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Subgroup discovery is a descriptive data mining technique which aims at obtaining interesting rules
through supervised learning. In general, there are no works analysing the consequences of the presence
of missing values in data in this task, although improper handling of this type of data in the analysis may
introduce bias and can result in misleading conclusions being drawn from a research study. This paper
presents a study on the effect of using the most relevant approaches for pre-processing of missing values
in a determined group of algorithms, the evolutionary fuzzy systems for subgroup discovery.

The experimental study presented in this paper show that, among the methods studied, the KNNI pre-
processing approach for missing values obtains the best results in evolutionary fuzzy systems for sub-
group discovery.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Subgroup discovery (SD) (Kloesgen, 1996; Wrobel, 1997) is a
descriptive rule induction technique using supervised learning.
The main purpose is to extract descriptive knowledge with respect
to a property of interest, i.e. this technique attempts to obtain
descriptive subgroups which are statistically most interesting
(since they differ from the complete data set) with respect to a
target variable or class. SD algorithms are widely employed
throughout the literature, due to their capability to describe prob-
lems with a high interpretability respect to a property of interest.
In addition, these algorithms are well known for being able to deal
with real-world applications like bioinformatics, marketing, or
e-learning problems, among others. A complete review of these
applications can also be observed in Herrera, Carmona, González,
and Del Jesus (2011).

Evolutionary fuzzy systems (EFSs) have been successfully
applied to the SD task. An EFS (Herrera, 2008) uses basically evolu-
tionary algorithms (Eiben & Smith, 2003) for learning or tuning
fuzzy systems. EFSs are appropriated for SD because evolutionary
algorithms handle appropriately the relations between variables,
and the use of fuzzy logic by means of descriptive fuzzy rules
allows the representation of knowledge in a similar way to human
reasoning, leading to the obtaining of more interpretable and
actionable solutions in SD.
ll rights reserved.
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The quality of data handled greatly influences the results of the
subgroup discovery algorithms. One of the most important aspects
regarding the quality of data is the presence of missing values
(MVs). However, it is not usual to take into account the presence
of MVs in data for SD techniques and few studies have been carried
out considering this problem (Atzmueller & Puppe, 2006). The
inappropriate handling of missing data in the analysis may intro-
duce bias and can result in misleading conclusions being drawn
from a research study, and can also limit the generalisability of
the research findings (Wang & Wang, 2010). In this way Di-Nuovo
(2011) presents an analysis with fuzzy C-means in missing data for
a psychological problem.

The problem of the MVs is very important when using EFSs,
since most fuzzy systems cannot work directly with incomplete
data sets. In addition, for real-world problems it is possible that
no valid (complete) cases would be present in the data set
(García-Laencina, Sancho-Gómez, & Figueiras-Vidal, 2009). It has
been shown that the existence of incomplete data in both the
training set as the test set (as in both) affect the prediction
accuracy of learned classifiers (Gheyas & Smith, 2010) and this also
applies to SD. The severity of this problem depends in part on the
proportion of missing data. Real problems with missing data can be
observed for example in Doh-Soon and Kwang-Jae (2012) or
Yongsong, Shichao, Xiaofeng, Jilian, and Chengqi (2009).

Therefore it follows that the incomplete data must be treated
previously, in order to avoid these drawbacks. It will also be neces-
sary a pre-processing stage in which data is prepared and cleaned
(Pyle, 1999), in order to be not only useful but clear enough for the
knowledge extraction process.
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The simplest way of dealing with missing values is to discard
the examples that contain them. However, this method is only
practical when data contains a relatively small number of exam-
ples with MVs and when analysis of complete examples does not
lead to a significant bias during the inference (Little & Rubin, 1987).

Two additional approaches are usually found in the literature to
deal with MVs (Farhangfar, Kurgan, & Pedrycz, 2007): The use of
maximum likelihood procedures to estimate the parameters of
the model based on complete data, and the imputation of MVs
which aims to fill in the MVs with estimated values. The operation
of this second type of approach is based on that, in many cases, the
attributes of a data set are not independent from each other, so
that the identification of relationships among attributes allows to
determine appropriate values for MVs.

The effect of using a large set of imputation methods on SD
techniques based on EFSs is studied in order to determine the
best imputation procedure for each one. In this paper, SD algo-
rithms based on EFSs presented throughout the literature are em-
ployed: SDIGA (Del Jesus, González, Herrera, & Mesonero, 2007c),
MESDIF (Del Jesus, González, & Herrera, 2007b) and NMEEF-SD
(Carmona, González, Del Jesus, & Herrera, 2010). In order to per-
form this analysis, we use a large bunch of data sets, 19 in total.
First, we analyse the use of the different imputation strategies
versus case deletion and the total lack of missing data treatment,
for a total of 14 imputation methods. Therefore, each SD tech-
nique is applied over the results of the 14 imputation methods.
All the imputation and SD algorithms used are publicly available
in the KEEL (Alcalá-Fdez et al., 2009; Alcalá-Fdez et al., 2011)
software.1

The rest of the paper is organised as follows: Section 2 intro-
duces the SD task, its main properties and quality measures and
the EFSs algorithms for SD analysed in this paper. Section 3 pre-
sents MVs and different pre-processing approaches to optimize
data sets with this type of values. In Section 4 the experimental
study is presented. Finally, some concluding remarks are outlined
in Section 5.

2. Subgroup discovery

SD is a descriptive technique of data mining where supervised
learning is employed in order to find interesting relations with re-
spect to a property of interest for the experts. SD falls within the
recently introduced concept of ‘‘supervised descriptive rule discov-
ery’’ (Kralj-Novak, Lavrac, & Webb, 2009) along with contrast set
mining (Bay & Pazzani, 2001) and emerging pattern mining (Dong
& Li, 2005).

This section presents the definition and main properties of SD
and furthermore, as this paper is focused on the use of EFSs for
SD, existing EFSs algorithms for SD, their knowledge representa-
tion and the quality measures used are presented.

2.1. Definition of subgroup discovery

The concept of SD was initially introduced by Kloesgen (1996)
and Wrobel (1997), and more formally defined by Siebes (1995)
but using the name data surveying for the discovery of interesting
subgroups. It can be defined as (Wrobel, 2001):

‘‘In subgroup discovery, we assume we are given a so-called popu-
lation of individuals (objects, customer, . . .) and a property of those
individuals we are interested in. The task of subgroup discovery is
then to discover the subgroups of the population that are statisti-
cally ‘‘most interesting’’, i.e. are as large as possible and have the
most unusual statistical (distributional) characteristics with
Fig. 1. Representation of a subgroup discovery rule with respect to a value (x) of the
target variable.1 http://keel.es.
respect to the property of interest.’’

Considering this definition, the main property of this task is the
search of partial relations where the majority of the examples cor-
responding to the property of interest or target variable will be
covered. In addition, these relations should be interesting and have
an unusual behavior.

In order to represent the knowledge, SD employs a rule (R)
which consists of an induced subgroup description. It can be for-
mally defined as:

R : Cond! TargetVar

where TargetVar is a value for the variable of interest (target vari-
able) for the SD task and Cond is commonly a conjunction of fea-
tures (attribute-value pairs) capable of describing an unusual
statistical distribution with respect to the TargetVar.

As an example of subgroup, a rule is represented in Fig. 1, where
two values for the target variable are possible (TargetVar = x and
TargetVar = o). In this representation a subgroup for the first value
of the target variable are can be observed, where the rule attempts
to cover a high number of objects with a single function (described
in Fig. 1 as a circle). As can be observed the subgroup does not cov-
er all the examples for the target value x besides some examples
covered do not correspond to the target value, but the form of this
function is uniform and simple. Furthermore, the true positive rate
corresponding to the value of the target variable is high, with a va-
lue of 75%.

The main elements of a SD approach were defined by Atzmuel-
ler et al. in Atzmueller, Puppe, and Buscher (2004). The study and
configuration of these elements is very important in order to devel-
op a new approach for SD task. They are as follows:

� Type of the target variable, as for example binary, categorical,
numerical and so on.
� Description language, where the most representative is the use

of pairs attribute-value because rules must be simple.
� Search strategy, a very important aspect since the search space

grows exponentially with the number of possible expressions
that can be part of a subgroup description. In this paper we
focus on evolutionary algorithms.
� Quality measures. It is the most important element because

they guide the search process and evaluate the quality of the
subgroups obtained. In Herrera et al. (2011) is presented a com-
plete study respect to the quality measures presented through-
out the literature.

2.2. Evolutionary fuzzy systems in subgroup discovery

Evolutionary algorithms are stochastic algorithms for optimiz-
ing and search which are based on the natural evolution
process. These algorithms were introduced by Holland (1975).
The hybridisation between fuzzy logic (Zadeh, 1994) and evolu-

http://keel.es


11406 C.J. Carmona et al. / Expert Systems with Applications 39 (2012) 11404–11412
tionary algorithms is known as EFS (Herrera, 2008). Evolutionary
fuzzy systems are fuzzy systems enhanced by a learning process
based on an evolutionary algorithm. This type of algorithms pro-
vide novel and useful tools for pattern analysis and for extracting
new kinds of useful information.

Throughout the literature different EFSs for the SD task have
been presented, which are described below:

� SDIGA (Del Jesus et al., 2007c) is an evolutionary fuzzy rule
induction system. The quality measures used for the SD task
are adaptations of the ones used in algorithms for association
rule induction, confidence and support, and can also use other
measures such as interest, significance, sensitivity or unusual-
ness. The algorithm evaluates the quality of the rules by means
of a weighted average of the measures selected. An analysis of
different combinations of quality measures can be observed in
Carmona, González, Del Jesus, and Herrera (2009). SDIGA uses
linguistic rules (Del Jesus, González, & Herrera, 2007a) as
description language to specify the subgroups.
� MESDIF (Berlanga, Del Jesus, González, Herrera, & Mesonero,

2006; Del Jesus et al., 2007b) is a multi-objective genetic algo-
rithm for the extraction of fuzzy rules describing subgroups.
The algorithm extracts a variable number of different rules
expressing information on a single value of the target variable.
The search is based on the multi-objective SPEA2 (Zitzler, Lau-
manns, & Thiele, 2002) approach, and so applies the concepts
of elitism in the rule selection (using a secondary or elite popu-
lation) and the search for optimal solutions in the Pareto front.
It can use several quality measures at a time to evaluate the
rules obtained, like confidence, support, sensitivity, significance
or unusualness.
� NMEEF-SD (Carmona, González, Del Jesus, & Herrera, 2009; Car-

mona et al., 2010) is an evolutionary fuzzy system whose objec-
tive is to extract descriptive fuzzy and/or crisp rules for the SD
task, depending on the type of variables present in the problem.
NMEEF-SD has a multi-objective approach whose search strat-
egy is based on NSGA-II (Deb, Pratap, Agrawal, & Meyarivan,
2002), which uses a non-dominated sorting approach and elit-
ism. This algorithm uses specific operators to promote the
extraction of simple, interpretable and high quality rules. It
allows a number of quality measures to be used both for the
selection and the evaluation of rules within the evolutionary
process, including confidence, support, sensitivity, significance,
and unusualness.

Table 1 presents a comparative analysis among the most impor-
tant elements used by the EFSs approaches for SD. These algo-
rithms are implemented in the software tool KEEL.

Moreover, these algorithms have been applied in several real-
world problems like e-learning (Carmona, González, Del Jesus, &
Ventura, 2011; Romero, González, Ventura, Del Jesus, & Herrera,
Table 1
Comparison of properties for evolutionary fuzzy systems in subgroup discovery task.

Feature SDIGA MESDIF

Evolutionary
model

IRL approach MOEA based

Knowledge
representation

Canonical or DNF fuzzy rules Canonical or

Individual coding Chromosome = rule Chromosom
Quality measures

used as
objectives

Aggregation function with different measures
among: Coverage, significance, unusualness,
accuracy, sensibility, crisp support, fuzzy
support, crisp confidence and fuzzy confidence

Selected by
significance,
sensibility, c
confidence a

Selection Steady step GA Tournament
Operators Biased mutation, two point crossover and local

search
Biased muta
2009) or medicine (Carmona, González, Del Jesus, Navío, & Jimé-
nez, 2011), for example.
2.3. Description language for evolutionary fuzzy systems in subgroup
discovery

EFSs developed so far use pairs of attribute-value as description
language, where the values are represented through fuzzy logic
(Zadeh, 1994) for continuous attributes.

In this way, this type of algorithms obtain fuzzy rules
(Hüllermeier, 2005) by means of linguistic variables allowing the
use of numerical features in data mining processes. Continuous
variables are considered linguistic, and the fuzzy sets correspond-
ing to the linguistic labels can be specified by the user or defined
by means of a uniform partition, if the expert knowledge is not
available. Fig. 2 shows an example using uniform partitions with
triangular membership functions for a variable with three linguis-
tic labels: Low, Medium and High. Moreover, it is important to re-
mark that if the data set is formed only by discrete attributes,
crisp rules are obtained.

Below equation shows a fuzzy subgroup with different variables
and linguistic labels associated for each one. The notation used in
the fuzzy rule expression is explained below:

R : IF X1 ¼ ðLL1
1Þ AND X6 ¼ ðLL2

6Þ THEN Targetvalue
� X = {Xm/m = 1, . . . ,nv} is a set of features used to describe the
subgroups, where nv is the number of properties or variables.
These variables can be categorical or numerical.
� T = {Targetvalue/j = 1, . . . ,nc} is a set of values for the target vari-

able, where nc is the number of values.
� E ¼ Ek ¼ ek

1; e
k
2; . . . ; env ; Targetk

� �
=k ¼ 1; . . . ; ns; Targetk 2 T

n o
is

a set of examples, where Targetk is the value of the target vari-
able for the example Ek (i.e. the class for this example) and ns is
the number of examples.
� LLlnv

nv
is the linguistic label number lnv of the variable nv.

As can be observed the above equation (Rule) shows a fuzzy
subgroup with two variables, where the first variable (X1) takes
as value its first linguistic label LL1

1

� �
, and the second variable

(X6) takes its second linguistic label LL2
6

� �
.

2.4. Quality measures for evolutionary fuzzy systems in subgroup
discovery

As we have mentioned previously, the most important element
for the obtaining of good results in a SD task is the set of quality
measures used because they guide the search process and evaluate
the quality of the subgroups obtained.
NMEEF-SD

on SPEA2 model MOEA based on NSGA-II model

DNF fuzzy rules Canonical or DNF fuzzy rules

e = rule Chromosome = rule
the user among: Coverage,
unusualness, accuracy,

risp support, fuzzy support, crisp
nd fuzzy confidence

Selected by the user among: Coverage,
significance, unusualness, accuracy,
sensibility, crisp support, fuzzy support, crisp
confidence and fuzzy confidence
Tournament

tion and two point crossover Biased mutation, two point crossover and re-
initialisation based on coverage



Fig. 2. Example of fuzzy partition for a continuous variable with three labels.
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As specified by the authors, each algorithm uses some quality
measures to guide the search process. However, in order to mea-
sure the quality of the results of the SD algorithms considered in
this paper, the following quality measures are employed:

� Number of rules (nr), which measures the number of induced
rules.
� Number of variables (nv). This quality measure considers the

average number of variables in the antecedent of the rules,
computed as the average number of variables for each rule of
the set of rules.
� Significance. This measure indicates how significant is a finding,

and it is measured by the likelihood ratio of a rule (Kloesgen,
1996).
SignðRÞ ¼ 2 �
Xnc

k¼1

nðTargetVark � CondÞ

� log
nðTargetVark � CondÞ

nðTargetVarkÞ � pðCondÞ ð1Þ
where n(TargetVar � Cond) is the number of examples satisfying
the conditions and also belonging to the value for the target var-
iable in the rule, n(TargetVar) is the number of examples of the
target variable, p(Cond) is used as a normalized factor, and nc is
the number of values of the target variable. It must be noted that
although each rule corresponds to a specific TargetVar, the signif-
icance measures the novelty in the distribution impartially, for all
the values.
� Unusualness: This measure is defined as the weighted relative

accuracy of a rule (Lavrac, Flach, & Zupan, 1999). It can be com-
puted as:
UnusðRÞ ¼ nðCondÞ
ns

� nðTargetVar � CondÞ
nðCondÞ � nðTargetVarÞ

ns

� �

ð2Þ
The unusualness of a rule can be described as the balance be-
tween the coverage of the rule p(Condi) and its accuracy gain
p(TargetVar � Cond) � p(TargetVar).
� Sensitivity: This measure is the proportion of actual matches

been correctly classified (Kloesgen, 1996). It can be computed
as:
SensðRÞ ¼ TPr ¼ TP
Pos
¼ nðTargetVar � CondÞ

nðTargetVarÞ ð3Þ

This quality measure was used in Del Jesus et al. (2007c) as
Support based on the examples of the class. Sensitivity combines
precision and generality related to the target variable.
� Fuzzy Confidence: It measures the relative frequency of exam-

ples satisfying the complete rule among those satisfying only
the antecedent in fuzzy rules (Del Jesus et al., 2007c). This can
be computed as:
FCnf ðRÞ ¼
P

Ek2E=Ek2TargetVarAPCðEk;RÞP
Ek2EAPCðEk;RÞ

ð4Þ

The following assumptions are important to understand this fuz-
zy quality measure:
- An example Ek verifies the APC of a rule Ri if
APCðEk;RiÞ ¼ T lLL1
1

ek
1

� �
; . . . ;l

LL
lnv
nv

ek
nv

� �� �
> 0 ð5Þ
where APC (Antecedent Part Compatibility) is the degree of
compatibility between an example and the antecedent part of a
fuzzy rule, i.e. the degree of membership for the example to the
fuzzy subspace delimited by the antecedent part of the rule,
where:

⁄ l
LL

lnv
nv

ek
nv

� �
is the degree of membership for the value of the

feature nv for example Ek to the fuzzy set corresponding to
the linguistic label lnv for this variable (nv);

⁄ T is the t-norm selected to represent the meaning of the
AND operator (the fuzzy intersection) in our case the min-
imumt-norm.
- An example Ek is covered by a rule Ri if
APCðEk;RiÞ > 0 AND Ek 2 Classj: ð6Þ
This means that an example is covered by a rule if the example
has a degree of membership higher than 0 to the fuzzy input sub-
space delimited by the antecedent part of the fuzzy rule, and the
value indicated in the consequent part of the rule agrees with the
value of the target feature for the example. For the categorical
variables, the degrees of membership are 0 or 1.

Quality measures described above have been selected for com-
parison in this study based on three important guidelines:

1. Interpretability. This guideline measures the number of rules
and variables obtained by a SD model. Optimal interpretability
for a SD approach is the obtention of few rules containing a low
number of variables. This helps the experts to understand and
use the knowledge extracted because algorithms search for
simple and interpretable subgroups through partial relations.

2. Relation between sensitivity and confidence. This objective
quantifies a good compromise between both measures, i.e. the
algorithm must achieve the best possible relation between sen-
sibility and confidence. Both quality measures are crucial to
give the experts subgroups covering the largest number of cor-
rectly described examples. This balance is difficult to obtain as
it is usual that the value for a measure is deteriorated when the
other is improved.

3. Interest or novelty. This final guidelines is related to the search
of interesting and unusualness relations in data. A SD model
must contribute novel knowledge to the problem. Fundamen-
tally, this objective could be measured with a wide number of
quality measures as novelty, interest or significance, among
others. Nevertheless, it is important to highlight the use of the
unusualness to measure this objective because it also
contributes with generality and confidence to the problem.

3. Missing values

MVs are one of the most influential factors in data quality when
data mining processes need to be applied. An inappropriate
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handling of missing data may introduce bias in the analysis and the
obtaining of misleading conclusions. In this section we set the basis
of our study in accordance with the MV literature: The fundamen-
tal aspects in the MVs treatment based on the MV introduction
mechanisms are indicated, the influence of MVs in subgroup dis-
covery algoritms based on EFSs is described and a brief description
of the imputation methods for MVs used in our study is introduced.

3.1. Treatment of missing values

A missing data may represent an unknown value (as a result of
the data is left empty), a data that has not yet been assigned a va-
lue, an error in the conversion process of the data, or an undefined
value resulting from the operation on other missing values or pro-
duced by prohibited operations. In order to understand the phe-
nomenon and select the most appropriated method to handle
MVs, it is important to categorize the mechanisms which lead to
the introduction of MVs (Little & Rubin, 1987). As Little and Rubin
(1987) stated, there are three different mechanisms for missing
data induction:

1. Missing completely at random (MCAR), when the distribution of
an example having a missing value for an attribute does not
depend on either the observed data or the missing data. In this
case, examples with complete data are indistinguishable from
cases with incomplete data.

2. Missing at random (MAR), when the distribution of an example
having a missing value for an attribute depends on the observed
data, but does not depend on the missing data. In this case,
examples with incomplete data differ from cases with complete
data, but missing data are predictable from other variables in
the database.

3. Not missing at random (NMAR), when the distribution of an
example having a missing value for an attribute depends on
the missing values. In this case, the pattern producing missing
values is nonrandom and it is nos possible to predict the values
from other variables in the database.

In the case of the MCAR mode, the assumption is that the under-
lying distributions of missing and complete data are the same,
while for the MAR mode they are different, and the missing data
can be predicted by using the complete data (Little & Rubin, 1987).

The treatment of missing data can be handled in three different
ways (Li, Deogun, Spaulding, & Shuart, 2004):

� The simplest approach is to discard the examples with missing
data in their attributes. Therefore deleting attributes with high
levels of missing data is enclosed in this category too. This is
only practical when data contains few MVs and analysing only
complete examples does not lead to a significant bias during
the inference.
� A second approach is the use of maximum likelihood proce-

dures to estimate the parameters of the model based on com-
plete data and then been used to impute by means of
sampling.
� Finally, the imputation of MVs, whose objective is to estimate

the values to fill in the MVs. To do so, this method takes advan-
tage of the fact that, in most cases, the attributes of a data set
are not independent from each other, so that the identification
of relationships among attributes allows to determine appropri-
ate values for MVs. This is the most used approach.

As Farhangfar, Kurgan, and Dy (2008) and Matsubara, Prati, Ba-
tista, and Monard (2008) state, it is only in the MCAR mechanism
case where the analysis of the remaining complete data (ignoring
incomplete data) could give a valid inference due to the assump-
tion of equal distributions. That is, case and attribute removal with
missing data should be applied only if the missing data is MCAR, as
both of the other mechanisms could potentially lead to informa-
tion loss that would lead to the generation of a biased/incorrect
model (i.e. a model based on a different distribution).

Another solution is to convert the missing values to a new va-
lue (encode them into a new numerical value), but such a sim-
plistic method was shown to lead to serious inference problems
(Schafer, 1997). On the other hand, if a significant number of
examples contain missing values for a relatively small number
of attributes, it may be beneficial to perform imputation (filling-
in) of the missing values. In order to do so, the assumption of
MAR randomness is needed, as Little and Rubin (1987) observed
in their analysis.

Throughout the literature different approaches can be found in
order to handle missing values, for example in Hai and Shouhong
(2009) a proposal based on a rough set rule induction is presented,
in Yongsong, Shichao, Xiaofeng, Jilian, and Chengqi (2009) a kernel-
based missing data imputation can be observed, or in Yan, Yiyuan,
Shuxue, Shipin, and Yifen (2011) an approach based on bayesian
network with missing data is shown.

3.2. Effect of missing values in subgroup discovery algorithms

As we have previously mentioned, the presence of MVs harms
the capabilities of the model obtained when applying data mining
techniques. It has been shown that MVs reduce the accuracy of
predictive models (Batista & Monard, 2003a; Gheyas & Smith,
2010). In addition, the completeness of the obtained knowledge
is also reduced (Pyle, 1999) if the MVs are not correctly treated.
Three types of problems are usually associated with MV in data
mining (Barnard & Meng, 1999): (1) loss of efficiency; (2) compli-
cations in handling and analysing the data; and (3) bias resulting
from differences between missing and complete data.

This is specially critical in a descriptive task like SD, where the
completeness of the information presented is crucial, as well as
its generalization abilities. Therefore it follows that incomplete
data must be previously treated in order to avoid these draw-
backs. However, up to this study the presence of MVs in the data
has been slightly considered when tackling the SD task. We can
find a unique precedent in the SD-Map algorithm (Atzmueller &
Puppe, 2006), which is capable of handling MVs during the learn-
ing phase. The rest of the proposals of SD algorithms are not able
to cope with the presence MVs, disabling their use in many real
world data sets.

Among the different approaches available to handle MVs, spe-
cial attention of this paper is focused on imputation methods. A
fundamental advantage of this approach is that the missing data
treatment is independent of the learning algorithm used. This al-
lows the user to select the most appropriate method for each situ-
ation he faces.

SD algorithms employed in this paper use fuzzy systems to im-
prove the robustness of the process, as they are capable of manag-
ing certain degree of imperfections in the data. However, in spite of
the fuzzy systems being imperfect data tolerant, it has been proved
that the use of imputation techniques is necessary in order to
achieve the best results (Luengo, Sáez, & Herrera, 2012). Using
imputation techniques avoids the necessity of modifying the SD
algorithm which will be applied afterwards, thus providing two
advantages:

1. Data needs to be pre-processed only once. Thereafter, pre-pro-
cessed data can be used by every SD algorithm needed.

2. Avoids the modification of each SD algorithm to handle MVs,
which is not possible in some cases due to the definition of
the method.



Table 2
Properties of the data sets used from the KEEL repository.

Name nv nvD nvC nc ns %MV

Adult 14 8 6 2 48842 7.41
Bands 19 6 13 2 539 32.28
Breast 9 9 0 2 286 3.15
Cleveland 13 0 13 5 303 1.98
Crx 15 12 3 2 690 5.36
Dermatology 34 34 0 6 366 2.19
Ecoli 7 0 7 8 336 48.21
German 20 20 0 2 1000 80.00
Hepatitis 19 13 6 2 155 48.39
Horse-colic 23 16 7 2 368 98.10
Housevotes 16 16 0 2 435 46.67
Iris 4 0 4 3 150 32.67
Magic 10 0 10 2 1902 58.20
Mammographic 5 5 0 2 961 13.63
Mushroom 22 22 0 2 8124 30.53
New-Thyroid 5 1 4 3 215 35.35
Pima 8 0 8 2 768 50.65
Shuttle 9 9 0 7 2175 55.95
Wisconsin 9 9 0 2 699 2.29
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3.3. Description of the imputation methods used

There is a wide family of imputation methods, from simple
imputation techniques like mean substitution, K-Nearest Neighbor,
etc., to those which analyse the relationships between attributes
such as support vector machines-based, clustering-based, logistic
regressions, maximum-likelihood procedures and multiple imputa-
tion (Batista & Monard, 2003a; Farhangfar et al., 2008). Trying a vast
amount of them in order to decide the best approach would be very
time consuming. Previous studies have shown that particular learn-
ing algorithms usually obtain more benefit from a small amount of
imputation techniques. Therefore, establishing which imputation
techniques are the more appropriate for the SD methods is needed.

In our case we will use single imputation methods, due to the
time complexity of the multiple imputation schemes, and the
assumptions they make regarding data distribution and MV ran-
domness; that is, that we should know the underlying distributions
of the complete data and missing data prior to their application.

In the following are briefly described the imputation methods
considered in this study:

� Do Not Impute (DNI). As its name indicates, all the missing data
remains unreplaced, so the algorithms must use their default
MVs strategies. The objective is to verify whether imputation
methods allow the algorithms to perform better than when
using the original data sets. As a guideline, in Grzymala-Busse
and Hu (2000) a previous study of imputation methods is
presented.
� Case deletion or Ignore Missing (IM). Using this method, all

instances with at least one MV are discarded from the data set.
� Global most common attribute value for symbolic attributes,

and Global average value for numerical attributes (MC) (Grzy-
mala-Busse, Goodwin, Grzymala-Busse, & Zheng, 2005). This
method is very simple: For nominal attributes, the MV is
replaced with the most common attribute value, and numerical
values are replaced with the average of all values of the corre-
sponding attribute.
� Concept most common attribute value for symbolic attributes,

and Concept average value for numerical attributes (CMC)
(Grzymala-Busse et al., 2005). As stated in the MC method, the
MV is replaced by the most repeated value for nominal attri-
butes, or by the mean value for numerical ones, but considering
only the instances with the same class as the reference instance.
� Imputation with fuzzy K-means Clustering (FKMI) (Acuna &

Rodríguez, 2004; Li et al., 2004). In fuzzy clustering, each data
object has a membership function which describes the degree
to which this data object belongs to a certain cluster. In the pro-
cess of updating membership functions and centroids, FKMI’s
only take into account complete attributes. In this process, the
data object cannot be assigned to a concrete cluster represented
by a cluster centroid (as is done in the basic K-mean clustering
algorithm), because each data object belongs to all K clusters
with different membership degrees. FKMI replaces non-refer-
ence attributes for each incomplete data object based on the
information about membership degrees and the values of clus-
ter centroids.
� Imputation with K-Nearest Neighbor (KNNI) (Batista & Monard,

2003b). Using this instance-based algorithm, every time an MV
is found in a current instance, KNNI computes the k nearest
neighbors and a value from them is imputed. For nominal val-
ues, the most common value among all neighbors is taken,
and for numerical values the average value is used. Therefore,
a proximity measure between instances is needed for it to be
defined. The euclidean distance (it is a case of a Lp norm dis-
tance) is the most commonly used in the literature.
An extensive and detailed description of these methods can be
found on the web page <http://sci2s.ugr.es/MVDM>, and a PDF file
with the original source paper descriptions is present on the web
page formerly named ‘‘Imputation of Missing Values. Methods’
Description’’. A more exhaustive bibliography section is also avail-
able on the mentioned web page.
4. Experimental study

This section presents a complete experimental study with the
different EFSs for SD presented throughout the literature. Several
data sets, both with MVs and with induced MVs are used. As the
results obtained by the SD algorithms will depend on the previous
pre-processing step of the data sets, the objective is to determine
which of the imputation methods for the treatment of data sets
with MVs is more appropriated as a pre-processing step in the
SD task using EFSs. To do so, the imputation approaches presented
in the previous section are applied to the selected data sets with
MVs, and then the SD algorithms are used.

Therefore, this experimental study is divided in two sections.
First, the experimental framework and the parameters used for
the different algorithms and data sets is indicated, and then the re-
sults obtained by the different EFSs for the SD task are shown.

4.1. Experimental framework

The experimentation was undertaken with real data sets from
the KEEL (<http://www.keel.es>) repository.

The properties of the data sets are presented in Table 2 includ-
ing: Number of variables (nv), number of discrete variables (nvD),
number of continuous variables (nvC), number of classes (nc), num-
ber of examples (ns) and percentage of examples with missing val-
ues (%MV) which indicates percentage of instances with at least
one MV. Among the complete data sets analysed, Iris, Pima, New-
Thyroid, Ecoli, German, Magic and Shuttle have missing values
induced. These data sets are modified versions from the original
ones, where a 10% of values have been randomly removed (only
training partitions present missing values, while test partitions re-
main unchanged). With respect to the remaining data sets, con-
taining MVs, there is no information available about the
generation mechanism of the MVs.

In order to perform the experimental study, SD algorithms are
executed using a ten fold cross-validation (10-fcv) procedure.

http://sci2s.ugr.es/MVDM
http://www.keel.es


Table 3
Parameters of algorithms employed.

Algorithm Parameters

SDIGA Population size = 50, evalutions = 10000, crossover
probability = 0.60, mutation probability = 0.1, minimum
confidence = 0.6, representation of the rule = canonical and
linguistic labels = 3, objective1 = sensitivity (weight = 0.4),
objective2 = fuzzy confidence (weight = 0.3) and
objective3 = unusualness (weight = 0.3).

MESDIF Population size = 50, evalutions = 10000, crossover
probability = 0.60, mutation probability = 0.01, elite population
size = 3, representation of the rule = canonical, linguistic
labels = 3, objective1 = sensitivity, objective2 = fuzzy
confidence and objective3 = unusualness.

NMEEF-SD Population size = 50, evalutions = 10000, crossover
probability = 0.60, mutation probability = 0.1, minimum
confidence = 0.6, representation of the rule = canonical,
linguistic labels = 3, objective1 = sensitivity and
objective2 = unusualness.

Table 4
Average results obtained for SD algorithms with different missing values approaches.

Algorithm MVmethod nr nv SIGN UNUS SENS FCNF

SDIGA CMC 4.41 3.08 16.199 0.051 0.731 0.561
DNI 4.34 3.73 18.297 0.056 0.679 0.548
FKMI 4.41 3.14 16.266 0.052 0.761 0.570
IM 4.24 3.56 10.679 0.052 0.683 0.546
KNNI 4.16 3.12 16.508 0.052 0.760 0.576
MC 4.40 3.22 15.683 0.048 0.734 0.553

MESDIF CMC 9.13 6.72 8.869 0.028 0.360 0.477
DNI 9.16 6.36 9.542 0.030 0.364 0.445
FKMI 9.16 6.84 9.059 0.026 0.361 0.456
IM 9.16 6.96 8.876 0.028 0.350 0.439
KNNI 9.00 6.72 9.814 0.034 0.403 0.490
MC 9.16 6.87 9.574 0.028 0.377 0.455

NMEEF-SD CMC 10.99 3.62 13.534 0.109 0.909 0.780
DNI 9.78 3.44 13.111 0.103 0.879 0.750
FKMI 7.19 3.11 12.718 0.102 0.901 0.764
IM 14.01 3.59 13.592 0.104 0.869 0.777
KNNI 9.55 3.50 13.909 0.106 0.912 0.785
MC 9.82 3.54 13.247 0.104 0.899 0.770
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Therefore, the results shown for the experiments are the average of
the results obtained for each data set for the different partitions.
The results shown for each SD algorithm are the average of 50 exe-
cutions (5 executions per group of cross validation).

Parameters used in the execution of the SD algorithms, they are
presented in Table 3.

Quality measures analysed and presented in the result tables
are the average results for the rule sets in the total data sets stud-
ied with the following initials: FCNF for fuzzy confidence, SENS for
sensitivity, SIGN for significance and UNUS for unusualness.

4.2. Results obtained

The results of the SD algorithms based on EFSs for this experi-
mental study are presented in Table 4. In this table, the name of
the SD algorithm (Algorithm) used, the pre-processing method for
MVs (MVmethod) employed, and the results of the quality measures
explained above are shown. The complete results obtained for each
algorithm in the different data sets are available in the Website
<http://simidat-web.ujaen.es/MVs/ESWA12>.

A summary of the results obtained for each algorithm is pre-
sented in order to perform a comprehensible analysis of this exper-
imental study. This analysis is carried out according to the three
guidelines introduced previously, i.e. ‘‘interpretability’’, ‘‘interest’’
and ‘‘relation sensitivity-confidence’’:
� Respect to SDIGA algorithm, the best interpretability is obtained
with the KNNI approach for MVs, because it obtains the lowest
number of rules and with a low number of variables per rule.
With respect to the relation sensitivity-confidence is clearly
presented in the results that the KNNI method obtains the best
relation. Despite of the fact that KNNI does not obtain the best
results in significance and unusualness, later is very similar to
the best. All in all the best results are obtained with the KNNI
method.
� In MESDIF is perfectly defined that the best method for the

treatment of MVs as pre-processing step in this type of environ-
ments is the KNNI algorithm, because it obtains the best results
in all the quality measures analysed.
� Finally, respect to NMEEF-SD algorithm it is more difficult to

obtain a conclusive analysis. In interpretability the best results
are obtained by the FKMI method. However,in the relation sen-
sitivity-confidence and in interest the best results are obtained
by the KNNI method. In summary, the best overall results are
for KNNI, as this algorithm obtains the best results in the rela-
tion sensitivity-confidence, in significance, in sensitivity, in con-
fidence and in interest, also obtaining a good interpretability,
because the number of variables is low.

As can be observed in the analysis performed, the results indi-
cate that in all the EFSs for SD task presented throughout the liter-
ature the best results are obtained using the KNNI method for the
pre-processing of the data sets containing MVs. This statement is
graphically depicted in Fig. 3, which presents the results obtained
for each algorithm using the different MVs pre-processing meth-
ods. This figure presents a sub-figure for each algorithm, and veri-
fies that the KNNI pre-processing method obtains the best overall
results.

Some conclusions can be drawn according to the results of this
experimentation:

� The KNNI pre-processing approach for MVs obtains the best
results for subgroup discovery based on evolutionary fuzzy
systems.
� The relation sensitivity-confidence is optimized when using the

KNNI approach.
� The SD algorithm with the best relation sensitivity-confidence

is NMEEF-SD, with values close to 100% in sensitivity and close
to 80% in confidence.
� Respect to the interest guideline, SDIGA obtains the best results

in significance while NMEEF-SD obtains the best results in
unusualness.
� SDIGA obtains an excellent interpretability in this experimental

study, with a low number of rules and variables.

5. Conclusions

In this paper a experimental study related to the effect of the
use of missing data treatment in EFSs for SD is presented, where
the most relevant imputation approaches for the treatment of
MVs are used in order to preprocess some standard data sets.

It is very common that data sets have natural MVs. This prob-
lem leads to a loss of precision and quality of the results of the
algorithms applied, because this type of values can not be covered.
This problem is also present in the SD task, and it can be solved
with the use of pre-processing MVs approaches.

The experimental study presented in this paper is performed
with a number of data sets which contain both natural and induced
MVs. Thus, the purpose was to apply SD algorithms in data sets
preprocessed previously using MVs approaches in order to analyse
which of them is the best option to preprocess data sets when
using EFSs algorithms for the SD task. The results show that the

http://simidat-web.ujaen.es/MVs/ESWA12


Fig. 3. Results obtained in the quality measures for Subgroup discovery: Significance (SIGN), unusualness (UNUS), sensitivity (SENS) and fuzzy confidence (FCNF).
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most appropriated imputation method for MVs when used as a
pre-processing step for the EFSs algorithm for SD is KNNI.
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