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The nested generalized exemplar theory accomplishes learning by storing objects in Euclidean n-space,
as hyperrectangles. Classification of new data is performed by computing their distance to the nearest
“generalized exemplar” or hyperrectangle. This learning method allows the combination of the distance-
based classification with the axis-parallel rectangle representation employed in most of the rule-learning
systems. In this paper, we propose the use of evolutionary algorithms to select the most influential
hyperrectangles to obtain accurate and simple models in classification tasks. The proposal has been
ested generalized exemplar
earest neighbor
yperrectangles
volutionary algorithms
ata reduction
lassification

compared with the most representative models based on hyperrectangle learning; such as the BNGE, RISE,
INNER, and SIA genetics based learning approach. Our approach is also very competitive with respect
to classical rule induction algorithms such as C4.5Rules and RIPPER. The results have been contrasted
through non-parametric statistical tests over multiple data sets and they indicate that our approach
outperforms them in terms of accuracy requiring a lower number of hyperrectangles to be stored, thus
obtaining simpler models than previous NGE approaches. Larger data sets have also been tackled with
promising outcomes.
. Introduction

Exemplar-based learning was originally proposed in [1] and
onsiders a set of methods widely used in machine learning and
ata mining [2,3]. A similar scheme for learning from examples

s based on the Nested generalized exemplar (NGE) theory. It was
ntroduced in [4] and makes several significant modifications to the
xemplar-based learning model. The most important one is that it
etains the notion of storing verbatim examples in memory but
lso allows examples to be generalized. They are strongly related
o the nearest neighbor classifier (NN) [5] and were proposed in
rder to extend it. NGE learning algorithms are very popular for
heir simplicity and efficient results.

In NGE theory, generalizations take the form of hyperrectangles
n an Euclidean n-space. It can be approached as an exemplar-

ased generalization model. The hyperrectangles may be nested
nd inner hyperrectangles serve as exceptions to surrounding
yperrectangles. An specific example can be viewed as a minimal
yperrectangle. Hyperrectangles are axis-parallel rectangle repre-

∗ Corresponding author. Tel.: +34 953 212802.
E-mail addresses: sglopez@ujaen.es (S. García), jderrac@decsai.ugr.es

J. Derrac), julianlm@decsai.ugr.es (J. Luengo), ccarmona@ujaen.es (C.J. Carmona),
errera@decsai.ugr.es (F. Herrera).

568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2010.11.030
© 2010 Elsevier B.V. All rights reserved.

sentations employed in most of the rule-learning systems [6]. After
the learning process, a new example can be classified by comput-
ing the Euclidean distance between the example and each of the
hyperrectangles, predicting the class of the new example consid-
ering the nearest hyperrectangle. If two or more hyperrectangles
cover the example, a conflict resolution method to determine the
predicted class has to be used [4].

Several works argue the benefits of using hyperrectangles
together with instances to form the classification rule [7–9]. With
respect to instance-based classification [1], the employment of
hyperrectangles increases the comprehension of the data stored
to perform classification of unseen data and the achievement of a
substantial compression of the data, reducing the storage require-
ments. Considering rule induction [6], the ability of modeling
decision surfaces by hybridizations between distance-based meth-
ods (Voronoi diagrams) and parallel axis separators could improve
the performance of the models in domains with clusters of exem-
plars or exemplars strung out along a curve. In addition, NGE
learning allows us to capture generalizations with exceptions.

The methods used for generating nearest hyperrectangles clas-

sification can work in an incremental fashion, such as EACH [4], or in
batch mode (BNGE [7], RISE [8], FAN [10] and INNER [9]). The incre-
mental way is dependent on the order of presentation of examples
and usually offers poor results in standard classification. However,
it could be used in on-line learning scenarios. Batch mode meth-
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ds employ heuristics to determine the choice of the exemplars to
e merged or generalized at each stage. The results offered are very

nteresting and they usually outperform the results obtained by the
N classifier [7].

Extensions to NGE can be found in the specialized literature.
eath et al. [11] address the problem of whether reducing the
emory capacity of a learning algorithm will have an effect on

he speed learning, for a particular concept class, that of nested
yperrectangles. In [12], authors investigate the impact on the
redictive accuracy of the learnt concepts by NGE as a conse-
uence of using three distance functions, namely HVDM, IVDM and
VDM [13]. The fuzzy NGE model was proposed in [14,15] and

he transformation of neural networks based knowledge to NGE
ased knowledge was investigated in [16,17]. An interesting study
or analyzing hybridizations of exemplar-based learning with other

achine learning paradigms can be found in [18].
The problem of yielding an optimal number of hyperrectan-

les for classifying a set of points is NP-hard. A large but finite
ubset of hyperrectangles can be easily obtained following a sim-
le heuristic algorithm acting over the training data. However,
lmost all hyperrectangles produced could be irrelevant and, as
result, most influential ones must be distinguished. This com-

lete set of hyperrectangles is thus suitable for improvement by
data reduction technique [19]. Evolutionary algorithms (EAs)

20] have been used for data reduction with promising results
21,22]. They have been successfully used for feature selection
23–27], instance selection [28–31], simultaneous instance and fea-
ure selection [32,33] and under-sampling for imbalanced learning
34,35]. NGE is also directly related to clustering and EAs have been
xtensively used for this problem [36]. EAs for clustering could be
seful as alternative components of NGE learning, especially when
he initial candidate set of hyperrectangles to be selected has to be
btained.

In this paper, we propose the use of EAs for hyperrectangles’
election in classification tasks. One similar approach is SIA [37],
hich is a genetics-based machine learning method to obtain a set

f rules by means of computing distances among rules. Our objec-
ive is to increase the accuracy of this type of representation by

eans of selecting the best suitable set of hyperrectangles which
ptimizes the nearest hyperrectangle classification rule. We com-
are our approach with other NGE learning models, such as BNGE,
ISE, INNER and SIA, and two well-known rule induction learning
ethods: RIPPER and C4.5Rules. The empirical study has been con-

rasted via non-parametrical statistical testing [38–41]. The results
how an improvement in accuracy whereas the number of hyper-
ectangles stored in the final subset is reduced. This outcome is
specially observed when dealing with larger data sets. Regarding
lassic rule induction, we can observe that our proposal is more
daptable under different types of input data.

We note that the proposal described in this paper is an extended
lgorithm to that described in our previous work [42]. Our previous
ersion presented some weaknesses related to the few num-
er of examples covered by the hyperrectangles learned and the
reatment of noisy examples. In this paper, the coverage of the
yperrectangles is incorporated in the proposal and we present a
odification based on a previous stage of noise filtering. In addi-

ion, more data sets (including large size data sets) and appropriate
tatistical tools have been used to justify the conclusions achieved.

The paper is organized as follows. Section 2 gives an explana-
ion of the NGE learning model. In Section 3, all topics concerning
he approach proposed to tackle this problem are explained. In Sec-

ion 4 the experimentation framework is given and in Section 5 the
esults and analysis are presented. In Section 6, the conclusions are
ighlighted. Finally, Appendix A is included in order to illustrate
he comparisons of our proposal with other techniques through
tar plots.
uting 11 (2011) 3032–3045 3033

2. NGE learning model

NGE is a learning paradigm based on class exemplars, where an
induced hypothesis has the graphical shape of a set of hyperrectan-
gles in an M-dimensional Euclidean space. Exemplars of classes are
either hyperrectangles or single instances [4]. The input of an NGE
system is a set of training examples, each described as a vector of
pairs numeric attribute/value and an associated class. Attributes can
either be numerical or categorical. Numerical attributes are usually
normalized in the [0,1] interval.

In NGE, an initial set of points given in the M-dimensional
Euclidean space set is generalized into a smaller set of hyperrect-
angles in terms of the elements that it contains. Choosing which
hyperrectangle is generalized from a subset of points or other
hyperrectangles and how it is generalized depends on the concrete
NGE algorithm employed.

In the subsequent subsections we describe the essential con-
cepts to understand the NGE learning model, as well as the
algorithms used in this study. First, we explain the necessary con-
cepts to understand the classification rule followed by this type
of method (Section 2.1). After this, the two classical proposals of
hyperrectangle learning will be briefly described, BNGE in Sec-
tion 2.2.1 and RISE in Section 2.2.2, followed by two advanced
approaches: INNER in Section 2.3.1 and genetics-based SIA in Sec-
tion 2.3.2.

2.1. Matching and classification

The matching process is one of the central features in NGE
learning and it allows some customization, if desired. Generally
speaking, this process computes the distance between a new exam-
ple and an exemplar memory object (a hyperrectangle). For the
remainder of this paper, we will refer to the example to be classi-
fied as E and the hyperrectangle as H, independently of whether H
is formed by a single point or it has some volume.

The model computes a match score between E and H by mea-
suring the Euclidean distance between two objects. The Euclidean
distance is well-known when H is a single point. In the contrary
case, the distance is computed as follows (considering numerical
attributes):

DEH =

√√√√ M∑
i=1

(
difi

maxi − mini

)2

where

difi =

⎛
⎜⎝

Efi
− Hupper when Efi

> Hupper

Hlower − Efi
when Efi

< Hlower

0 otherwise

M is the number of attributes of the data, Efi
is the value of the

ith feature of the example, Hupper and Hlower are the upper and
lower values of H for a specific attribute and maxi and mini are
the maximum and minimum values for ith feature in training data,
respectively.

The distance measured by this formula is equivalent to the
length of a line dropped perpendicularly from the point Efi to the
nearest surface, edge or corner of H. Note that points internal to
a hyperrectangle have distance 0 to that rectangle. In the case of
overlapping rectangles, several strategies could be followed, but

the most usual is that in which a point falling in the area of over-
lap belongs to the smaller rectangle. The size of a hyperrectangle is
defined in terms of volume. In nominal attributes, the distance is 0
when two attributes have the same categorical label, and l on the
contrary.
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NGE theory also refers to weights associated with features in
xamples, but they are not considered in this paper because they
an be used independently to the induction of hyperrectangles in
GE. In [7], the authors noted that the use of weights do not always

mprove the performance of a NGE learner. Actually, they showed
hat mutual information weights could be appropriate in most of
he cases. Nevertheless, they insisted on that the mechanism of
eature weighting is independent of NGE and can therefore be used
s a pre-processing step for any inductive learning algorithm.

.2. Classical proposals

EACH, BNGE and RISE are the pioneer proposals for NGE learning.
ACH is not considered in this paper because the authors of BNGE
emonstrated that their proposal clearly outperforms EACH.

.2.1. BNGE: batch nested generalized exemplar
BNGE is a batch version of the first NGE model (also known as

ACH [4]) and it is proposed to alleviate some drawbacks presented
n the initial NGE [7]. It changes its incremental fashion to a batch

ode and adds some modifications in the matching rule, such as
ncluding all possible nominal values in hyperrectangle definition
nd adding a mechanism to deal with missing values. The general-
zation of a hyperrectangle is performed by expanding its frontiers
o just cover the desired example.

BNGE only merges hyperrectangles if the new generalized
yperrectangle does not cover (or does not overlap with) any
yperrectangles from any other classes. It does not permit over-

apping or nesting, which are two of the identified disadvantages
f incremental NGE.

.2.2. RISE: unifying instance-based and rule-based induction
RISE [8] is an approach proposed to overcome some of the lim-

tations of instance-based learning and rule induction by unifying
he two. It follows similar guidelines to those explained above, but
t also introduces some improvements regarding distance compu-
ations, since the SVDM distance [13] is used in nominal attributes.
ISE selects the rule with the highest accuracy (using the Laplace
orrection used by many existing rule-induction techniques [6])
nstead of choosing the smallest rule that covers the example.

BNGE and RISE follow a similar mechanism to produce hyper-
ectangles. They start from the complete training set and try to
erge the nearest examples/hyperrectangles if the global accu-

acy is not decreased. RISE uses a leave-one-out methodology to
ompute training accuracy and, contrary to BNGE, nesting or over-
apping between hyperrectangles is allowed.

.3. Advanced proposals

As advanced proposals, we describe INNER and SIA NGE learning
odels.

.3.1. INNER: inflating examples to obtain rules
INNER [9] is a machine learning system which induces hyper-

ectangles from a set of training examples, aiming to obtain a final
ule set which represents properly the domain of the problem.

It starts by selecting a small random subset of examples, which
re iteratively inflated in order to cover the surroundings with
xamples of the same class. These movements are accepted only
f they increase the confidence of a successful classification when

omparing it against the unconditional classification by using the
lass attribute of the hyperrectangle. Then, it applies a set of elastic
ransformations to the hyperrectangles, to finally obtain a concise
nd accurate hyperrectangle set to classify new data. These trans-
ormations include several processes:
uting 11 (2011) 3032–3045

• selection of the most appropriate hyperrectangle.
• the pruning of some of its conditions.
• two extension processes, where intersections between hyper-

rectangles are allowed only in the second one.

Finally, if the set of hyperrectangles still does not achieve enough
coverage level over the training examples, a final hyperrectan-
gle generation process is carried out again. Each hyperrectangle
obtained can be seen as a representative cluster of training exam-
ples of the same class. Thus, when a hyperrectangle is used to
classify an unseen example, the decision is supported by a natural
and solid explanation.

2.3.2. SIA: genetics-based supervised induction algorithm
SIA [37] is a classical iterative rule learning method [43] based

on genetic algorithms. The algorithm induces a set of rules which
can be considered as hyperrectangles in NGE. We define below its
main characteristics:

• The rule set is represented by classical IF-THEN rules. The con-
ditions of the different attributes of a rule may have a “don’t
care” value, a pair attribute-value if the attribute is symbolic, or
an interval value [B,B′] if the attribute is numerical.

• The main procedure of SIA is detailed as follows: first it selects
an uncovered sample and then it builds the most specific rule
that matches that example. Then, it generalizes the condition part
of the rule using a GA and it labels “covered” all the examples
matched by this rule and adds it to the rule set. This process is
repeated until no more examples remain uncovered.

• To classify a new pattern E we compute the distance of each rule
H to the example as DEH, as we have explained above. If more than
one rule has the same minimal distance to E, then the rule used
to predict the class is the one with highest confidence value.

3. Evolutionary selection of hyperrectangles

The approach proposed in this paper, named evolutionary
hyperrectangle selection by CHC (EHS-CHC), is fully explained in
this section. First, we introduce the CHC model used as an EA to per-
form hyperrectangle selection in Section 3.1. After this, the specific
issues regarding representation and fitness function are specified
in Section 3.2. Section 3.3 describes the process for generating the
initial set of hyperrectangles and Section 3.4 presents the extended
version of EHS-CHC: filtered EHS-CHC.

3.1. CHC model

As an evolutionary computation method, we have used the
CHC model [44,29]. CHC is a classical evolutionary model that
introduces different features to obtain a trade-off between explo-
ration and exploitation; such as incest prevention, reinitialization
of the search process when it becomes blocked and the competition
among parents and offspring into the replacement process.

During each generation the CHC develops the following steps.

• It uses a parent population of size N to generate an intermediate
population of N individuals, which are randomly paired and used
to generate N potential offspring.

• Then, a survival competition is held where the best N chromo-
somes from the parent and offspring populations are selected to
form the next generation.
CHC also implements a form of heterogeneous recombination
using HUX, a special recombination operator [44]. HUX exchanges
half of the bits that differ between parents, where the bit posi-
tion to be exchanged is randomly determined. CHC also employs a
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ethod of incest prevention. Before applying HUX to the two par-
nts, the Hamming distance between them is measured. Only those
arents who differ from each other by some number of bits (mating
hreshold) are mated. The initial threshold is set at L/4, where L is
he length of the chromosomes. If no offspring are inserted into the
ew population then the threshold is reduced by one.

No mutation is applied during the recombination phase. Instead,
hen the population converges or the search stops making
rogress (i.e., the difference threshold has dropped to zero and
o new offspring are being generated which are better than any
ember of the parent population) the population is reinitialized to

ntroduce new diversity to the search. The chromosome represent-
ng the best solution found over the course of the search is used as
template to reseed the population. Reseeding of the population is
ccomplished by randomly changing 35% of the bits in the template
hromosome to form each of the other N − 1 new chromosomes in
he population. The search is then resumed.

The pseudocode of CHC appears in Algorithm 1.

lgorithm 1 (Pseudocode of CHC algorithm).

input : A population of chromosomes Pa
output: An optimized population of chromosomes Pa
t ← 0;

Pa,ConvergenceCount ;
while not t,Pa do

Parents ← Pa ;
Offspring ← Parents ;

Offspring ;
Pn ← Offspring,Pa ;
if not Pa,Pn then

ConvergenceCount ← ConvergenceCount −1;
if ConvergenceCount = 0 then

Pn ← Pa ;
ConvergenceCount) ;

end
end
t ← t +1;
Pa ← Pn;

end

.2. Representation and fitness function

Let us assume that there is a training set TR with P instances
hich consists of pairs (xi, yi), i = 1, ..., P, where xi defines an input

ector of attributes and yi defines the corresponding class label.
ach one of the P instances has M input attributes. Let us also
ssume that there is a hyperrectangle set HS with N hyperrectan-
les whose rule representation consists of pairs (Hi, yi), i = 1, ..., N,
here Hi defines a set of conditions (A1, A2, ..., AM) and yi defines

he corresponding class label. Each one of the N hyperrectangles
as M conditions which can be numerical conditions, expressed

n terms of minimum and maximum values in intervals [0,1]; or
hey can be categorical conditions, by using a set of possible values
i = {v1i, v2i, ..., vvi}, assuming that it has vi different values. Note
hat we make no distinction between a hyperrectangle with vol-
me and minimal hyperrectangles formed by isolated points. Let
⊆ HS be the subset of selected hyperrectangles that result from
he run of a hyperrectangle selection algorithm.
Hyperrectangle selection can be considered as a search problem

o which EAs can be applied. We take into account two important
ssues: the specification of the representation of the solutions and
he definition of the fitness function.
uting 11 (2011) 3032–3045 3035

• Representation: The search space associated is constituted by all
the subsets of HS. This is accomplished by using a binary rep-
resentation. A chromosome consists of N genes (one for each
hyperrectangle in HS) with two possible states: 0 and 1. If the
gene is 1, its associated hyperrectangle is included in the sub-
set of HS represented by the chromosome. If it is 0, this does not
occur.

• Fitness function: Let S be a subset of hyperrectangles of HS and be
coded by a chromosome. We define a fitness function based on
the accuracy (classification rate) evaluated over TR through the
rule described in Section 2.1.

Fitness(S) = ˇ · (˛ · clas rat + (1 − ˛) · perc red) + (1 − ˇ) · cover.

clas rat denotes the percentage of correctly classified objects from
TR using S. perc red is defined as

perc red = 100 · |HS| − |S|
|HS| ,

and cover denotes the total coverage of examples in TR in the sub-
set of selected hyperrectangles, or in other words, the number of
examples of TR whose distance computation has been equal to 0
(examples covered by hyperrectangles).

The objective of the EAs is to maximize the fitness function
defined, i.e., maximize the classification rate and coverage while
minimizing the number of hyperrectangles selected. Although the
fitness function defined is focused on discarding single trivial
hyperrectangles (points), exceptions could be presented in special
cases where points are necessary to achieve high rates of accuracy.
Thus, the necessity of using single hyperrectangles or not will be
determined by the tradeoff accuracy-coverage and will be condi-
tioned by the problem tackled.

Regarding the parameters, we preserved the value of ˛ = 0.5 as
the best choice, due to the fact that it was analyzed in previous
works related to instance selection [28–30]. We have determined
empirically that a suitable value for ˇ should fall between 0.5 and
0.75. This empirical study is presented in the following.

Fig. 1 depicts a graphical representation of the performance of
EHS-CHC in accuracy in test and number of rules yielded in six data
sets of different characteristics (see Table 1). In Fig. 1, the accuracy
in test data obtained by EHS-CHC is represented considering the
values of ˇ from 0.1 to 0.9 and in Fig. 1, the number of rules yielded
are represented following the same mechanism. As we can see, the
trend in the accuracy lines is to start decreasing when ˇ = 0.75 in
most of cases, except in wine where no changes in accuracy can be
highlighted due to the fact that this data set is very simple. Fur-
thermore, in a certain subset of data sets, this decrease is noticed
before, when � = 0.6. On the other hand, the lines of number or
rules yielded by EHS-CHC follow a decremental behavior according
to ˇ increases. For these reasons, we decided to choose ˇ = 0.66 as
a general suitable value.

We want to notice that our objective is to identify the best val-
ues of the parameters that configure the evolutionary approach in
a general way. For a specific classification problem, these values
could be tuned in order to optimize the results achieved, but this
may affect to other aspects, like efficiency or simplicity. General
rules can be given about this topic:

- The number of evaluations and population size are the main fac-

tors for obtaining good results in accuracy and simplicity. The
increase of these values has a negative effect on efficiency. In
larger problems, it may be necessary to increase both values, but
we will show in the experimental study that values of 10,000 and
50 work appropriately, respectively.
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Table 1
Summary description of used data sets.

Data set #Ex. #Atts. #Num. #Nom. #Cl.

Appendicitis 106 7 7 0 2
Australian credit 690 14 8 6 2
Balance 625 4 4 0 3
Breast 286 9 0 9 2
Bupa 345 6 6 0 2
Cleveland 297 13 13 0 5
Contraceptive 1473 9 9 0 3
Crx 125 15 6 9 2
Dermatology 366 34 34 0 6
E. coli 336 7 7 0 8
German 1,000 20 7 13 2
Glass 214 9 9 0 7
Haberman 306 3 3 0 2
Hepatitis 155 19 19 0 2
Iris 150 4 4 0 3
Led7digit 500 7 7 0 10
Lymphography 148 18 3 15 4
Mammographic 961 5 0 5 2
Movement 360 90 90 0 15
Newthyroid 215 5 5 0 3
Pima 768 8 8 0 2
Saheart 462 9 8 1 2
Sonar 208 60 60 0 2
Spectfheart 267 44 44 0 2
Tic-tac-toe 958 9 0 9 2
Vehicle 846 18 18 0 4
Wine 178 13 13 0 3
Wisconsin 683 9 9 0 2
Yeast 1484 8 8 0 10
Zoo 101 16 0 16 7

Abalone 4174 8 7 1 28
Banana 5300 2 2 0 2
Coil2000 9822 85 85 0 2
Magic 19,020 10 10 0 2
Page-blocks 5472 10 10 0 5
Penbased 10,992 16 16 0 10
Phoneme 5404 5 5 0 2
Satimage 6435 36 36 0 7

It is known that real data may contain noise or erroneous data.
Fig. 1. Analysis of the effect of the parameter ˇ.

Parameters ˛ and ˇ allow us to obtain a desired trade-off between
the accuracy and the number of rules. In the case of obtaining
poor accuracy rates in a specific problem we have to increase
˛ or decrease ˇ. In contrary case, when the rules obtained are
numerous and we are interested in obtaining simpler models, we
have to increase ˇ or decrease ˛.

The same mechanisms to perform a classification of an unseen
xample shown in [4] are used in our approach. In short, they are:

If no hyperrectangle covers the example, the class of the nearest
hyperrectangle defines the prediction.
If various hyperrectangles cover the example, the one with lowest
volume is the chosen to predict the class, allowing exceptions
within generalizations.

Our approach computes the volume of a hyperrectangle in the
ollowing way:

H =
M∏
i

Li

here Li is computed for each condition as

⎛
⎜

Hupper − Hlower if numeric and Hupper /= Hlower
i = ⎜⎝ 1 if numeric and Hupper = Hlower

num. values selected
vi

if nominal
Segment 2310 19 19 0 7
Splice 3190 60 0 60 3
Texture 5500 40 40 0 11
Twonorm 7400 20 20 0 2

3.3. Obtention of the initial set of hyperrectangles

There is a detail not specified yet. It refers to the creation of
the initial set of hyperrectangles. In our approach, we have used a
simple heuristic which is fast and obtains acceptable results. The
heuristic yields a hyperrectangle from each example in the training
set. For each one, it finds the K − 1 nearest neighbors being the Kth
neighbor an example of a different class. Then, each hyperrectangle
is expanded considering these K − 1 neighbors by using, in the case
of numerical attributes, the minimal and maximal values as the
limits of the interval defined, or getting all the different categorical
values, in the case of nominal attributes, to form a subset of possible
values from them.

Once all the hyperrectangles are obtained, the duplicated ones
are removed, keeping one representative in each case. Hence
|HS| ≤ |TR|. Note that point hyperrectangles are possible to be
obtained using this heuristic when the nearest neighbor of an
instance belongs to a different class.

3.4. An Extended version of EHS-CHC: filtered EHS-CHC
Noisy data could be detrimental when using the heuristic for cre-
ating the initial set of hyperrectangles explained above. In some
cases, a larger hyperrectangle could be divided into two or more
smaller hyperrectangles when a noisy datum is found in the middle
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Table 2
Parameter specification for all the methods employed in the experimentation.

Algorithm Parameters

BNGE It has not parameters
RISE Q = 1, S = 2
INNER small data sets Initial examples = 10, MaxCycles = 5

Min. coverage = 0.95, Min. Presentations = 3000
Regularize = 300, Threshold = −100

INNER medium data sets Initial examples = 10, MaxCycles = 5
Min. coverage = 0.95, Min. Presentations = 10000
Regularize = 1000, Threshold = −100

SIA Iterations = 200, ˛ = 150
ˇ = 0, Threshold Strength = 0

C4.5-Rules Prune = True, Confidence level = 0.25
Minimum number of item-sets per leaf = 2

Ripper Size of growing subset = 66%
Repetitions of the optimization stage = 2
(S)

Fig. 2. Evolutionary hyperrectangle selection process.

f clean data. In order to avoid this behavior, we include a filtering
oise stage based on the ENN algorithm [45] prior to the creation
f the initial set of hyperrectangles. ENN starts working with the
riginal training data and then it removes, in batch mode, those
nstances whose class does not agree with the majority of its k near-
st neighbors. k is set to a value of 3. This approach will be named
ltered EHS-CHC. In filtered EHS-CHC, a value of k greater than 3 is
ot appropriate together with the mechanism of generation of the

nitial set of hyperrectangles (see Section 3.3).
Fig. 2 represents the evolutionary hyperrectangle selection pro-

ess followed by EHS-CHC.

. Experimental framework

In this section we first provide details of the real-world problems
hosen for the experimentation and the configuration parameters
f the methods studied (Sections 4.1 and 4.2). Finally, we present
he statistical tests applied to compare the results obtained with
he different approaches (Section 4.3).

.1. Data sets

In the experimental study, we selected 42 data sets from the UCI
epository [46] and KEEL-data set1 [47,48]. Table 1 summarizes the
roperties of these data sets. It shows, for each data set, the number
f examples (#Ex.), the number of attributes (#Atts.), the number of
umerical (#Num.) and nominal (#Nom.) attributes, and the num-
er of classes (#Cl.). The data sets are grouped into two categories
epending on the size they have (a horizontal line divides them

n the table). Small data sets have less than 2000 instances and
edium data sets have more than 2000 instances. The data sets

onsidered are partitioned using the ten fold cross-validation (10-
cv) procedure and non-stochastic algorithms have been run three
imes.

.2. Parameters
The configuration parameters are shown in Table 2. They are
ommon to all problems, except for the INNER algorithm, which
s quite sensitive to the parameters chosen and has two differ-
nt configurations depending on the size of the problems tackled.

1 http://www.keel.es/datasets.php.
EHS-CHC Popul. Size = 50, Num. Evaluations = 10000
˛ = 0.5, ˇ = 0.66

Filtered EHS-CHC Popul. Size = 50, Num. Evaluations = 10,000
˛ = 0.5, ˇ = 0.66, k for ENN = 3

The values of previous proposed approaches were selected accord-
ing to the recommendation of the corresponding authors of each
algorithm, and the values set for our approach have been either
empirically determined or follow recommendations from previous
applications of the CHC model to other data reduction problems
[28,29]. We also refer to the suggestions given in Section 3.2.

4.3. Statistical tests for performance comparison

In this paper, we use the hypothesis testing techniques to
provide statistical support for the analysis of the results [49,40].
Indeed, we use non-parametric tests, due to the fact that the ini-
tial conditions that guarantee the reliability of the parametric tests
may not be satisfied, causing the statistical analysis to lose cred-
ibility with the use of parametric tests [38,39]. Specifically, we
use the Wilcoxon signed-rank test as a non-parametric statistical
procedure for performing pairwise comparisons between two algo-
rithms. For multiple comparisons, we use three non-parametric
tests: Friedman, Friedman Aligned-Ranks and Quade tests [41].

These tests are suggested in the studies presented in [38–41].
More information about these tests and other statistical procedures
specifically designed for use in the field of Machine Learning can be
found at the SCI2S thematic public website on Statistical Inference
in Computational Intelligence and DataMining.2

5. Results and analysis

This section shows the results obtained in the experimental
study as well as the analysis based on them. The experimental study
will be divided into two parts: experiments for small data sets (Sec-
tion 5.1) and experiments for medium data sets (Section 5.2). In
addition, a study of the efficiency of the NGE models considered in
this paper is carried out in Section 5.3.

5.1. Results and analysis for small data sets

Table 3 shows the results measured by accuracy in test data for
each approach considered in this paper. Table 4 shows the average
number of rules/hyperrectangles yielded by the approaches con-

sidered. For each data set, the mean accuracy or number of rules
and the standard deviation (SD) are computed. The best case in
each data set is stressed in bold. The last row in each table shows
the average considering all data sets.

2 http://sci2s.ugr.es/sicidm.

http://www.keel.es/datasets.php
http://sci2s.ugr.es/sicidm
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Table 3
Accuracy results in test over small data sets.

Data sets 1NN C4.5Rules RIPPER BNGE RISE INNER SIA EHS-CHC Filtered EHS-CHC

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Appendicitis 0.7936 0.1151 0.8318 0.1120 0.8382 0.1241 0.8609 0.0869 0.8218 0.1010 0.8600 0.0984 0.8418 0.0833 0.8609 0.1059 0.8691 0.1155
Australian 0.8145 0.0429 0.8536 0.0277 0.8275 0.0293 0.8551 0.0368 0.8058 0.0444 0.8551 0.0306 0.6087 0.0572 0.7551 0.0466 0.8580 0.0296
Balance 0.7904 0.0646 0.8175 0.0415 0.5278 0.0838 0.8192 0.0452 0.4960 0.0200 0.7423 0.0391 0.8382 0.0428 0.8223 0.0434 0.7998 0.0461
Breast 0.6535 0.0607 0.6776 0.0761 0.6401 0.0555 0.6229 0.0798 0.6710 0.0794 0.7104 0.0714 0.6412 0.1092 0.7380 0.0622 0.7102 0.0218
Bupa 0.6108 0.0688 0.6491 0.0450 0.6108 0.0852 0.6547 0.0455 0.6468 0.0433 0.5909 0.0310 0.6345 0.0437 0.6313 0.0645 0.6404 0.0916
Cleveland 0.5314 0.0745 0.5149 0.0703 0.4592 0.1080 0.5510 0.0623 0.4919 0.0696 0.5251 0.0836 0.4916 0.0575 0.5681 0.0651 0.5378 0.0392
Contraceptive 0.4277 0.0369 0.4908 0.0504 0.5323 0.0528 0.4861 0.0441 0.4494 0.0282 0.4956 0.0452 0.4718 0.0355 0.4542 0.0351 0.4562 0.0225
Crx 0.7957 0.0512 0.8435 0.0477 0.8188 0.0444 0.8362 0.0534 0.8159 0.0381 0.7000 0.1612 0.6029 0.0439 0.8188 0.0417 0.8333 0.0517
Dermatology 0.9535 0.0345 0.9507 0.0444 0.9402 0.0378 0.9672 0.0282 0.9047 0.0732 0.7791 0.1695 0.9016 0.0453 0.9399 0.0458 0.9700 0.0240
Ecoli 0.807 0.0751 0.7797 0.0383 0.7352 0.0512 0.8216 0.0462 0.7621 0.0644 0.6870 0.0823 0.7086 0.0682 0.8154 0.0415 0.7888 0.0348
German 0.705 0.0425 0.6930 0.0564 0.6890 0.0357 0.7110 0.0370 0.5950 0.0425 0.6730 0.0250 0.6520 0.0343 0.7020 0.0140 0.7010 0.0088
Glass 0.7361 0.1191 0.6568 0.1286 0.6644 0.1313 0.6461 0.1110 0.6946 0.1216 0.5934 0.1292 0.7050 0.1166 0.7118 0.0768 0.6481 0.1216
Haberman 0.6697 0.0546 0.7119 0.0594 0.4937 0.0778 0.6859 0.0739 0.6405 0.0343 0.6991 0.0622 0.6796 0.0385 0.7086 0.0770 0.7449 0.0600
Hepatitis 0.8075 0.1109 0.7933 0.0947 0.7221 0.1418 0.8254 0.0455 0.8388 0.0695 0.7938 0.0238 0.7688 0.0947 0.7938 0.0238 0.7938 0.0238
Iris 0.9333 0.0516 0.9667 0.0471 0.9600 0.0344 0.9600 0.0466 0.9400 0.0492 0.9600 0.0344 0.9467 0.0422 0.9400 0.0378 0.9667 0.0471
Led7digit 0.402 0.0948 0.7140 0.0481 0.4820 0.0503 0.6020 0.0856 0.6520 0.0464 0.4700 0.0901 0.0900 0.0141 0.6860 0.0534 0.3340 0.0589
Lymphography 0.7387 0.0877 0.7427 0.1175 0.7580 0.0897 0.8006 0.0966 0.7612 0.0993 0.5826 0.1465 0.8130 0.0752 0.7733 0.0911 0.7577 0.0949
Mammographic 0.7368 0.0559 0.8253 0.0673 0.8033 0.0530 0.7565 0.0357 0.7721 0.0526 0.8304 0.0436 0.6254 0.0291 0.8002 0.0689 0.8065 0.0561
Movement 0.8194 0.0434 0.6194 0.0525 0.5833 0.0818 0.7389 0.0755 0.7500 0.0752 0.7444 0.0504 0.8583 0.0480 0.7417 0.0898 0.6583 0.0718
Newthyroid 0.9723 0.0226 0.9353 0.0657 0.9485 0.0521 0.9580 0.0269 0.9580 0.0405 0.8985 0.0793 0.9487 0.0347 0.9632 0.0360 0.9450 0.0469
Pima 0.7033 0.0353 0.7385 0.0516 0.6771 0.0454 0.7278 0.0432 0.6432 0.0598 0.7165 0.0597 0.7045 0.0409 0.7501 0.0363 0.7462 0.0459
Saheart 0.6449 0.0399 0.6861 0.0401 0.5736 0.0376 0.6819 0.0504 0.5692 0.0801 0.6754 0.0601 0.6170 0.0636 0.7273 0.0512 0.7057 0.0582
Sonar 0.8555 0.0751 0.7055 0.1500 0.7262 0.0783 0.6443 0.1355 0.7690 0.0871 0.8026 0.0961 0.8412 0.0716 0.7405 0.1080 0.7695 0.1121
Spectfheart 0.697 0.0655 0.7460 0.0696 0.7077 0.0662 0.7942 0.0175 0.8091 0.0263 0.7942 0.0175 0.7194 0.0813 0.7942 0.0175 0.7942 0.0175
Tic-tac-toe 0.7307 0.0256 0.8445 0.0512 0.9676 0.0200 0.9207 0.0264 0.8631 0.0424 0.7088 0.0329 1.0000 0.0000 0.9206 0.0275 0.7067 0.0234
Vehicle 0.701 0.056 0.6607 0.0543 0.6832 0.0428 0.6597 0.0550 0.6702 0.0491 0.5956 0.0921 0.6159 0.0500 0.6738 0.0307 0.6456 0.0458
Wine 0.9552 0.0485 0.9490 0.0619 0.9216 0.0534 0.9660 0.0293 0.9438 0.0524 0.8592 0.0618 0.9438 0.0524 0.9431 0.0661 0.9542 0.0538
Wisconsin 0.9557 0.0259 0.9585 0.0171 0.9499 0.0272 0.9700 0.0281 0.9456 0.0329 0.9285 0.0301 0.9657 0.0254 0.9613 0.0287 0.9642 0.0227
Yeast 0.5047 0.0391 0.5404 0.0397 0.5014 0.0260 0.5735 0.0394 0.5162 0.0470 0.4946 0.0555 0.5425 0.0237 0.5634 0.0316 0.5735 0.0346
Zoo 0.9281 0.0657 0.9281 0.0692 0.9408 0.0703 0.9683 0.0524 0.9683 0.0524 0.8761 0.0664 0.9617 0.0685 0.9500 0.0671 0.9131 0.0802

Average 0.7458 0.7608 0.7228 0.7689 0.7389 0.7214 0.7247 0.7750 0.7531
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Table 4
Average number of rules yielded over small data sets.

Data sets C4.5Rules RIPPER BNGE RISE INNER SIA EHS-CHC Filtered EHS-CHC

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Appendicitis 3.20 0.42 7.50 1.27 26.80 3.85 52.40 4.50 8.50 1.90 46.40 4.40 9.90 0.74 2.00 0.00
Australian 11.60 3.72 25.70 2.31 239.20 13.60 226.00 5.72 4.00 1.05 599.50 3.72 30.20 2.82 10.30 1.06
Balance 34.70 4.03 37.60 5.85 342.50 12.80 537.10 13.30 9.70 1.64 112.80 3.97 13.40 1.71 10.60 0.97
Breast 12.40 2.07 36.50 4.06 82.60 3.03 208.70 9.04 9.10 2.73 95.10 4.09 28.20 1.99 6.20 1.03
Bupa 8.10 1.20 22.60 2.91 183.20 13.04 201.50 4.65 33.10 7.43 220.30 4.74 44.30 2.41 26.20 1.93
Cleveland 10.70 1.25 44.10 4.41 130.50 4.25 161.70 4.76 13.10 2.51 252.30 8.81 18.90 3.00 5.20 1.03
Contraceptive 30.80 1.87 64.50 7.21 1211.80 14.51 1018.40 15.88 8.40 1.58 530.40 4.70 55.60 8.83 29.70 2.50
Crx 15.50 2.59 25.00 3.46 109.10 7.71 286.90 11.32 26.10 12.11 579.50 7.53 34.40 2.80 15.00 2.54
Dermatology 9.10 0.32 15.00 1.33 25.00 5.29 74.50 17.81 38.70 8.77 59.90 3.87 12.30 2.06 10.10 1.37
Ecoli 11.70 1.34 35.00 3.65 93.10 6.87 169.20 11.11 15.50 4.28 194.50 9.19 29.90 2.18 17.30 1.64
German 26.80 2.15 37.10 4.01 232.90 7.95 676.60 13.87 50.20 2.49 567.40 9.67 38.60 4.99 18.70 3.16
Glass 10.50 1.65 22.80 2.44 78.60 6.02 92.20 4.49 18.10 2.47 187.80 2.90 27.60 1.58 13.50 1.72
Haberman 4.30 0.82 18.90 2.33 212.20 7.27 132.40 2.88 17.80 4.80 119.00 5.16 26.60 1.96 8.10 1.20
Hepatitis 6.30 1.42 7.90 1.73 37.90 2.81 50.80 3.49 14.70 1.95 69.40 6.90 7.50 1.35 4.40 1.26
Iris 5.00 0.00 6.20 0.79 12.20 1.32 37.10 11.21 8.20 1.23 13.90 1.79 6.20 0.79 5.00 0.00
Led7digit 16.10 1.29 92.50 4.17 403.50 4.58 279.00 34.57 10.30 1.89 1.00 0.00 12.90 1.10 5.00 0.94
Lymphography 11.50 1.18 13.60 1.65 29.20 2.35 81.00 10.35 8.30 1.83 33.30 1.70 13.40 1.35 7.70 1.57
Mammographic 7.70 1.06 25.40 6.57 754.40 10.44 315.70 11.90 7.10 1.10 188.00 4.27 22.60 2.22 9.60 2.07
Movement 27.30 2.79 51.80 3.79 83.90 5.95 130.60 7.50 71.80 1.87 299.70 2.63 45.70 4.08 35.30 2.95
Newthyroid 6.80 0.42 7.00 0.67 18.60 3.41 33.90 5.67 7.30 1.49 40.80 8.64 7.20 1.14 5.00 0.47
Pima 8.80 2.30 24.70 3.27 339.60 8.06 436.90 7.40 13.00 5.83 600.80 20.50 50.10 8.25 29.00 2.31
Saheart 6.70 1.42 24.00 3.77 178.40 2.41 260.90 12.56 14.40 7.56 415.10 0.99 63.50 9.62 20.40 3.03
Sonar 8.70 1.16 8.40 0.70 58.80 9.67 59.10 2.73 40.60 2.01 187.20 0.42 26.30 2.71 20.00 1.70
Spectfheart 11.20 1.55 10.00 1.33 62.10 1.66 168.70 23.53 45.10 4.01 240.30 0.48 20.80 2.20 7.60 2.46
Tic-tac-toe 48.60 8.97 16.20 1.23 124.90 21.69 455.60 16.41 56.60 4.20 31.20 3.01 16.70 1.16 10.10 1.20
Vehicle 19.10 2.13 45.60 6.29 349.60 6.64 316.50 14.21 108.20 8.53 680.50 14.56 75.70 9.72 46.10 3.54
Wine 5.00 0.00 5.60 1.07 10.10 0.99 29.70 10.78 6.20 1.03 160.20 0.42 9.80 1.81 7.60 0.97
Wisconsin 10.00 2.11 9.80 1.40 64.30 5.36 182.90 87.06 7.80 3.19 41.30 2.75 8.40 1.17 4.40 1.07
Yeast 33.00 3.46 139.60 6.79 902.20 14.88 1067.70 15.90 24.20 4.26 943.30 21.91 102.00 21.17 38.40 3.57
Zoo 8.70 0.48 8.70 0.48 9.00 0.47 25.60 3.75 8.90 0.88 10.10 0.74 7.00 0.00 6.30 0.67

Average 14.33 29.64 213.54 258.98 23.50 250.70 28.86 14.49
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Observing Tables 3 and 4, we can make the following analysis:

The EHS-CHC proposal obtains the best average result in accuracy
over test data. It clearly outperforms all the other techniques.
However, filtered EHS-CHC cannot improve the accuracy obtained
by BNGE and C4.5Rules.
The best classical approaches for small data sets are 1NN and
C4.5Rules, whereas BNGE and EHS-CHC are the most remarkable
NGE based approaches in accuracy.
It seems that there is no general rule that could predict which
algorithm is the best choice given a certain data set. All techniques
achieved, at least once, the best accuracy result in different data
sets.
Except for C4.5Rules, filtered EHS-CHC produces hyperrectan-
gle models with a lower number of hyperrectangles than the
remaining methods. On the other hand, EHS-CHC requires more
hyperrectangles to improve the performance in accuracy. The
INNER approach, together with C4.5Rules are the techniques that
produce the lowest number of rules.
The trade-off between accuracy and simplicity is maintained by
both EHS-CHC and filtered EHS-CHC. Other NGE learners, such as
BNGE, RISE and SIA, need to store a large number of hyperrect-
angles to obtain good performances, but our approach is able to
obtain similar results with a much lower set of hyperrectangles.

Clearly, the best approach could be chosen depending on the
nterests of the users: looking for more precision or more simplicity.
he EHS-CHC approach fits the first purpose and filtered EHS-CHC fits
he second. Nevertheless, we want to illustrate that both proposals
ave similar behavior when statistical analysis is conducted. Table 5

llustrates a Wilcoxon comparison between them in accuracy. No
ignificant differences are detected, but EHS-CHC collects a higher
alue of ranking. In small data sets, the number of rules needed to
uild a model is, in general, not very high and we could establish
hat the accuracy is the preferred objective in these domains. Thus,
n the rest of the study of small data sets, we will use the non filtered

HS-CHC version to compare with other techniques.

Table 6 collects the results of applying the Wilcoxon test to EHS-
HC and the rest of the algorithms studied in this paper considering
mall data sets. This table is composed of two columns: In the first

able 5
ilcoxon comparison of the proposed models in accuracy over small data sets.

R+ R− p-value

EHS-CHC vs. filtered EHS-CHC 284.5 180.5 0.255

able 6
ilcoxon test results in accuracy and number of rules considering small data sets.

Algorithm EHS-CHC

Accuracy num. rules

1NN + (0.028) —
C4.5Rules + (0.045) − (0.01)
RIPPER + (0.001) = (0.746)
BNGE = (0.964) + (0.000)
RISE + (0.005) + (0.000)
INNER + (0.001) = (0.221)
SIA + (0.019) + (0.000)

able 7
anking values obtained by the multiple comparisons non-parametric tests over small da

1NN C4.5Rules RIPPER

Friedman 4.77 3.98 5.47
Friedman Aligned Ranks 123.10 108.88 150.55
Quade 4.66 3.94 5.47
uting 11 (2011) 3032–3045

one, the measure of performance used is the accuracy classifica-
tion in test set and in the second one, we carry out the Wilcoxon
test by using as a performance measure the number of hyperrect-
angles/rules yielded by the techniques. The table is composed of
Na rows where Na is the number of algorithms considered in this
study. In each one of the cells, three symbols can appear: +, = or
−. They represent that EHS-CHC outperforms (+), is similar (=) or is
worse (−) in performance than EHS-CHC. The value in brackets is
the p-value obtained in the comparison and the level of significance
considered is ˛ = 0.10.

Other statistical studies can be performed by using non-
parametric multiple comparison tests. These types of procedures
consider the set of results obtained by all the algorithms to com-
pute a ranking which represents the performance of the associated
algorithms. The smaller the ranking, the better the algorithm. The
three multiple comparison tests described in Section 4.3 are used
and the rankings are depicted in Table 7.

The statistical support provided allows us to conclude the fol-
lowing:

• EHS-CHC is the best approach compared with the rest of tech-
niques. As we can see, the Wilcoxon test confirms that it
outperforms all of them in terms of accuracy, except for the BNGE
technique, which behaves similarly to our approach. However,
BNGE requires a lot of hyperrectangles to achieve this accuracy
rate.

• Considering multiple comparison tests, the difference in ranking
between BNGE and EHS-CHC is rather small. In fact, in Friedman
and Friedman Aligned Ranks tests, BNGE has a lower ranking than
EHS-CHC. However, the opposite is true in the Quade test. This
latter test positively weights more difficult data sets when com-
puting the ranking, and the difficulty is measured depending on
the differences of performance registered by all methods. This
could suggest that EHS-CHC is better suited to more complicated
problems.

Finally, Fig. A.1 in Appendix A illustrates the comparison of EHS-
CHC with the remaining techniques considered in this study in
terms of accuracy over test data.

5.2. Results and analysis for medium data sets

Table 8 shows the results measured by accuracy in test data for
each approach considered in this paper. Table 9 shows the average
number of rules/hyperrectangles yielded by the approaches con-
sidered. The same format followed in the previous section is used.
SIA and RISE algorithms could not be run over medium data sets
for efficiency reasons.

Observing Tables 8 and 9, we can point out the following anal-
ysis:

• Both evolutionary proposals obtain the best average result in
accuracy over test data in medium data sets. Filtered EHS-CHC

is even better than EHS-CHC.

• 1NN is better suited for medium data sets in accuracy results
than classical NGE techniques, although it is outperformed by the
evolutionary approaches. Nevertheless, it should be noted that
this method does not give interpretable results.

ta sets.

BNGE RISE INNER SIA EHS-CHC

3.13 5.00 5.43 4.88 3.33
81.90 133.50 145.32 138.32 82.43

3.45 4.99 5.27 4.90 3.33
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Table 8
Accuracy results in test over medium data sets.

Data sets 1NN C4.5Rules RIPPER BNGE INNER EHS-CHC Filtered EHS-CHC

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Abalone 0.1991 0.0160 0.2262 0.0163 0.2346 0.0183 0.2240 0.0244 0.2149 0.0310 0.2173 0.0106 0.2640 0.0108
Banana 0.8751 0.0103 0.8836 0.0154 0.6489 0.0488 0.8855 0.0168 0.6366 0.0638 0.8975 0.0108 0.8968 0.0072
Coil2000 0.8963 0.0077 0.9330 0.0041 0.9322 0.0050 0.9308 0.0039 0.8737 0.2108 0.9403 0.0005 0.9401 0.0009
Magic 0.8059 0.0090 0.8201 0.0134 0.8340 0.0217 0.8232 0.0079 0.7550 0.0403 0.8141 0.0078 0.8132 0.0089
Page-blocks 0.9576 0.0101 0.9587 0.0123 0.9622 0.0085 0.9624 0.0061 0.9280 0.0119 0.9457 0.0103 0.9494 0.0075
Penbased 0.9935 0.0023 0.9512 0.0080 0.9616 0.0057 0.9643 0.0052 0.5425 0.0490 0.9741 0.0045 0.9727 0.0040
Phoneme 0.8991 0.0175 0.8229 0.0155 0.8066 0.0233 0.8662 0.0180 0.7554 0.0376 0.8407 0.0219 0.8107 0.0202
Satimage 0.9058 0.0132 0.8345 0.0156 0.8559 0.0136 0.8701 0.0142 0.7448 0.0257 0.8625 0.0119 0.8696 0.0075
Segment 0.9662 0.0070 0.9545 0.0094 0.9541 0.0118 0.9437 0.0189 0.8563 0.0253 0.9364 0.0119 0.9355 0.0152
Splice 0.7495 0.0115 0.9223 0.0133 0.9348 0.0160 0.7542 0.0282 0.7085 0.0293 0.9251 0.0137 0.9298 0.0132
Texture 0.9905 0.0041 0.9042 0.0158 0.9280 0.0060 0.9400 0.0104 0.6491 0.0371 0.9505 0.0083 0.9489 0.0060
Twonorm 0.9468 0.0073 0.8642 0.0101 0.9107 0.0136 0.9318 0.0244 0.7565 0.0387 0.9173 0.0122 0.9182 0.0125

Average 0.8488 0.8396 0.8303 0.8413 0.7018 0.8518 0.8541

Table 9
Average number of rules yielded over medium data sets.

Data sets C4.5Rules RIPPER BNGE INNER EHS-CHC Filtered EHS-CHC

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Abalone 125.70 4.16 305.80 11.61 3174.10 24.10 63.80 4.57 1874.70 12.82 26.70 1.64
Banana 40.30 6.38 15.00 2.31 3573.40 24.28 7.60 2.59 178.60 40.49 67.30 8.33
Coil2000 42.20 1.93 19.80 1.81 2648.30 46.10 28.70 8.82 137.40 39.95 10.70 2.16
Magic 67.00 20.57 74.40 11.27 9010.10 150.02 11.50 4.06 2514.00 300.89 379.50 139.77
Page-blocks 20.30 2.21 50.40 4.33 557.70 19.01 26.00 4.22 53.40 7.23 33.10 2.69
Penbased 128.60 8.63 108.70 4.72 1621.60 60.73 37.90 6.08 339.40 48.44 299.10 40.99
Phoneme 30.10 6.61 54.60 5.82 2706.60 27.36 16.00 11.02 531.00 87.13 221.40 59.60
Satimage 73.20 13.30 108.80 4.29 1349.80 28.98 56.50 13.03 395.60 64.19 216.80 48.03
Segment 27.30 2.91 34.60 3.06 236.20 22.18 57.60 13.44 80.80 7.66 60.00 8.35
Splice 145.00 29.86 38.30 4.81 578.00 20.58 78.40 3.72 25.60 3.17 18.00 2.62
Texture 86.00 12.73 83.10 3.67 798.60 19.53 126.50 27.35 328.60 44.09 278.90 32.44
Twonorm 47.80 9.87 57.50 2.72 2128.30 25.38 8.70 2.71 57.40 11.79 58.80 10.63

Average 69.46 79.25 2365.23 43.27 543.04 139.19
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Table 10
Wilcoxon comparison of the proposed models in accuracy over medium data sets.

R+ R− p-value

EHS-CHC vs. filtered EHS-CHC 35 43 0.753

Table 11
Wilcoxon test results in accuracy and number of rules considering medium data
sets.

Algorithm Filtered EHS-CHC

Accuracy num. rules

1NN = (0.814) —
C4.5Rules + (0.084) − (0.084)

•

•

•

•
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d
E
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w
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t

l
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Table 13
Orders of efficiency in the worst case for each NGE model.

NGE model Time complexity

SIA O(2M · n3 · C)
BNGE O(n3 · M)
RISE O(n3 · M2)
INNER O(n2 · M2) + O(n · M3)
EHS-CHC O(E · n3 · M)
RIPPER = (0.272) = (0.136)
BNGE = (0.875) + (0.002)
INNER + (0.002) – (0.050)

All classical approaches behave well, whereas BNGE and EHS-CHC
are the most remarkable NGE based approaches in accuracy. Note
that the RIPPER algorithm is more competitive in larger data sets
rather than smaller.
Filtered EHS-CHC produces models with a lower number of hyper-
rectangles than other NGE schemes, except INNER. On the other
hand, EHS-CHC uses more hyperrectangles without obtaining a
significant improvement in accuracy with respect to the filtered
version.
C4.5Rules and RIPPER obtain very interpretable models, but 1NN
outperforms them in accuracy because it can represent more
complex decision surfaces. This fact supports the NGE theory, but
it is very difficult to optimize a set of hyperrectangles in large
domains, such as in medium size data sets.
Some NGE methods cannot be run over medium data sets: RISE
and SIA. Furthermore, BNGE needs a lot of hyperrectangles and it
cannot outperform 1NN. Evolutionary based NGE methods based
on hyperrectangles’ selection have been shown to be very useful
for larger problems, improving the results obtained by classical
rule learners and 1NN.

Table 10 illustrates a Wilcoxon comparison between the EHS-
HC and filtered EHS-CHC approaches in accuracy over medium
ata sets. Again no significant differences are detected, but filtered
HS-CHC collects a higher value of ranking. Now, there is no doubt
bout which approach is the best. Filtered EHS-CHC outperforms
HS-CHC in accuracy requiring less hyperrectangles when dealing
ith medium data sets.

Table 11 collects the results of applying the Wilcoxon test to
iltered EHS-CHC and the rest of algorithms studied in this paper
onsidering small data sets. The format was explained in the pre-
ious section.

Again, the three multiple comparison tests are used to compute
he rankings, which are presented in Table 12.

The statistical support provided allows us to conclude the fol-
owing:
Filtered EHS-CHC is better than C4.5Rules and INNER. As we can
see, the Wilcoxon test confirms that it outperforms them in accu-
racy, but its results are competitive with those obtained by 1NN,
RIPPER and BNGE. However, BNGE requires many hyperrectan-

able 12
anking values obtained by the multiple comparisons non-parametric tests over medium

1NN C4.5Rules RI

Friedman 2.92 3.50 3
Friedman Aligned Ranks 29.33 34.75 33
Quade 2.37 3.87 3
Fig. 3. Computational times considering subsamples of magic data set.

gles to achieve this accuracy rate, and 1NN do not perform any
reduction at all.

• Results offered by RIPPER and filtered EHS-CHC are similar in both
objectives.

• The rankings computed by multiple comparison procedures are
again very close for BNGE and our approach. With Quade test,
1NN obtains the best ranking, indicating to us that more complex
problems require more complex decision modeling.

Fig. A.2 in Appendix A illustrates the comparison of filtered EHS-
CHC with the remaining techniques considered in this study in
terms of accuracy over test data. Star plots are used for a clear pre-
sentation of differences among the methods studied for each data
set.

5.3. Study of running time of NGE models

In this subsection, we study the time consumption of the NGE
models considered in this paper. We will proceed in two steps start-
ing with the estimation order of the theoretical time complexity in
the improbable worst case. We then report a figure with CPU times
obtained from random samples of the magic data set.

Table 13 shows the theoretical time complexity of the NGE mod-
els in the worst case, where n denotes the number of examples
in the data set, M denotes the number of features and E denotes
the number of evaluations performed by the EA considered and C
is the number of classes. Fig. 3 illustrates the computational time
data sets.

PPER BNGE INNER Filtered EHS-CHC

.17 2.75 5.92 2.75

.25 30.17 64.17 27.33

.53 2.77 5.97 2.49

obtained by each model considering subsamples of magic data set.
The experiment performed considers the average results of 10 runs
on each subset. We take the data set magic and add artificial exam-
ples up to 20,000 samples. Then, we perform random partitions
of the complete set from 2000 samples to 18,000 samples. This
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a  EHS-CHC vs. 1NN b   EHS-CHC vs.C4.5Rules c   EHS-CHC vs.RIPPER

d  EHS-CHC vs. BNGE e  EHS-CHC vs. RISE f  EHS-CHC vs. INNER

cy in s

m
v
o

w

•

•

•

g  EHS-CHC vs. SIA

Fig. A.1. Accura

ethodology allows us to compute the degree of time complexity
arying the number of instances and keeping constant the number
f features.3

Taking into account both theoretical and empirical perspective,
e can highlight the following about the time complexity study:

SIA and RISE are very slow and they cannot handle data sets with
more than 6000 examples in a reasonable time.
INNER has the best time complexity and hence the slope of the

associated curve associated is much lower and it may allow us to
use this algorithm over huge data sets.
Filtered EHS-CHC is more efficient than EHS-CHC because the fil-
ter process reduces both the number of hyperrectangles and

3 The machine used was an Intel Core i7 CPU 920 at 2.67 GHz with 4GB of RAM.
h    EHS-CHC vs. Filtered EHS-CHC

mall data sets..

the complexity of them, reducing also the computations of
distances.

• When n increases, filtered EHS-CHC may require lower time com-
putation than BNGE in a certain moment, due to the fact that
the number of evaluations and other operations carried out by it
suppose a multiplicative constant of less magnitude. The graphic
would show a cross between both curves if n continue to rise.

6. Concluding remarks

The purpose of this paper is to present a proposal of an evolu-

tionary hyperrectangle selection algorithm for nested generalized
exemplar learning in classification called EHS-CHC. It creates an ini-
tial set of hyperrectangles from training data and then it performs a
selection process focused on maximizing the accuracy and coverage
of examples with the lowest possible number of hyperrectangles.
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a  EHS-CHC vs. 1NN b EHS-CHC vs.C4.5Rules c  EHS-CHC vs.RIPPER
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d EHS-CHC vs. BNGE e  EHS-C

Fig. A.2. Accurac

The results show that EHS-CHC allows us to obtain very accurate
odels with a low number of hyperrectangles. We have compared

t with several classical and advanced NGE learning approaches and
he effectiveness of the models obtained is very competitive with
espect to them. In larger data sets, the improvement achieved is
ven more remarkable, improving the results obtained by classical
ule learners and 1NN. Future work in this topic could be focused on
he hybridization of evolutionary models for clustering [36] with
HS-CHC to obtain a more accurate set of initial hyperrectangles to
e selected.
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ppendix A. Star plots in small and medium data sets

In this appendix, we include the star plot representations in
ccuracy for the comparison between the best proposed algorithm

n small and medium data sets with the remaining methods. These
tar plots represent the performance as the distance from the cen-
er; hence a higher area determines the best average performance.
he plots allow us to visualize the performance of the algorithms
omparatively for each problem and in general. Figs. A.1 and A.2

[

[

. INNER f EHS-CHC vs. Filtered EHS-CHC

edium data sets.

illustrate the star plots for small and medium size data sets respec-
tively.
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