
A Preliminary Study on Mutation Operators in Cooperative
Competitive Algorithms for RBFN Design

Maŕıa Dolores Ṕerez-Godoy, Antonio J. Rivera, Cristóbal J. Carmona and Marı́a Jośe del Jesus

Abstract— Evolutionary Computation is a typical paradigm for
the Radial Basis Function Network design. In this environment
an individual represents a whole network. An alternative is to
use cooperative-competitive methods where an individual is a
part of the solution. CO2RBFN is an evolutionary cooperative-
competitive hybrid methodology for the design of Radial Basis
Function Networks. In the proposed cooperative-competitive
environment, each individual represents a Radial Basis Function,
and the entire population is responsible for the final solution. In
order to calculate the application probability of the evolutive
operators over a certain Radial Basis Function, a Fuzzy Rule
Based System has been used. In this paper, CO2RBFN is adapted
to the regression problem and an analysis of mutation operator
is performed. To do so, two implementation of the mutation
operator, based on gradient and based on clustering, have been
implemented and tested. The results have been compared with
other data mining and mathematical methods usually used in
regression problems.

I. I NTRODUCTION

Evolutionary Computation (EC) [1] is a general stochastic
optimization framework inspired by natural evolution. Typi-
cally, in this paradigm each individual represents a solution
and is evaluated by means of a fitness value or a measure of
the quality of the represented solution. New individuals are
obtained using operators such as recombination or mutation
and a selection mechanism, based on fitness, decide the
individuals of the next generation.

Artificial Neural Networks (ANNs) [2] are another abstrac-
tion of a natural process. In short, an ANN is an interconnected
network of very simple calculating units called neurons. Every
connection in the network is assigned a weight which specifies
the extent of possible influence. The structure of the network
determines how the neurons influence each other. ANNs have
successfully used in many applications of fields such as patter
recognition, regression or time series prediction.

Unfortunately, determining the architecture and the param-
eters of a neural network is not an automatically process
and classical methods can be trapped in local optimum [1].
Evolutionary algorithms (EAs) are typically used in ANN
design [3]. EAs can quickly locate areas of high quality
solutions when the domain is very large or complex. This is
important in ANN design and training, where the search space
is infinite, highly dimensional and multimodal.

Radial Basis Function Networks (RBFNs) are one of the
most important ANN paradigms in the machine learning
design field. An RBFN is a feed-forward ANN with a single

Department of Computer Sciences, University of Jaen, Campus las La-
gunillas s/n, 23071 Jaen, Spain; email: lperez, arivera, ccarmona, mjje-
sus(@ujaen.es).

layer of hidden units, called radial basis functions (RBFs).
The first research on neural networks based on RBFs [4]
was carried out at the end of the eighties. Since then, the
overall efficiency of RBFNs has been proved in many areas
like pattern classification [5], function approximation [6] and
time series prediction [7]. The main features of a RBFN are
a simple topological structure, with only one hidden layer,
of neurons/RBFs that have a particular locally-tuned response
that depends on the center and the width (radius) of each RBF.
Also, they have universal approximation capability [6].

The objective of any RBFN design process is to determine
centres, widths and the linear output weights connecting
the RBFs to the output neuron layer. The most traditional
learning procedure has two stages: first, unsupervised learning
of centres and widths is used, and finally output weights are
established by means of supervised learning. Clustering tech-
niques [8] are normally used to adjust the centres. Regarding
the widths, they may all be given the same value, may reflect
the width of the previously calculated clusters (i.e., RBFs),
or may be established as the average distance between RBFs,
among other possibilities. In order to obtain the weights in the
second stage, algorithms such as Least Mean Square (LMS)
[9] or Singular Value Decomposition (SVD) [10] can be used.

One important paradigm for RBFN design is EC [16].
In most of the proposals within this evolutionary paradigm
an individual represents a whole RBFN (Pittsburgh codifica-
tion). An alternative to the classical Pittsburgh codification
are the cooperative-competitive evolutionary or cooperative-
coevolutive strategies [7] [11], where an individual of the
population represents only a part of the solution.

The authors developed a hybrid cooperative-competitive
evolutionary proposal for RBFN design, CO2RBFN, applied
to the classification problem [12]. In this paper, an adap-
tation of CO2RBFN is presented in order to deal with the
regression problem. In this adaptation process two biased
mutation operators (based on gradient and based on clustering)
have been implemented and tested, resulting in two version
of CO2RBFN: CO2RBFN-Grad and CO2RBFN-Clust respec-
tively. The results obtained by these two versions have been
compared with other data mining methods typically used for
regression problems such as a fuzzy system developed with
a GA-P algorithm (Fuzzy-GAP) [13], a multilayer percep-
tron network trained using a the well-known backpropagation
learning algorithm (MLP-Back) [2], a classical design method
for Radial Basis Function Network learning (RBFN-LMS) and
a support vector machine based method (NU-SVR) [14]. Also
a classical mathematical regression method, Linear-LMS [15]

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 349

has been used in the comparison.
This paper is organized as follows: section 2 discusses

generalities about RBFNs and reviews the RBFN evolutionary
design. In section 3 CO2RBFN is presented. The study and
results obtained for regression problems are detailed in Section
4. In Section 5, conclusions and future works are outlined.

II. RBFN AND ITS EVOLUTIONARY DESIGN

From a structural point of view, an RBFN is a feed-forward
neural network with three layers: an input layer withn nodes,
a hidden layer withm neurons or RBFs, and an output layer
with, in regression, one node (see figure 1).

Fig. 1. RBFN Topology for time series forecasting

The m neurons of the hidden layer are activated by a
radially-symmetric basis function,φi : Rn → R, which can be
defined in several ways, being the Gaussian function the most
widely used, i.e.:φi(~x) = φi(e−(‖~x−~ci‖/di)

2
), where~ci ∈ Rn

is the centre of basis functionφi, di ∈ R is the width (radius),
and‖‖ is typically the Euclidean norm onRn. This expression
is the one used in this paper as the Radial Basis Function
(RBF). The output nodes implement the following function:

f(~x) =
m∑

i=1

wiφi(~x) (1)

As mentioned an important paradigm for the RBFN de-
sign is EC [16][5]. Typically, EC maintains a population of
individuals (a whole RBFN), which evolves according to the
operators as mutation, recombination or selection and each
individual in the population receives a measure of its fitness
in the environment. Nevertheless EC presents some difficulties
for certain learning problems, especially in the evaluation of
independent subcomponents (RBFs) [11].

In order to overcome these drawbacks a cooperative-
competitive evolutionary strategy [7][11][17] can be used. This
paradigm extends the basic computational model of evolution
to provide a framework within which the individuals in the
population represent only a part of the solution (a RBF in our
case) and evolve in parallel, not only competing to survive
but also cooperating in order to find a common solution
(the whole RBFN) at the same time. This approach has the
advantage of being computationally less complex, since an
individual does not represent the whole solution but only a
part of it. With this approach, two main problems must be

addressed: credit assignment, or the fitness allocated to each
individual according to its contribution to the final solution,
and the mechanism used in order to maintain diversity among
individuals of the population.

III. CO2RBFN FOR REGRESSION

CO2RBFN, is an evolutionary cooperative-competitive hy-
brid algorithm for the design of Radial Basis Function Net-
works (RBFNs).

In CO2RBFN, each individual of the population represents,
with a real representation, a basis function (RBF) and the
entire population is responsible for the final solution. The
individuals cooperate towards a definitive solution, but they
must also compete for survival.

In this cooperative-competitive environment, in which the
solution depends on the behaviour of many components, the
fitness of each individual is known as credit assignment. In
order to measure the credit assignment of an individual, three
factors have been proposed to evaluate the role of each RBF
in the network. These factors are: the RBF contribution to the
network output, the error in the basis function radius, and the
degree of overlapping among RBFs.

There are four evolutionary operators that can be applied to
an RBF: an operator that eliminates the RBF, two operators
that mutate the RBF, and finally an operator that maintains the
RBF parameters These operators have been designed in order
to adequately explore and exploit the search space.

The application of the operators is determined by a Fuzzy
Rule-Based System (FRBS). The inputs of this system are the
three parameters used for credit assignment and the outputs
are the operators’ application probability. To design the set of
rules we must take into account the fact that an RBF is worse
if its contribution is low, its error is high and its overlapping
is also high, otherwise it is better. In this way the probability
of eliminating an RBF is high when this RBF is worse and so
on.

The main steps of CO2RBFN, explained in the following
subsections, are shown in the pseudocode in figure 2.

1. Initialize RBFN
2. Train RBFN
3. Evaluate RBFs
4. Apply operators to RBFs
5. Substitute the eliminated RBFs
6. Select the best RBFs
7. If the stop condition is not

verified go to step 2

Fig. 2. Main steps of CO2RBFN

A. RBFN initialization

To define the initial network, with a number of RBFs
established by the size of the population, a simple process
is used: a specified number,m, of neurons (i.e. the size of
population) is randomly allocated among the different patterns

350

of the training set. To do so, each RBF centre,~ci , is randomly
established to a pattern of the training set. The RBF widths,
di, will be set to half the average distance between the centres.
Finally, the RBF weights,wij , are set to zero.

B. RBFN training

During this stage, RBF weights are trained. The Least Mean
Square (LMS) algorithm [9] has been used to calculate the
RBF weights. This technique exploits the local information
that can be obtained from the behaviour of the RBFs. The
equation shows the update of the weights.

wk+1 = wk + α
ekxk

|x2
k|

(2)

wherek is the number of iteration,wk+1 is the next value of
the weight vector,wk is the present value of the weight vector,
xk, in this case, is the RBFs output value of the actual input
pattern vector. The present linear error,ek, is defined as the
difference between the desired output and the output network
before adaptation. Theα value is thespeed of learning, it
measures the size of the adjustment to be made. The choice
of α controls stability and speed of convergence.

C. RBF evaluation

A credit assignment mechanism is required in order to
evaluate the role of each basis function in the cooperative-
competitive environment.

For an RBFφi, three parameters,ai, ei, oi are defined:
• The contribution, ai, of the RBF φi, i = 1 . . . m,

is determined by considering the weight,wi, and the
number of patterns of the training set inside its width,
npii. An RBF with a low weight and few patterns inside
its width will have a low contribution:

ai =
{ |wi| if npii > q

|wi| ∗ (npii/q) otherwise
(3)

where q is the average of thenpii values minus the
standard deviation of thenpii values.

• The error measure,ei, for each RBFφi, is obtained by
calculating the Mean Square Error (MSE):

ei =

∑
∀pii

(
f(pii)− y(pii)

)2

npii
(4)

wheref(pii) is the output of the model for the pointpii,
inside the width of RBFφi, y(pii) is the real output at
the same point, andnpii is the number of points inside
the width of RBFφi.

• The overlapping of the RBFφi and the other RBFs is
quantified by using the parameteroi. This parameter is
calculated by taking into account the fitness sharing [18]
methodology, whose aim is to maintain diversity in the
population. This factor is expressed as:

oi =
∑m

j=1 oij

oij =
{

(1− ‖φi − φj‖/di) if‖φi − φj‖ < di

0 otherwise
(5)

whereoij measures the overlapping of the RBFφi y φj

j = 1 . . . m.

D. Applying operators to RBFs

In this algorithm four operators have been defined in order
to be applied to the RBFs:

• Operator Remove: eliminates an RBF.
• Operator Random Mutation: modifies the centre and

width of an RBF. The width is altered with a probability
inversely proportional to the number of features of the
regression problem (n), at a percentage below50% of
the old width. The coordinates of the centre increase
or decrease at a percentage below50% of the width.
The number of coordinates to be mutated is randomly
obtained and is a number below25% of the total number
of coordinates.

• Operator Biased Mutation: modifies the width and all
coordinates of the centre using local information of the
RBF environment. As biased mutation operator, two
proposals based on classical RBFN training methods,
gradient and clustering, are described. The two proposals
resulting in two implementations: CO2RBFN-Grad and
CO2RBFN-Clust respectively and will be tested in the
experimental section.
a) CO2RBFN-Grad. The operator used follows the rec-
ommendations of [19] that are similar to those used by
the algorithm LMS algorithm. The error for the patterns
within the radius of the RBF,φi, are calculated. For each
coordinate of the center and the radius a value∆cij and
∆di respectively are calculated. The new coordinates and
the new radius are obtained by changing (increasing or
decreasing) its old values to a random number (between
5% and50% of its old width), depending on the sign of
the value calculated.

∆di =
∑

k

e(−→pk) · wi (6)

wheree(−→pk) is the error for the pattern−→pk.

∆cij = sign(cij − pkj) · e(−→pk) · wi (7)

b) CO2RBFN-Clust. As mentioned clustering techniques
are habitually used in order to place RBFs inside the
RBFN design [8]. The proposed mutation operator fol-
lows the basic method of the k-means clustering tech-
nique for calculating the center of the RBF. In this way
the geometric center of the patterns inside the RBF width
is calculated. The new coordinates of the RBF center are
obtained by changing (increasing or decreasing) its old
values in a random number (between5% and50% of its
old width) in the direction of the mentioned geometric
center, see equation 8.

351

~Ci =

n∑
i=1

µCi
(~pii)~pii

n∑
i=1

µCi
(~pii)

(8)

where ~pii is a pattern within the radius of the RBF,φi

and ~Cj is the calculated cluster for the RBF,φi. In order
to establish the new radius, the distance to the farthest
pattern inside is calculated. As above the new radius is
obtained changing (increasing or decreasing) its old value
in a random number (between5% and 50% of its old
width) in the direction of the mentioned farthest distance.

• Operator Null: in this case all the parameters of the RBF
are maintained.

These mutation operators allow us to obtain an appropriate
balance between exploitation and exploration, which is a desir-
able feature in every evolutionary algorithm. Biased mutations
use local information from the RBF environment in order to
achieve an optimal adaptation. On the other hand, random
mutations carry out alterations that lead to the exploration of
the environment and thus avoid local optimums.

The operators are applied to the whole population of RBFs.
The probability for choosing an operator is determined by
means of a Mandani-type fuzzy rule based system [20] which
represents expert knowledge about the operator application in
order to obtain a simple and accurate RBFN.

The inputs of this system are parametersai, ei and oi

used for defining the credit assignment of the RBFφi. These
inputs are considered as linguistic variablesvai, vei and
voi. The outputs,premove, prm, pbm andpnull, represent the
probability of applying Remove, Random Mutation, Biased
Mutation and Null operators, respectively. The number of
linguistic labels has been empirically determined and the fuzzy
sets have been defined according to their meaning. Figure
3 shows the membership functions for the input and output
variables respectively. As defuzzification method the centre of
area/gravity technique is used. Table I shows the rule base
used to relate the described antecedents and consequents. In
the table each row represents one rule. For example, the
interpretation of the first rule is: If the contribution of an
RBF is Low Then the probability of applying the operator
Remove is Medium-High, the probability of applying the
operator Random Mutation is Medium-High, the probability
of applying the operator Biased Mutation is Low and the
probability of applying the operator Null is Low.

The rule base represents expert knowledge, as mentioned,
in the design of RBFNs. It was developed taking into account
the fact that an RBF is worse if its contribution (ai) is low,
its error (ei) is high and its overlapping (oi) is also high.
On the other hand, an RBF is better when its contribution
is high, its error is low and its overlapping is also low. A
worse RBF indicates that this neuron has problems perform-
ing a good role in its environment and therefore, important
changes such as random mutations or even removing the RBF

must be promoted. In these cases the probability of applying
the biased mutation operator and the null operator is low.
However, a better neuron implies that the RBF is working
well in its environment. In these situations exploitation is
promoted increasing the probability of applying the biased
mutation operator. The probability of maintaining the neuron
with the same parameters, applying the null operator, is also
augmented. In these cases the probability of removing the RBF
will be low. The probability of applying random mutation is
usually high in order to promote a parsimonious evolution.
It can be highlighted that this rule base represents general
knowledge related with the design of RBFNs.

Fig. 3. a) input variables membership functions for the FRBS. b) output
variables membership function

TABLE I

FUZZY RULE BASE REPRESENTING EXPERT KNOWLEDGE IN THE DESIGN

OF RBFNS

Antecedents Consequents
va ve vo premove prm pbm pnull

R1 L M-H M-H L L
R2 M M-L M-H M-L M-L
R3 H L M-H M-H M-H
R4 L L M-H M-H M-H
R5 M M-L M-H M-L M-L
R6 H M-H M-H L L
R7 L L M-H M-H M-H
R8 M M-L M-H M-L M-L
R9 H M-H M-H L L

E. Introduction of new RBFs

In this step of the algorithm, the eliminated RBFs are substi-
tuted by new RBFs. The new RBF is located in the pattern with
maximum error of the training set or in a randomly chosen
pattern with a probability of 0.5 respectively.

352

In the first instance, the new RBF is placed in the pattern
with maximum error outside the radius of any RBF. The width
of the new RBF will be set to the average of the RBFs in the
population plus half of the minimum distance to the nearest
RBF. Its weights are set to zero.

If it is chosen randomly, the RBF is located in the first
pattern found outside any RBF width. The width of the new
RBF is set to the average of the RBFs in the population and
its weights are set to zero.

F. Replacement strategy

After applying the mutation operators, new RBFs appear.
The algorithm uses the replacement scheme to decide which
new RBFs will be included in the new population. To do so,
for each mutated RBF a net, with the child RBF but without
the parent RBF, is built. Then, every new net is evaluated (by
means its training classification error) in order to determine the
RBF (child or parent) with the best behaviour and to include
it in the population.

IV. EXPERIMENTAL FRAMEWORK

In this study two versions of CO2RBFN, four data mining
methods and a classical mathematical method are applied to
seven regression data-sets from the UCI repository [21]. Table
II summarizes the data selected in this study and shows, for
each data-set, number of attributes (#Attributes) and number
of examples (#Examples).

TABLE II

DESCRIPTIONDATA -SET

Name #Attributes #Examples
autompg8 7 392

daily-el.-en. 6 365
ele1 2 495
ele2 4 1056

forestfires 12 517
friedman 5 1200

machinecpu 6 209

As mentioned CO2RBFN-Grad is the version of CO2RBFN
which a gradient-based operator as biased mutation operator
and CO2RBFN-Clust is the version of CO2RBFN which a
clustering-based operator as biased mutation operator.

In order to compare the results obtained by the different
versions of CO2RBFN, four data mining methods, habitually
used in regression tasks have been chosen, such as a fuzzy
system developed with a GA-P algorithm (Fuzzy-GAP) [13],
a multilayer perceptron network trained using a the well-
known backpropagation learning algorithm (MLP-Back) [2],
a classical design method for Radial Basis Function Net-
work learning (RBFN-LMS) and a support vector machine
based method (NU-SVR) [14]. Also a classical mathematical
regression method, Linear-LMS [15], has been used in the
comparison:

• Fuzzy-GAP method [13]. A GA-P method [22] uses an
evolutionary computation method, a hybrid between ge-
netic algorithms and genetic programming, and optimized

to perform symbolic regressions. Each element comprises
a chain of parameters and a tree which describes a func-
tion, depending on these parameters. The two operators
by means of which new members of the population
are generated are crossover and mutation. In the GA-P
algorithm both operations are performed independently
over the tree and the parameter chain.

• MLP-BackProp. The multilayer perceptron (MLP) [2]
network consists of a set of source nodes forming the
input layer, one or more hidden layers of computation
nodes, and an output layer of nodes. The input signal
propagates through the network layer-by-layer. For the
MLP, the most commonly activation functions, used in
the computation nodes, are the logistic sigmoidalϕ(x) =
1/1 + e−x or the hyperbolic tangentϕ(x) = 1−e−x

1+e−1 . In
regression, the net output is given byf(~x) =

∑
i wiϕi

wherewi are the weights to learn. In [23] is show that
the MLP has universal approximation ability.

• RBFN-LMS. Builds an RBFN with a pre-specified num-
ber of RBFs. By means of the c-means clustering al-
gorithm it chooses an equal number of points from the
training set to be the centres of the neurons. Finally, it
establishes a single radius for all the neurons as half the
average distance between the set of centres. Once the
centres and radio of the network have been fixed, the
set of weights is analytically computed using the LMS
algorithm [9].

• NU-SVR, the SVM (Support Vector Machine) model uses
the sequential minimal optimization training algorithm
and treats a given problem in terms of solving a quadratic
optimization problem. The NU-SVR, called also v-SVM,
for regression problems is an extension of the traditional
SVM and it aims to build a loss function [14].

• Linear-LMS. In order to complete the experimentation an
example of classical mathematical method for regression
[15] based on gradient techniques have been chosen.

The implementation of these data mining methods has
obtained from KEEL [24]. The main parameters used are set
to the values indicated by the authors. It must be highlighted
that in this version of KEEL, the complexity of the models
obtained by the methods can not always be obtained. Therefore
only can be managed the complexity of the MLP-BackProp
method (30 neurons) and RBFN-LMS (50 RBFs/neurons). The
parameters used for CO2RBFN are shown in table III.

TABLE III

PARAMETERS USED FORCO2RBFN

Parameter Value
Generations of the main loop 200
Number of RBF’s 10

In order to estimate precision we use a ten-fold cross
validation approach,90% for training and10% for testing.
For each data-set we consider the average results of the Mean
Square Error (MSE) of repeating five times the execution of

353

the ten partitions. Tables of results show the average and
deviation of the obtained test errors.

Results of CO2RBFN are shown in table IV. Results ob-
tained by other data mining methods are shown in tables V
and VI.

TABLE IV

MSE TEST ERROR OBTAINED BYCO2RBFN-GRAD AND

CO2RBFN-CLUST

Data sets CO2RBFN-Grad CO2RBFN-Clust
autompg8 0.00602± 0.00220 0.00622± 0.00196

daily-el.-en. 0.00890± 0.00178 0.00895± 0.00187
ele1 0.00717± 0.00252 0.00749± 0.00369
ele2 0.00042± 0.00008 0.00049± 0.00015

forestFires 0.00356± 0.00574 0.00353± 0.00576
friedman 0.00601± 0.00117 0.00575± 0.00130

macninecpu 0.00515± 0.01008 0.00557± 0.01005

TABLE V

RESULTS OBTAINED BY FUZZY-GAP, L INEAR-LMS AND NU-SVR

Data sets Fuzzy-Gap Linear-LMS NU-SVR
autompg8 0.01185± 0.00420 0.00895± 0.00296 0.00944± 0.00236

daily-el.-en. 0.01459± 0.00444 0.00922± 0.00197 0.00968± 0.00208
ele1 0.00870± 0.00304 0.00739± 0.00258 0.00911± 0.00257
ele2 0.00311± 0.00267 0.00037± 0.00003 0.00038± 0.00003

forestFires 0.00364± 0.00614 0.00342± 0.00578 0.00352± 0.00574
friedman 0.01639± 0.00631 0.00905± 0.00188 0.00932± 0.00155

macninecpu 0.00529± 0.00423 0.00480± 0.00358 0.00530± 0.00421

TABLE VI

RESULTS OBTAINED BY MLP-BACK AND RBFN-LMS

Data sets MLP-Back RBFN-LMS
autompg8 0.06328± 0.02044 0.00620± 0.00236

daily-el.-en. 0.04303± 0.01722 0.00952± 0.00265
ele1 0.34278± 0.06522 0.00696± 0.00235
ele2 0.18964± 0.07051 0.00022± 0.00007

forestFires 0.03136± 0.05045 0.00450± 0.00845
friedman 0.03638± 0.00701 0.00220± 0.00058

macninecpu 0.19421± 0.15188 0.00355± 0.00409

As analysis of the results, it can be deduced that the
version of CO2RBFN with a biased mutation operator based
on gradient slightly outperforms, in accuracy, the version
of CO2RBFN with a biased mutation operator based on
clustering. CO2RBFN-Grad has a better (lower) error in five
of the seven data-sets. The deviation of both implementations
is similar and in the same line CO2RBFN-Grad slightly out-
performs CO2RBFN-Clust. The fact that a gradient mutation
operator works better than a clustering operator is according to
[25] which concludes that, in regression problems, is better to
take into account the output space (gradient operator) thatthe
input space (clustering operator). In any case and from these
results we can sentence that CO2RBFN is a robust RBFN
design methodology.

Regarding the accuracy obtained by the other methods,
CO2RBFN-Grad and CO2RBFN-Clust clearly outperform
methods such as Fuzzy-GAP, MLP-BackProp or NU-SVR,

specialized data mining methods in the regression problem.
Taking into account the complexity a model of CO2RBFN
has 10 neurons and a model of MLP-BackProp 30 neurons.
CO2RBFN-Grad slightly outperforms the accuracy of the
Linear-LMS method achieving a best result in four of the
seven data-sets. Linear-LMS obtain one more best result
that CO2RBFN-Clust, but when CO2RBFN-Clust outperforms
Linear-LMS its differences are higher. RBFN-LMS obtain
models with 50 neurons versus the 10 neurons obtained
for the CO2RBFN models. Despiste this fact, CO2RBFN-
Grad obtains best results that RBFN-LMS in three data-sets
(autompg8, daily-electric-energy and forestfires). In this sense
must be highlighted the good job of CO2RBFN placing and
tuning the RBFs of the designed networks.

V. CONCLUSIONS

CO2RBFN is a hybrid evolutionary cooperative-competitive
algorithm for RBFN design and in this work it has been
adapted to regression problems. An important key point of our
proposal is the identification of the role (credit assignment)
of each basis function in the whole network. In order to
evaluate this value for a given RBF three factors are defined
and used: the RBF contribution to the network’s output,ai;
the error in the basis function radius,ei; and the degree of
overlapping among RBFs,oi. In order to drive the cooperative-
competitive process four operators are used: Remove, Random
Mutation, Biased Mutation (based on clustering) and Null. The
application of these operators is determined by a fuzzy rule-
based system which represents expert knowledge of the RBFN
design. The inputs of this system are the three parameters used
for credit assignment.

In this adaptation process, we have developed two versions
of CO2RBFN: CO2RBFN-Grad, a version where a gradient-
based biased mutation operator has been implemented and
CO2RBFN-Clust a version where a clustering-based biased
mutation operator has been implemented.

For comparisons, typical data mining methods applied for
the regression problems have been executed. Concretely MLP-
BackProp, a multilayer perceptron network trained with a
backpropatation algorithm; Fuzzy-GAP, a fuzzy system de-
veloped with a GA-P algorithm; RBFN-LMS, a radial basis
function network trained with the LMS algorithm; NU-SVR,
a support vector machine based method and Linear-LMS a
classical regression mathematical method.

From the results we can conclude CO2RBFN-Grad slightly
outperforms CO2RBFN-Clust, may be because, in regression
problems, it is better to take into account the output space that
the input space.

Moreover CO2RBFN outperforms methods as Fuzzy-GAP,
MLP-BackProp or NU-SVR and CO2RBFN-Grad slightly out-
performs Linear-LMS. Even CO2RBFN outperforms RBFN-
LMS in three data-sets, taking into account that the models of
RBFN-LMS have 50 neurons and the models of CO2RBFN
only have 10 neurons. In sort it can be said that CO2RBFN is
a robust RBFN design methodology and performs an adequate
job placing and tuning the neurons or RBFs of the obtained

354

RBFN models. As future lines new designs of operators and
application strategies will be carry out.

ACKNOWLEDGMENT

This work is supported by the Spanish Ministry of Science
and Technology under the Projects TIN2008-06681-C06-02
and the Andalusian Research Plan TIC-3928.

REFERENCES

[1] T. Bäck, U. Hammel, and H. Schwefel. Evolutionary computation:
comments on the history and current state.IEEE Transactions Evolutive
Compututation, 1(1):3–17, 1997.

[2] S. Haykin.Neural Networks: A Comprehensive Foundation, 2nd Edition.
Prentice Hall, 1999.

[3] X. Yao. Evolving artificial neural networks. InProceedings of the IEEE,
volume 87, pages 1423–1447, 1999.

[4] D. Broomhead and D. Lowe. Multivariable functional interpolation and
adaptive networks.Complex Systems, 2:321–355, 1988.

[5] O. Buchtala, M. Klimek, and B. Sick. Evolutionary optimization of
radial basis function classifiers for data mining applications. IEEE
Transactions on System, Man, and Cybernetics, B, 35(5):928–947, 2005.

[6] J. Park and I. Sandberg. Universal approximation using radial-basis
function networks.Neural Compututation, 3(2):246–257, 1991.

[7] B. Whitehead and T. Choate. Cooperative-competitive genetic evolution
of radial basis function centers and widths for time series prediction.
IEEE Transactions on Neural Networks, 7(4):869–880, 1996.

[8] W. Pedrycz. Conditional fuzzy clustering in the design of radial basis
function neural networks. IEEE Transactions on Neural Networks,
9(4):601–612, 1998.

[9] B. Widrow and M.A. Lehr. 30 years of adaptive neural networks:
perceptron, madaline and backpropagation. InProceedings of the IEEE,
volume 78, pages 1415–1442, 1990.

[10] G. Golub and C. Van Loan.Matrix computations. Hopkins University
Press. 3rd edition, 1996.

[11] M. Potter and K. De Jong. Cooperative coevolution: an architecture
for evolving coadapted subcomponents.Evolutionary Compututation,
8(1):1–29, 2000.

[12] M. D. Pérez-Godoy, A. J. Rivera, F. J. Berlanga, and M. J. del Jesus.
Co2rbfn: An evolutionary cooperative-competitive rbfn designalgorithm
for classification problems.Soft Computing, 14(9):953–971, 2010.

[13] L. Sánchez and I. Couso. Fuzzy random variables-based modeling
with ga-p algorithms. In: B. Bouchon, R.R. Yager, L. Zadeh (Eds.)
Information, Uncertainty and Fusion, pages 245–256, 2000.

[14] R. E. Fan, P. H. Chen, and C. J. Lin. Working set selectionusing the
second order information for training svm.Journal of Machine Learning
Research, 6:1889–1918, 2005.

[15] J.S. Rustagim.Optimization Techniques in Statistics. Academic Press,
1994.

[16] C. Harpham, C.W. Dawson, and M.R. Brown. A review of genetic
algorithms applied to training radial basis function networks. Neural
Computing and Applications, 13:193–201, 2004.

[17] A.J. Rivera, I. Rojas, J. Ortega, and M.J. del Jesus. A new hybrid
methodology for cooperative-coevolutionary optimization of radial basis
function networks.Soft Computing, 11(7):655–668, 2007.

[18] D. Goldberg.Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[19] J. Ghost, L. Deuser, and S. Beck. A neural network based hybrid
system for detection, characterization and classificationof short-duration
oceanic signals.IEEE Journal of Ocean Enginering, 17(4):351–363,
1992.

[20] E. Mamdani. Applications of fuzzy algorithms for symple dinamycs
plant. InProceedings of the IEEE, volume 121, pages 1585–1588, 1974.

[21] A. Asuncion and D.J. Newman. Uci machine learning repository.
University of California, Irvine, School of Information and Computer
Science, 2007.

[22] L. Howard and D. D’Angelo. The ga-p: A genetic algorithmand genetic
programming hybrid.IEEE Intelligent Systems, 10(3):11–15, 1995.

[23] K. Hornik, M. Stinchcombe, and H. Wite. Multilayer feedforward
networks are universal approximators.Neural Networks, 2:359–366,
1989.

[24] J. Alcaĺa-Fdez, L. Śanchez, S. Garcı́a, M.J. Del Jesus, S. Ventura, J.M.
Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas, J.C. Fernández, and
F. Herrera. Keel: A software tool to assess evolutionary algorithms for
data mining problems.Soft Computing, 13(3):307–318, 2009.

[25] J. Gonzlez, I. Rojas, J. Ortega, and A. Prieto. A new clustering technique
for function approximation. IEEE Transactions on Neural Networks,
13(1):132–142, 2002.

355

