can 5.02 1.56 0.775 0.006 0.218 0.083
SDIGA-II DNF 5.00 6.49 5.185 0.032 0.883 0.223

Glass (9 continuous variables, 6 classes, 214 examples)
NMEF-SD Can 3.94 3.89 3.739 0.035 0.571 0.821
NMEF-SD DNF 7.28 4.24 1.825 0.011 0.289 0.432

MESDIF Can 18.00 4.68 1.644 0.005 0.311 0.233
MESDIF DNF 21.64 4.39 3.289 0.016 0.512 0.326

SDIGA Can 9.90 3.70 1.740 0.007 0.282 0.253
SDIGA DNF 8.72 6.83 1.436 0.008 0.357 0.326

SDIGA-II Can 6.00 2.98 2.696 0.007 0.516 0.197
SDIGA-II DNF 6.00 6.41 4.014 0.022 0.691 0.341


