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Abstract—In real-life data, a loss of information is frequent
in data mining due to the presence of missing values in the
attributes. Missing values can occur due to problems in the
manual data entry procedures, equipment errors or incorrect
measurements. The presence of missing values in attributes condi-
tions the results obtained by any knowledge extraction approach.
Specifically, this problem could lead in subgroup discovery to a
loss of quality of results obtained by subgroups on measures such
as sensitivity, confidence, significance or unusualness.

This paper presents an experimental study to analyse the effect
of different missing data imputation mechanisms within subgroup
discovery algorithms based on evolutionary fuzzy systems pre-
sented throughout the literature. The analysis is carried out with
a large number of data sets obtained from KEEL repository.
Among all the imputation techniques, the imputation method K-
Nearest Neighbour outstands as the best option. In summary, if
experts need to analyse a problem with a high percentage of
missing values they must use this imputation method in order
to treat data in a correct way and also to obtain a meaningful
descriptive knowledge. In addition, results also show that the
evolutionary fuzzy system with the best results is the algorithm
NMEEF-SD in the missing values scenario.

Index Terms—Subgroup Discovery, Evolutionary Fuzzy Sys-
tem, Missing Data Imputation.

I. INTRODUCTION

Collecting data in real-world applications is not perfect.
This leads to the appearance of imperfections in the data-
sets. One of the most common imperfections that can be
usually found are missing values (MVs). The existence of
MVs comes from different causes, such as manual data entry
procedures, equipment errors and incorrect measurements. The
presence of MVs in data mining produce several problems in
the knowledge extraction process [1]:
• loss of efficiency,
• complications in to manage and analyse data, and
• bias resulting from differences between missing and

complete data.
In order to avoid these negative effects in the analysis of data

mining algorithms when MVs are present, different approaches
are employed to prepare and clean data. This is critical as
many existing industrial and research data sets contain MVs.

In the specialised literature the presence of such imperfections
requires a pre-processing stage in which data is prepared
and cleaned [2], in order to be useful and sufficiently clear
for the knowledge extraction process. This step improves the
knowledge extraction process and, in consequence, the results
obtained by any data mining algorithm. The simplest way of
dealing with this problem, to discard the examples containing
MVs, maybe inappropriate. This approach is practical only
when data contains a relatively small number of examples
with MVs and analysis of the complete examples does not
lead to serious bias during the inference [3]. Thus, more
sophisticated methods have been proposed in order to deal
with MVs, where imputation methods are the most common
ones due to their independence with respect to the data mining
algorithm applied afterwards.

The aim of this contribution is to analyse the effectiveness
of different MVs pre-processing methods in the subgroup
discovery task. Subgroup discovery is a descriptive data min-
ing technique but using supervised learning, i.e. subgroup
discovery [4], [5] is a descriptive technique that attempts
to extract knowledge respect to a variable of interest where
unusual and interesting relationships between data with respect
to a class are obtained. This technique is also affected by
the presence of MVs in data, which could lead to a loss of
precision of the model obtained.

An experimental study with subgroup discovery algorithms
based on the evolutionary fuzzy systems presented throughout
literature is carried out. Evolutionary fuzzy systems are fuzzy
systems augmented by a learning process based on evolution-
ary computation [6]. Usually this kind of systems considers
a model structure in the form of fuzzy rules. The resulting
systems are called fuzzy rule based systems, which have
demonstrated their ability with respect to different problems
like control problems, modelling, classification or data mining
in a large number of applications.

The results and conclusions obtained in this paper present
to the experts the best MVs pre-processing method for evolu-
tionary fuzzy systems in subgroup discovery task, where pre-
processing method with the best results will be the optimal
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method in order to clean and pre-process data with MVs when
experts need to apply subgroup discovery algorithm based on
evolutionary fuzzy systems in a real-world application.

The rest of the contribution is organised as follows. Sec-
tion II presents the definition of subgroup discovery, main
properties, evolutionary fuzzy systems and quality measures
employed. Section III shows a brief review about the use of
MVs in the literature. Section IV presents the experimental
study performed with evolutionary fuzzy systems for subgroup
discovery task and different MVs pre-processing methods.
Finally, some concluding remarks are outlined in Section V.

II. SUBGROUP DISCOVERY

The concept of subgroup discovery was initially introduced
by Kloesgen [4] and Wrobel [5], and more formally defined by
Siebes [7] but using the name Data Surveying for the discovery
of interesting subgroups. It can be defined as [8]:

“In subgroup discovery, we assume we are given
a so-called population of individuals (objects, cus-
tomer, . . .) and a property of those individuals we
are interested in. The task of subgroup discovery is
then to discover the subgroups of the population that
are statistically “most interesting”, i.e., are as large
as possible and have the most unusual statistical
(distributional) characteristics with respect to the
property of interest.”

Considering this definition, the main property of this task
is the search of partial relations where the majority of the
examples for the property of interest (or target variable) will
be covered. In addition, the relations must be interesting with
an unusual behaviour respect to the full data set.

In order to represent the knowledge, subgroup discovery
employs a rule (R) which consists of an induced subgroup
description. It can be formally defined as:

R : Cond → TargetV ar

where TargetV ar is a value for the variable of interest
(target variable) for the subgroup discovery task (which also
appears as Class in the literature), and Cond is commonly a
conjunction of features (attribute-value pairs) which is able to
describe an unusual statistical distribution with respect to the
TargetV ar.

In Fig. 1 is represented a subgroup with two values for the
target variable (TargetV ar = o and TargetV ar = x). In
this representation a subgroup for the first value of the target
variable can be observed, where the rule attempts to cover a
high number of objects with a single function, a circle in this
case. As can be observed, the subgroup does not cover all
the examples of the target value o even not all the examples
covered belong to the target vaule, but the function is uniform
and simple.

Subgroup

Data set

Fig. 1. Representation of a subgroup discovery rule with respect to a value
(o) of the target variable

Throughout the literature, a wide number of algorithms
have been presented for the subgroup discovery task [9], as
for example proposals based on adaptations of classification
algorithms, based on association rules algorithms or evolu-
tionary fuzzy systems for subgroup discovery. This paper is
focused in evolutionary fuzzy systems. Next, the evolutionary
fuzzy systems for subgroup discovery and the quality measures
employed by these algorithms are presented.

A. Evolutionary Fuzzy Systems in Subgroup Discovery

Subgroup discovery is a task which can be solved as
optimisation and search problems. Due to the fact that evo-
lutionary algorithms [10] in general imitate the principles of
natural evolution in order to form searching processes, they
can be used in this task. The heuristic used by this type of
algorithm is defined by a fitness function, which determines
which individuals (rules in this case) will be selected in
the competition process. This makes genetic algorithms very
useful for the subgroup discovery task.

On the other hand, fuzzy systems are one of most important
areas for the application of the fuzzy set theory [11]. Usually
these systems consider a model structure in the form of fuzzy
rules. The use of these systems in the algorithms avoids the
need to perform a previous crisp discretisation to analyse
data, because this previous step could lead to a loss of
information in the model obtained. The interpretability of the
rules is improved because the experts can study the behaviour
of different properties of the problem with linguistic labels,
depending on the definition of the problem, instead of numbers
or intervals. Specifically, uniform partitions with triangular
membership functions for continuous variables are employed
in this work, as shown in Fig. 2 for a variable with three
linguistic labels: Low, Medium and High.

Fuzzy systems augmented by a learning process based
on evolutionary computation are called evolutionary fuzzy
systems [12], within evolutionary computation can be found
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Fig. 2. Example of fuzzy partition for a continuous variable with three labels

genetic algorithms, genetic programming and evolutionary
strategies, among others [13]. This type of systems for sub-
group discovery task have demonstrated throughout the liter-
ature its utility in different real-world problems [14]–[18].

Different evolutionary fuzzy systems for subgroup discovery
task can be found in the literature. These algorithms are briefly
described below:

• SDIGA [14] is an evolutionary fuzzy rule induction
system based on a mono-objective evolutionary algorithm
where an aggregation function with different objectives is
used like fitness.

• MESDIF [19] is a multi-objective evolutionary algo-
rithm for the extraction of fuzzy rules which describe
subgroups. The algorithm extracts a variable number of
different rules expressing information on a single value
of the target variable. The search is based on the multi-
objective SPEA2 [20] approach.

• NMEEF-SD [21] is an evolutionary fuzzy system whose
objective is to extract descriptive fuzzy and/or crisp rules
for the subgroup discovery task, depending on the type
of variables present in the problem. NMEEF-SD has a
multi-objective approach whose search strategy is based
on NSGA-II algorithm [22].

An important property of these algorithms is that they are
able to obtain crisp and/or fuzzy rules depending on the nature
of the data.

B. Quality Measures of Evolutionary Fuzzy Systems for Sub-
group Discovery

One of the most important aspects in the development of
subgroup discovery algorithms is the use of quality measures,
both to guide the search process by the algorithms and to
evaluate the quality of the subgroups obtained. In this paper
are considered the following quality measures:

• Significance. This measure indicates the significance of a
finding, it measured by the likelihood ratio of a rule [4].

Sign(R) = 2 ·
nc∑
k=1

n(TargetV ark · Cond)·

log
n(TargetV ark · Cond)
n(TargetV ark) · p(Cond)

(1)

where n(TargetV ar ·Cond) is the number of examples
which satisfy the conditions and also belong to the value
for the target variable in the rule, n(TargetV ar) are all
the examples of the target variable, p(Cond) is used as a
normalised factor, and nc is the number of values of the
target variable. It must be noted that although each rule is
for a specific TargetV ar, the significance measures the
novelty in the distribution impartially, for all the values.

• Unusualness: This measure is defined as the weighted
relative accuracy of a rule [23]. It can be computed as:

Unus(R) =
n(Cond)

ns
·(

n(TargetV ar · Cond)
n(Cond)

− n(TargetV ar)

ns

)
(2)

The unusualness of a rule can be described as the balance
between the coverage of the rule p(Condi) and its
accuracy gain p(TargetV ar ·Cond)− p(TargetV ar).

• Sensitivity: This measure is the proportion of actual
matches that have been classified correctly [4]. It can be
computed as:

Sens(R) =
TP

Pos
=
n(TargetV ar · Cond)

n(TargetV ar)
(3)

This quality measure was used in [14] as Support based
on the examples of the class. Sensitivity combines preci-
sion and generality related to the target variable.

• Fuzzy Confidence: It measures the relative frequency of
examples satisfying the complete rule among those satis-
fying only the antecedent in fuzzy rules [14]. This quality
measure is specific for subgroup discovery algorithms
based on fuzzy logic, but in the literature can be found
crisp confidence, too. This can be computed as:

FCnf(R) =

∑
Ek∈E/Ek∈TargetV ar APC(E

k, R)∑
Ek∈E APC(E

k, R)
, (4)

The following assumptions are important to understand
this fuzzy quality measure:

– An example Ek verifies the APC of a rule Ri if

APC(Ek, Ri) = T (µLL1
1
(ek1), . . . ,

µ
LL

lnv
nv

(eknv
)) > 0 (5)

where APC (Antecedent Part Compatibility) is the
degree of compatibility between an example and the
antecedent part of a fuzzy rule, i.e., the degree of



membership for the example to the fuzzy subspace
delimited by the antecedent part of the rule,
where:
∗ µ

LL
lnv
nv

(eknv
) is the degree of membership for the

value of the feature nv for the example Ek to the
fuzzy set corresponding to the linguistic label lnv

for this variable (nv);
∗ T is the t−norm selected to represent the mean-

ing of the AND operator (the fuzzy intersection)
in our case the minimum t− norm.

– An example Ek is covered by a rule Ri if

APC(Ek, Ri) > 0 AND

Ek ∈ TargetV arj . (6)

This means that an example is covered by a rule if the
example has a degree of membership higher than 0 to
the fuzzy input subspace delimited by the antecedent
part of the fuzzy rule, and the value indicated in the
consequent part of the rule agrees with the value of
the target feature for the example. For the categorical
variables, the degrees of membership are 0 or 1.

III. MISSING DATA IMPUTATION

As mentioned above, the presence of MVS affects the
results of data mining algorithms in general, and those of the
subgroup discovery algorithms in particular.

First of all, it is important to categorise the mechanisms
which lead to the introduction of MVs [3]. The assumptions
we make about the mechanism producing MVs and the miss-
ing data pattern of MVs can affect which imputation method
could be applied, if any. As [3] stated, there are three different
mechanisms for missing data induction:

1) Missing completely at random (MCAR), when the dis-
tribution of an example having a MV for an attribute
does not depend on either the observed data or the
missing data.

2) Missing at random (MAR), when the distribution of an
example having a MV for an attribute depends on the
observed data, but does not depend on the missing data.

3) Not missing at random (NMAR), when the distribution
of an example having a MV for an attribute depends on
the MVs.

In the case of the MCAR mode, the assumption is that the
underlying distributions of missing and complete data are the
same, while for the MAR mode they are different, and the
missing data can be predicted by using the complete data
[3]. These two mechanisms are assumed by the imputation
methods so far. Another approach is to convert the missing
values to a new value (encode them into a new numerical
value), but such a simplistic method was shown to lead to
serious inference problems [24].

In this paper, single imputation methods are used due to
the time complexity of the multiple imputation schemes, and
the assumptions they make regarding data distribution and
MV randomness; that is, that we should know the underlying
distributions of the complete data and missing data prior to
their application. Only in the cases of MCAR or MAR the
imputation can be carried out [3], which are assumed to the
the underlying ones in the real-world data sets [25].

We consider the following imputation methods as they are
the most well-known approaches [26]. We also compare them
with the lack of imputation:

• Case deletion or Ignore Missing (IM). Using this method,
all instances with at least one MV are discarded from the
data set.

• Concept Most Common Attribute Value for Symbolic
Attributes, and Concept Average Value for Numerical
Attributes (CMC) [27]. MV is replaced by the most
repeated value (for nominal ones) or by the mean value
(for numerical ones), but considering only the instances
with the same target value as the reference instance.

• Imputation with K-Nearest Neighbour (KNNI) [26]. Us-
ing this instance-based algorithm, every time an MV
is found in a current instance, KNNI computes the k
nearest neighbours and a value from them is imputed.
For nominal values, the most common value among all
neighbors is taken, and for numerical values the average
value is used. Therefore, a proximity measure between
instances is needed for it to be defined. The Euclidean
distance (it is a case of a Lp norm distance) is the most
commonly used in the literature. Specifically, in this paper
we use k = 10.

IV. EXPERIMENTAL STUDY

This section presents an experimental study with the dif-
ferent evolutionary fuzzy systems for subgroup discovery
presented throughout the literature and briefly described in
Section II-A. In the study, several data sets with MVs are used.
In order to analyse the quality of different imputation methods
for MVs, the previously presented pre-processing approaches
are applied in these data sets. So, the subgroup discovery
algorithms will be applied to the data sets resulting from the
imputation methods used.

The experimentation was undertaken with data sets from
KEEL1 repository [28], [29] containing MVs.

The properties of data sets are presented in Table I includ-
ing: number of variables (nv), number of discrete variables
(nvD), number of continuous variables (nvC), number of
classes (nc), number of examples (ns) and percentage of
examples with MVs (MV (%)) which indicates percentage of
instances with at least one MV.

In order to perform the experimental study, subgroup
discovery algorithms are executed using the ten-fold cross-
validation (10-fcv) procedure. Therefore, the results shown for

1http://www.keel.es



TABLE I
PROPERTIES OF THE DATA SETS USED FROM THE KEEL REPOSITORY

Name nv nvD nvC nc ns MV (%)

Adult 14 8 6 2 48842 7.41
Bands 19 6 13 2 539 32.28
Breast 9 9 0 2 286 3.15
Cleveland 13 0 13 5 303 1.98
Crx 15 12 3 2 690 5.36
Dermatology 34 34 0 6 366 2.19
Hepatitis 19 13 6 2 155 48.39
Horse-colic 23 16 7 2 368 98.10
Housevotes 16 16 0 2 435 46.67
Mammographic 5 5 0 2 961 13.63
Mushroom 22 22 0 2 8124 30.53
Wisconsin 9 9 0 2 699 2.29

the experiments are the average of the results obtained for each
data set for the different partitions. The results showed for each
subgroup discovery algorithm are the average of 50 executions
(5 executions per cross validation group).

The parameters used by the subgroup discovery algorithms
are presented in Table II.

The average results obtained by the evolutionary fuzzy
systems for subgroup discovery task are presented in Table
III. The values of the quality measures presented correspond
to the average for the rule sets in all the data sets studied.
In this table, the subgroup discovery Algorithm, the pre-
processing MVs method (MVmethod) employed, and the
average results of the quality measures of fuzzy confidence
(FCNF ), sensitivity (SENS), significance (SIGN ) and
unusualness (UNUS) are shown. Complete results obtained
by any algorithm for each data set are available in the Website
http://simidat-web.ujaen.es/MVs/FUZZIEEE12.

Before analysing the results obtained by the algorithms, the
main guidelines to be satisfied by any subgroup discovery
algorithm are presented. Due to the analysis performed in
[9], the use of different quality measures in the algorithms
presented throughout the literature and the formal definition
of subgroup discovery task, it could be considered that a
subgroup discovery approach must satisfy different guidelines
in order to measure its quality:

1) Interpretability. This guideline measures the number of
rules and variables obtained by a subgroup discovery
model. Optimal interpretability for a subgroup discovery
approach is the obtaining of few rules that containing a
low number of variables in order to help to the experts
to understand and use the extracted knowledge because
algorithms search for simple and interpretable subgroups
through partial relations.

2) Relation between sensitivity and confidence. This objec-
tive quantifies a good compromise between both mea-
sures, i.e. the algorithm must achieve the best possible
relation between sensibility and confidence. Both quality
measures are essential to provide the experts subgroups
which describe correctly as much examples as possible.
This is very difficult to be achieved by the algorithms,
as normally the improvement of one of the measures

brings the worsening of the other.
3) Interest or Novelty. This final guideline is related with

the search of interesting and unusual relations in data. A
subgroup discovery model must contribute novel knowl-
edge to the problem. This objective could be measured
with a wide number of quality measures as novelty,
interest or significance, among others. Nevertheless, it
is important to highlight the use of the unusualness
to measure this objective because it contributes with
generality and confidence to the problem.

In order to measure each guideline, the following quality
measures are considered: (i) number of rules and number of
variables for interpretability, (ii) sensitivity and confidence for
the relation between both measures and (iii) unusualness and
significance with respect to the interest.

The interpretability obtained by the algorithms with the
different missing data imputations is similar. Thus the anal-
ysis is focused on the remaining two guidelines: “relation
sensitivity-confidence” and “interest”. In order to present a
comprehensible analysis of this experimental study, a summary
of the results obtained for each algorithm is presented:

• For the SDIGA algorithm the best relation between
sensitivity and confidence is obtained by the missing
data imputation of KNNI as it obtains the best values
in both quality measures. With respect to the interest
quality measure, although IM obtains the best value in
unusualness, its value in significance is very poor. In this
way, the best results in interest for this algorithm are
obtained with CMC and KNNI method.

• MESDIF obtains the best results in both interest and
relation sensitivity-confidence with the KNNI imputation
method.

• For NMEEF-SD algorithm the best relation sensitivity-
confidence is obtained by KNNI method because this
one obtains the best results in both quality measures. In
significance quality measures can be observed clearly that
the best results are obtained by the same method, and
for unusualness although KNNI does not obtain the best
results is very similar.

From this analysis can be observed that the best results
are obtained with the missing data imputation of KNNI.
This algorithm allows all the subgroup discovery algorithms
analysed to obtain the best relation between sensitivity and
confidence. In addition to this, this algorithm gets excellent
values in unusualness and significance. NMEEF-SD is the best
approach, showing the best synergy with the imputation step,
and specially with the KNNI algorithm.

V. CONCLUSIONS

A study about the influence of MVs in evolutionary fuzzy
systems for subgroup discovery techniques is carried out
in this paper, where different missing data imputations are



TABLE II
PARAMETERS OF ALGORITHMS EMPLOYED

Algorithm Parameters
SDIGA Population size=100, evalutions=10000, crossover probability=0.60, mutation probability=0.01, minimum con-

fidence=0.6, representation of the rule=canonical and linguistic labels=3, objective1=sensitivity (weight=0.4),
objective2=fuzzy confidence (weight=0.3) and objective3=unusualness (weight=0.3).

MESDIF Population size=100, evalutions=10000, crossover probability=0.60, mutation probability=0.01, elite population
size=3, representation of the rule=canonical, linguistic labels=3, objective1=sensitivity, objective2=fuzzy
confidence and objective3=unusualness.

NMEEF-SD Population size=50, evalutions=10000, crossover probability=0.60, mutation probability=0.1, minimum con-
fidence=0.6, representation of the rule=canonical, linguistic labels=3, objective1=sensitivity and objec-
tive2=unusualness.

TABLE III
AVERAGE RESULTS OBTAINED FOR SUBGROUP DISCOVERY ALGORITHMS WITH DIFFERENT MVS APPROACHES

Algorithm MVmethod SIGN UNUS SENS FCNF

SDIGA
CMC 21.718 0.046 0.701 0.525
IM 12.931 0.050 0.631 0.510
KNNI 21.711 0.048 0.741 0.549

MESDIF
CMC 11.623 0.026 0.290 0.477
IM 11.466 0.025 0.258 0.399
KNNI 13.257 0.034 0.330 0.475

NMEEF-SD
CMC 17.226 0.111 0.906 0.783
IM 17.688 0.111 0.849 0.779
KNNI 18.046 0.110 0.908 0.788

analysed in order to obtain the best method for this type of
algorithms. The paper is supported by a complete experimental
study with data sets from KEEL containing MVs.

The analysis performed on the experimental study indicates
that the best results are obtained using the pre-processing
method based on KNNI algorithm. This pre-processing method
obtains the best relation sensitivity-confidence in all evolution-
ary fuzzy systems analysed and good novelty results.

The best results are obtained by NMEEF-SD algorithm
which obtains the best values in the majority of the quality
measures: unusualness, sensitivity and fuzzy confidence. It is
interesting to remark that NMEEF-SD obtains a sensitivity
upper than 90% with a confidence close to 80% with pre-
processing method of KNNI. As a consequence, NMEEF-SD
is the best alternative to apply when MVs are found in the
data.

In summary, this paper presents an alternative to improve
the results obtained by any evolutionary fuzzy system for sub-
group discovery in environments with MVs in the attributes.
It arises an interesting line of work, where future efforts must
involve the analysis of more complex and related imputation
algorithms over controlled amounts of MVs. Knowledge from
other related supervised learning fields can be useful in order
to guide these efforts.
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[17] C. J. Carmona, P. González, M. J. del Jesus, M. Navı́o, and L. Jiménez,
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[18] C. J. Carmona, P. González, M. J. del Jesus, and S. Ventura, “Subgroup
discovery in an e-learning usage study based on Moodle,” in Proceedings
of the International Conference of European Transnational Education,
2011, pp. 446–451.
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