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Abstract. In this paper a multiobjective optimization algorithm for the design 
of Radial Basis Function Networks is proposed. The goal of the design 
algorithm is to obtain networks with a high tradeoff between accuracy and 
complexity, overcoming the drawbacks of the traditional single objective 
evolutionary algorithms. The main features of EMORBFN are a selection 
mechanism based on NSGA-II and specialized operators. To test the behavior 
of EMORBFN a similar mono-objective optimization algorithm for Radial 
Basis Function Network design has been developed. Also C4.5, a Multilayer 
Perceptron network or an incremental method to design of Radial Basis 
Function Networks have been included in the comparison. Experimental results 
on six UCI datasets show that EMORBFN obtains networks with high accuracy 
and low complexity, outperforming other more mature methods. 

Keywords: Evolutionary Multi-objective Optimization, Radial Basis Function 
Networks, Classification.  

1   Introduction 

Radial Basis Function Networks (RBFNs) are one of the most important Artificial 
Neural Network (ANN) paradigms in the machine learning design field. An RBFN is 
a feed-forward ANN with a single layer of hidden units, called radial basis functions 
(RBFs). The first research on neural networks based on RBFs [4] was carried out at 
the end of the eighties. Since then, the overall efficiency of RBFNs has been proved 
in many areas like pattern classification [5], function approximation [13] and time 
series prediction [20].  

The main features of a RBFN are a simple topological structure, with only one 
hidden layer, of neurons/RBFs that have a particular locally-tuned response that 
depends on the center and the width (radius) of each RBF. Also, they have universal 
approximation capability [13].  

The goal of any RBFN design process is to determine centers, widths and the linear 
output weights connecting the RBFs to the output neuron layer. The most traditional 
learning procedure has two stages: first, unsupervised learning of centers and widths 
is used, and finally output weights are established by means of supervised learning. 
Clustering techniques [14] are commonly used to adjust the centers. Regarding the 
widths, they may all be given the same value, may reflect the width of the previously 
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calculated clusters (i.e., RBFs), or may be established as the average distance between 
RBFs, among other possibilities. In order to obtain the weights in the second stage, 
algorithms such as Least Mean Square (LMS) [21] can be used. 

Another important paradigm concerning RBFN design is Evolutionary 
Computation (EC) [3][10], a general stochastic optimization framework inspired by 
natural evolution. Typically, in this paradigm each individual represents a whole 
network that is evolved in order to increase its accuracy. 

Managing only the accuracy objective to optimize RBFNs, like in traditional 
evolutionary computation, may lead to obtain nets with a high number of RBFs. This 
is because it is easier to reduce error with those RBFNs having many RBFs than with 
those having few neurons. In order to overcome this drawback, Evolutionary 
Multiobjective Optimization (EMO)[6], can be used. Among the different 
multiobjective methods, Nondominated Sorting Genetic Algorithm NSGA-II [7] is 
one of the most efficient and used techniques. 

In this paper, a new evolutionary multiobjective optimization algorithm for the 
design of RBFNs (EMORBFN) applied to classification problems is presented. This 
algorithm follows the basic lines of a standard evolutionary algorithm but uses a 
NSGAII-based strategy to select the population of the new generation. In order to 
promote diversity, new operators to recombine and mutate individuals of the 
population are introduced. Other important characteristic of EMORBFN is the use of 
a dissimilarity measure (HVDM)[22] to calculate distances between nominal 
attributes. To test the performance of the proposed algorithm a traditional 
monoobjective evolutionary algorithm for the design of RBFNs (EORBFN) has been 
developed. Also, other well-know classification algorithms such as an RBFN-
incremental algorithm, C4.5 or a Multilayer Perceptron Network have been used to 
compare the results of our proposed method. 

The rest of paper is organized as follows: in section 2, a revision of the 
multiobjective optimization of RBFNs is shown. The EMORBFN algorithm is 
explained in section 3. The experimentation and the analysis of the results are shown 
in section 4. Conclusions are outlined in section 5. 

2   Evolutionary Design of RBFNs 

An RBFN is a feed-forward neural network with three layers: an input layer with n 
nodes, a hidden layer with m neurons or RBFs, and an output layer with one or 
several nodes (Figure 1). The m neurons of the hidden layer are activated by a 
radially-symmetric basis function, φi:R

n → R, which can be defined in several ways.  
From all the possible choices for φi, the Gaussian function is the most widely 

used: )()(
2)( ii dcx

ii ex −−= φφ , where ic  ∈ Rn is the center of basis function φi, di ∈ R 

is the width (radius), and  is usually the Euclidean norm on Rn. The output of one 

basis function will be high when the input vector and the center of this basis function 
are close, always taking into account the value of the radius. The weights wij show the 
contribution of an RBF to the respective output node, and therefore output nodes 
implement the weighted sum of RBF outputs (equation (1)). 
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Nowadays, Evolutionary Computation [3] is one of the most important paradigms 
in the design of RBFN [10][5]. Typically, in these algorithms, the individuals are 
codified using the Pittsburgh scheme, where an individual represents a whole RBFN. 
In the other hand, a cooperative-competitive evolutionary approach represents an RBF 
in each individual [16]. 

 
Fig. 1. RBFN Topology 

Most of Pittsburgh methods only optimize the accuracy of the individuals/RBFNs 
without having into account the complexity of the networks obtained. As have been 
said, managing only the objective of the accuracy may lead to obtaining nets with a 
high number of RBFs. That's because it is easier to get less error in RBFNs with many 
RBFs than in RBFNs with few neurons. Evolutionary Multiobjective Optimization [6] 
can be used in order to optimize several objectives such as the accuracy and 
complexity (the number of RBFs) of the models. 

Standard Multiobjective Evolutionary Algorithms (MOEAs) have been used in the 
design of RBFNs for estimation or function approximation, such as Multiobjective 
Genetic Algorithms MOGAs in [8] or [19]. [17] hybrids NSGA-II with rough-sets and 
surrogate techniques in order to achieve a more efficient multiobjective algorithm. 
[11] uses spatially distributed surrogates (RBFNs) in a NSGA-II framework. In [12] 
simple RBFNs (i.e.: with the same width for all RBFNs), obtained by a NSGA-II 
algorithm, are used as ensembles in the final model proportioned by the algorithm. In 
a more specific application regarding estimations, [9] uses the NSGA-II in the mineral 
reduction environment. Also, there are specific MOEAs such as [23] that present a 
Hierarchical Rank Density Genetic Algorithm (HRDGA) to evolve the neural 
network’s topology and parameters simultaneously. 

3   EMORBFN: Evolutionary Multiobjetive Optimization 
Algorithm for RBFN Design 

Basically, EMORBFN is an Evolutionary Multiobjective algorithm for the design of 
RBFN. It follows the main steps shown in Fig. 2. In step 6, in order to create the next 
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population, the NSGA-II algorithm is used. The objectives taken into account to 
optimize and sort the individuals are their accuracy and complexity (number or 
neurons). The implemented codification is real and Pittsburgh-based, where each 
individual represents a whole network. A dissimilarity measure HVDM distance [22] 
has been chosen in order to work with nominal attributes. Bellow, the main steps of 
EMORBFN are explained. 
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Fig. 2. Main steps of EMORBFN 

RBFN initialization.- For each initial network, a random number, m, of neurons (i.e. 
the size of population) is also randomly allocated among the different classes of the 
training set. Each RBF center, ic , is randomly established to a pattern of the training 

set, taking into account that the RBFs must be distributed equally among the different 
classes. The RBF widths, di, will be set to half of the average distance between the 
centers. Finally, the RBF weights, wij , are set to zero. 

Training/evaluation.-  During this stage, the well-known LMS algorithm [21] has 
been used to calculate the RBF weights of each individual. At this moment, the RBFN 
is evaluated, obtaining its classification error. 

Recombination.- With the crossover operator two individuals/RBFNs parents are 
randomly chosen to obtain one RBFN offspring. The number of RBFs of the new 
individual will be delimited between a minimum and a maximum value. The 
minimum value is set to the number of RBFs of the parent with fewer RBFs. The 
maximum value is set to sum of the number of RBFs of both parents. In order to 
generate the offspring, RBFs will be chosen in a random way from the parents. 

Mutation.- Six mutation operators, usually considered in the specialised bibliography 
[10] have been implemented. They can be classified as random operators or biased 
operators. The random operators are: 

• DelRandRBFs: randomly eliminates a pm percent of the total number of RBFs in 
the RBFN. 

• InsRandRBFs: randomly adds a pm percent of the total number of RBFs in the 
RBFN. 

• ModCentRBFs: randomly modifies the center of pm percent of the total number of 
RBFs in the RBFN. The center of the basis function will be modified in a pr 
percent of its width. 
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• ModWidtRBFs: randomly modifies a pm percent of the total number of RBFs in the 
RBFN. The width of the basis function will be modified in a pr percent of its 
width. 

Biased operators, which exploit local information, are: 

• DelInfRBFs: deletes a pm percent of the total number of RBFs in the RBFN. 
• InsInfRBFs: inserts a pm percent of the total number of RBFs in the RBFN. 

Filling the next population.- In order to create the new population, the basic lines of 
NSGA-II have been followed. In this way the rank of parents Pt and offspring (Qt, Rt) 
is calculated depending on the values of their objectives by means of a dominance 
count. Next, the all non-dominated fronts F = {F1, F2, …} are generated, where 
individuals in front F1 have less ranking value that individuals in F2 and so on. The 
new population is filled inserting the fronts F1, F2, … until the maximum number of 
the individuals of the population is reached. If the number of the individuals of the 
last front (Fl) is greater than the number of individuals needed to fill Pt+1, then 
crowding distance is calculated for the individuals of Fl. Thus, individuals with large 
crowding measure will complete Pt+1. 

4   Experimentation and Results 

To test our multiobjective method against a monoobjective based proposal, a typical 
Evolutionary algorithm for the Optimization of RBFNs, EORBFN has been 
developed. The design lines of EORBFN are the classical ones for this kind of 
algorithms [10]. In order to promote an adequate comparison between EMORBFN 
and EORBBFN, similar operating conditions have been established. In this way 
EORBFN and EMORBFN have the same pseudocode, codification scheme 
(Pittsburgh), operators and dissimilarity measure (HVDM). Obviously, the main 
differences can be found in step 6 when the new population is created. To fill the new 
population Pt+1 from the populations of parents (Pt) and offspring (Qt, Rt) a 
tournament selection mechanism is considered. The diversity of the population is 
promoted by using a low value for the tournament size (k = 3). The objective 
considered in this evolutionary algorithm is to minimize the classification error.  

In order to increase the efficiency of the evolutionary algorithms, the search space 
of this method has been restricted. In this experimentation, the search space has been 
reduced by fixing the complexity (number of RBFs) between a minimum and a 
maximum number of neurons. The minimum number of neurons has been set to the 
number of classes for the problem and the maximum to four times this number. The 
parameter values used for experimentation with EMORBFN and EORBFN are shown 
in Table 1. 

EMORBFN has been compared with other traditional classification methods such 
as: C4.5 [15], an algorithm that creates classification rules in the form of decision 
trees from a dataset. MLP-Back [18], an algorithm for Multilayer Perceptron 
Networks design which uses the Backpropagation algorithm for learning. RBFN-Incr 
[1], an algorithm for the RBFNs design based on an incremental scheme. The 
implementation of these algorithms has been obtained from KEEL [1]. 
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Table 1. Experimentations parameters used for EMORBFN and EORBFN 

Parameter Value 
Iterations of the main loop 200 
Individuals 40 
Crossover probability  0.6 
Mutation probability  0.1 
Pm 0.2 
Pr 0.2 

 

Table 2. Results with Hepatitis dataset 

Algorithm 
#nodes/ 
Rules 

Classification 
rate (%) 

C4.5 7.1 89.647 
MLP-Back 30.0 71.817 
RBFN-Incr 120.1 76.637 
EORBFN 7.5 86.711 
EMORBFN 4.0 87.598  

Table 3. Results with Iris dataset 

Algorithm 
#nodes/ 

rules 
Classification 

rate (%) 
C4.5 4.8 94.000 
MLP-Back 30.0 64.667 
RBFN-Incr 29.8 94.667 
EORBFN 10.4 95.067 
EMORBFN 4.0 95.789  

Table 4. Results with Pima dataset 

Algorithm 
#nodes/ 
Rules 

Classification 
rate (%) 

C4.5 18.3 73.972 
MLP-Back 30.0 70.819 
RBFN-Incr 671.4 67.728 
EORBFN 7.6 75.615 
EMORBFN 5.0 75.683  

Table 5. Results with Sonar dataset 

Algorithm 
#nodes/ 

rules 
Classification 

rate (%) 
C4.5 14.3 71.071 
MLP-Back 30.0 67.762 
RBFN-Incr 159.8 74.976 
EORBFN 7.7 73.305 
EMORBFN 8.0 75.536  

Table 6. Results with Wbcd dataset 

Algorithm 
#nodes/ 

rules 
Classification 

rate (%) 
C4.5 12.4 94.995 
MLP-Back 30.0 87.722 
RBFN-Incr 319.9 94.303 
EORBFN 6.2 96.713 
EMORBFN 4.0 97.535  

Table 7. Results with Wine dataset 

Algorithm 
#nodes/ 

rules 
Classification 

rate (%) 
C4.5 5.1 94.902 
MLP-Back 30.0 93.301 
RBFN-Incr 125.3 74.739 
EORBFN 10.4 95.275 
EMORBFN 3.0 95,708  

 
The collection of data sets used in this section (Hepatitis, Iris, Pima, Sonar, Wbcd, 

Wine) was obtained from the UCI Repository of Machine Learning Database [2]. The 
parameters used for C4.5, MLP-Back and RBFN-Incr are the ones proposed by the 
authors. In order to estimate the precision we use a ten-fold cross validation approach, 
that is, ten partitions for training and test sets, 90% for training and 10% for testing, 
where the ten test partitions form the whole set. For each dataset we consider the 
average results of the ten partitions. 

From Table 2 to Table 7 the classification test rate of the methods and their 
corresponding complexities (number of nodes -RBFs- in the RBFN or number of the 
rules for C4.5) are shown. For the EMORBFN algorithm, the best accuracy network 
obtained is chosen.  
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From these results it can be inferred that EMORBFN is the best method in 
accuracy in five of the six datasets; only in Hepatitis dataset, C4.5 outperforms 
EMORBFN in only two points. Despite this fact, EMORBFN obtains the second best 
result in accuracy for this dataset. Regarding the complexity of the models obtained, 
EMORBFN achieves the model with the lowest complexity in five of the six datasets. 
Only EORBFN obtains a model with lower complexity in Sonar Dataset. But again, 
EMORBFN obtains the second best result in complexity for this dataset. 

Only attending to the results obtained by EMORBFN and EORBFN can be 
observed that: the results of EORBFN regarding accuracy are similar to the 
EMORBFN results; but studying complexity, EORBFN obtains more complex 
models that EMORBFN. Also, EORBFN models often reach the maximum limit of 
RBFs, set in its parameters. This fact confirms the hypothesis that EMORBFN 
overcomes the drawbacks of EORBFN. 

5   Conclusions 

In this paper a new evolutionary multiobjective algorithm for RBFN design, 
EMORBFN, has been presented. EMORBFN implements the basic pseudocode of 
any evolutionary algorithm but, in order to fill the population of the next generation, a 
NSGAII-based technique is used. In order to promote diversity, new operators to 
recombine and mutate individuals of the population are introduced. Another important 
characteristic of EMORBFN is the use of a dissimilarity measure (HVDM) to 
calculate distances between nominal attributes. 

To analyze the behavior of EMORBFN, a traditional evolutionary monoobjective 
optimization algorithm (EORBFN) for RBFN design has been developed. EORBFN 
has the same operating elements that EMORBFN but only optimizes the accuracy of 
the networks. Also, the results for other well-known classification methods, such as 
C4.5, MLP-BackPropagation and an incremental RBFN design method have been 
obtained and used in the comparison.  

An analysis of the results shows that EMORBFN mostly outperforms the other 
proposals, both in accuracy and complexity. EORBFN achieves competitive accuracy 
results but the models obtained reach the maximum limit of RBFs set in the 
parameters. This fact confirms our initial hypothesis and demonstrates that 
EMORBFN overcomes the drawbacks of traditional evolutionary design algorithms. 
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