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Abstract

The main objective of subgroup discovery is to discover interesting and interpretable patterns with respect
to a specific property. The use of evolutionary fuzzy systems provides good algorithms to approach this
problem. In this sense, NMEEF-SD algorithm –one of the most representative evolutionary fuzzy sys-
tems for subgroup discovery– obtains precise and interpretable subgroups. However in the majority of the
evolutionary fuzzy systems, the membership functions of the linguistic labels are usually fixed to static
values and the partitions are not adapted to the context of each variable. In this paper, a post-processing
tuning step to improve the results of the subgroup discovery algorithm NMEEF-SD is proposed, allowing
the partitions to be adapted to the context the variables. The application of this tuning step is a novelty in
subgroup discovery and consist of a genetic algorithm which allows the lateral displacement of the mem-
bership functions of a label considering a unique parameter, using the 2-tuples linguistic representation.
The results obtained using different data sets of the KEEL repository show the improvement in the per-
formance of the NMEEF-SD algorithm with lateral displacement. The study is supported by statistical
tests to improve the analysis performed.

Keywords: Subgroup discovery, evolutionary fuzzy system, fuzzy rules, 2-tuples linguistic representation

1. Introduction

Subgroup Discovery (SD) 34,44 is a data mining task
whose objective is the discovery of interesting in-
dividual patterns (rules in this case) in relation to a
specific property which is of interest to the user. SD
is broadly applicable such as in medicine 11 or e-
learning 41 among others, and focus its interest on
partial relations instead of complete ones. The dis-
covered subgroups should be interpretable and in-
teresting according to the criteria of the user. In 29,
a recent review describing the SD task, the qual-
ity measures used, the approaches and the applica-

tions can be found. The SD task is somehow be-
tween descriptive and predictive induction, and dif-
ferent algorithms adapting classical algorithms of
both classification –as CN2-SD 38– and association
rule learning –as Apriori-SD 33 or SD-MAP 8– have
been proposed. Nowadays, one of the most impor-
tant aspect in SD is the measures to be used to eval-
uate the quality of the subgroups extracted.

Basically, evolutionary fuzzy systems (EFSs)
15,16,28 use evolutionary algorithms (EA) 21 for
learning or tuning fuzzy systems. EFSs have been
successfully applied to SD because EAs handle ap-
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propriately the relations between variables, and the
use of fuzzy logic by means of descriptive fuzzy
rules allows the representation of knowledge in a
similar way to human reasoning, leading to the ob-
taining of more interpretable and actionable solu-
tions in SD. In addition, several EFSs have been pro-
posed for the SD task –as SDIGA 19 or MESDIF 9–.
The latter EFS proposed so far for the SD task is the
Non-dominated Multi-objective Evolutionary algo-
rithm for Extracting Fuzzy rules in Subgroup Dis-
covery (NMEEF-SD) 10, whose objective is the ex-
traction of descriptive fuzzy and/or crisp rules for
SD, depending on the type of variables present in
the problem.

One of the advantages in the use of EFSs to solve
the SD task is the interpretability of the rules ob-
tained; in fact, algorithms for SD based on EFSs
consider the interpretability as a main issue. But in
addition, EFSs can be useful for the context adapta-
tion of the labels of the linguistic variables, adjust-
ing the number of labels for each linguistic variable
or the definition of the fuzzy membership functions
among others 28. When the membership functions
are obtained by a normalisation process, the fuzzy
partitions may not be adapted to the context of each
variable, and the cooperative behaviour of the rules
may not be optimal. This contextualisation can be
performed using an a priori learning process or a
posteriori tuning process.

In this paper, a lateral tuning in the member-
ship functions that improves their global interaction,
with the main aim of inducing a better coopera-
tion among rules 16,28 is introduced through a ge-
netic tuning process. This process of contextualiz-
ing the membership functions enables to achieve a
better covering degree while maintaining the origi-
nal shapes. The main objective is to analyse the use
of this process on the rules obtained by the SD algo-
rithm NMEEF-SD 10. This algorithm has been used
to obtain the rule base, and then a lateral tuning of
the membership functions has been performed. This
optimisation has been carried out by a genetic lateral
tuning using a linguistic rule representation model
proposed in 2. It is based on the 2-tuples linguistic
representation 31 which allows the lateral displace-
ment of a label considering a unique parameter. The

majority of SD algorithms are not capable of han-
dling continuous variables, and they need to perform
a previous step to discretise them. However, the use
of fuzzy logic in NMEEF-SD avoids the need for
previous discretisation. Moreover, the lateral tuning
provides the experts an optimisation of the results in
continuous variables.

To do so, the paper is organised as follows: an in-
troduction to the SD task and the most used quality
measures in SD are presented in Section 2. An in-
troduction to the EFSs for the SD task, together with
the NMEEF-SD algorithm are presented in Section
3. In Section 4, the genetic lateral tuning and the
application of the tuning process to the results of
the NMEEF-SD algorithm are described. Finally,
an analysis of the results of the genetic lateral tun-
ing applied to the NMEEF-SD algorithms in a wide
number of quality measures employed in SD is per-
formed in Section 5, and in Section 6 the conclu-
sions are outlined.

2. Subgroup discovery

First, a description of the main concepts of SD are
shown in Section 2.1. Then, a summary of the qual-
ity measures most used in SD can be observed in
Section 2.2.

2.1. Introduction to subgroup discovery

SD is a data mining task in which given a popula-
tion of individuals and a property of those individu-
als we are interested in, the objective is to find popu-
lation subgroups that are statistically “most interest-
ing”, i.e. are as large as possible and have the most
unusual statistical characteristics with respect to the
property of interest 34,44. The main goal in SD is
to discover characteristics of the subgroups by con-
structing rules with high support and significance.
As SD focusses its interest on partial relations in-
stead of complete ones, small subgroups with inter-
esting characteristics can be sufficient.

In SD, a rule R can be described as:

R : Cond → Targetvalue

where the property of interest is the Targetvalue
that appears in the consequent part of the rule, and
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the antecedent part of the rule, Cond, is a conjunc-
tion of features (usually attribute-value pairs) se-
lected from the features describing the training in-
stances 25,36.

For further information, the interested reader can
find in 29 a recent review describing the main prop-
erties of the SD task, its most used quality measures,
the available approaches in the literature to solve this
problem, and the main applications in real-world
problems.

The lateral tuning approach presented in this pa-
per provides novelty within the data mining task of
SD allowing the tuning of the linguistic labels em-
ployed in the subgroups for the algorithms based on
EFSs, thus adapting the membership functions to the
context of the variables and improving the quality of
the results.

2.2. Quality measures

One of the most important aspects in SD is the
choice of the quality measures employed to extract
and evaluate the rules. There is a wide number of
measures for the SD task presented throughout the
bibliography, but it is difficult to establish which is
the most suitable one as it often depends on the prob-
lem. Due to this fact, it is really complicated to anal-
yse the behaviour of a SD algorithm. Hence, experts
can choose in general the most suitable quality mea-
sures in terms of the problem.

Below is a definition of different quality mea-
sures for SD, focusing not only in quality measures
employed in the tuning process, but also in other im-
portant quality measures presented in Section 5:

• Coverage: It measures the percentage of examples
covered on average 38. This can be computed as:

Cove(R) =
n(Cond)

ns
, (1)

where ns is the number of total examples and
n(Cond) is the number of examples which satisfy
the conditions determined by the antecedent part
of the rule.

• Crisp Support: It measures the frequency of cor-
rectly classified examples covered by the rule 38.

This can be computed as:

CSup(R) =
n(Targetvalue ·Cond)

ns
, (2)

where n(Targetvalue ·Cond) is the number of ex-
amples which satisfy the conditions and also be-
long to the value for the target variable in the rule.

• Fuzzy Support: It is defined as the degree of cov-
erage that the rule offers to examples of that target
value, and it is computed as:

FSup(R) =
n(Targetvalue ·Cond)

ns
, (3)

where n(Targetvalue ·Cond) is the number of ex-
amples which satisfy the conditions with fuzzy
properties and also belong to the value of the tar-
get variable.

• Crisp Confidence: It measures the relative fre-
quency of examples satisfying the complete rule
among those satisfying only the antecedent. This
can be computed with different expressions 19,
and in this paper is computed as:

CCn f (R) =
n(Targetvalue ·Cond)

n(Cond)
, (4)

This quality measure can also be found as
accuracy in the specialised bibliography.

• Fuzzy confidence: It measures the relative fre-
quency of examples satisfying the complete rule
among those satisfying only the antecedent, and it
is defined as 19:

FCn f (R) =
∑Ek∈E/Ek∈Targetvalue

APC(Ek,R)

∑Ek∈E APC(Ek,R)
, (5)

where APC (Antecedent Part Compatibility) is the
degree of compatibility between an example and
the antecedent part of a fuzzy rule, i.e., the degree
of membership for the example to the fuzzy sub-
space delimited by the antecedent part of the rule.

• Significance: This measure indicates the signifi-
cance of a finding, if measured by the likelihood
ratio of a rule 34. It can be computed as:

Sign(R) = 2 ·
nT v

∑
k=1

n(Targetvaluek ·Cond)·

log
n(Targetvaluek ·Cond)

n(Targetvaluek) · p(Cond)
, (6)
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where p(Cond), computed as n(Cond)/ns, is used
as a normalized factor, and nT v is the number of
values of the target variable. It must be noted that
although each rule is for a specific Targetvalue, the
significance measures the novelty in the distribu-
tion impartially, for all the values.

• Sensitivity: This measure represents the the pro-
portion of actual matches that have been classified
correctly 34. It can be computed as:

Sens(R) =
n(Targetvalue ·Cond)

n(Targetvalue)
, (7)

where n(Targetvalue) are all the examples of the
target variable. This quality measure was defined
in 19 as Support based on the examples of the
class, and used to evaluate the quality of the sub-
groups in the Receiver Operating Characteristic
(ROC) space. Sensitivity combines precision and
generality related to the target variable.

• Unusualness: This measure is defined as the
weighted relative accuracy of a rule 37. It can be
computed as:

WRAcc(R) =
n(Cond)

ns
·(

n(Targetvalue ·Cond)
n(Cond)

− n(Targetvalue)

ns

)
. (8)

The unusualness of a rule can be described as
the balance between the coverage of the rule
p(Condi) and its accuracy gain p(Targetvalue ·
Cond)− p(Targetvalue).

• Accuracy: It is the percentage of positive exam-
ples of a rule. This quality measure is called “con-
fidence” in descriptive data mining references. It
can be computed as:

Accu(R) =
n(Targetvalue ·Cond)+1

n(Targetvalue +nT v)
. (9)

3. Evolutionary fuzzy systems for SD

This section presents an introduction to EFSs and
their application to the SD task (Section 3.1). In ad-
dition, a brief description of the NMEEF-SD algo-
rithm, used in the experiments, is presented in Sec-
tion 3.2.

3.1. Introduction of the evolutionary fuzzy
systems

EFSs are basically fuzzy systems augmented by a
learning process based on evolutionary computation,
which includes genetic algorithms, genetic program-
ming, and evolutionary strategies, among other evo-
lutionary algorithms 21. Currently, EFSs are being
applied to a wide range of real-world problems. The
research related to this area is growing, and a num-
ber of open problems and future directions can be
found in 12,13,39.

Fuzzy systems are one of the most important ar-
eas for the application of the fuzzy set theory 45.
Usually this kind of systems consider a model struc-
ture in the form of fuzzy rules. They are called fuzzy
rule based systems (FRBSs), which have demon-
strated their ability with respect to different prob-
lems like control problems, modeling, classification
or data mining in a large number of applications.
The pioneering works in application of FRBSs to
these types of problems can be found in 32,35. FRBSs
provide us a comprehensible representation of the
extracted knowledge and moreover a suitable tool
for processing the continuous variables.

There are two different processes in an EFS, tun-
ing and learning. It is difficult to make a clear dis-
tinction between both processes, since establishing
a precise borderline becomes as difficult as defining
the concept of learning itself. It is important to take
into consideration the existence or not of a previous
Knowledge Base (KB), including Data Base (DB)
and Rule Base (RB). The following distinction can
be considered in EFSs:

• Genetic tuning. If there exists a KB, a genetic tun-
ing process is applied to improve the system per-
formance without changing the existing RB.

• Genetic learning. To learn KB components
(where an adaptive inference engine can even be
included). That is, to involve the learning of KB
components among other components of the algo-
rithm.
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The task of SD has been successfully tackled us-
ing different EFSs, such as SDIGA 19 (an evolution-
ary fuzzy rule induction system based on the iter-
ative rule-learning (IRL) proposal 14, which evalu-
ates the quality of the rules by means of a weighted
average of the measures selected), MESDIF 9,18 (a
multi-objective genetic algorithm for the extraction
of fuzzy rules which describes subgroups based on
the multi-objective SPEA2 46 approach, and which
can use several quality measures at a time to eval-
uate the rules obtained) or NMEEF-SD 10 (a multi-
objective genetic algorithm based on the NSGA-II
algorithm 17, which is explained in the following
section).

In this paper a tuning process performed to the
rules obtained by the SD algorithm NMEEF-SD is
presented, to ease the genetic optimization of the
membership functions of the data base through a
new linguistic rule representation model proposed in
2. It is based on the 2-tuples linguistic representation
31 that allows the lateral displacement of a label con-
sidering a unique parameter.

3.2. NMEEF-SD algorithm

NMEEF-SD 10 is an evolutionary algorithm whose
objective is to extract descriptive fuzzy and/or crisp
rules for the SD task, depending on the type of vari-
ables present in the problem.

This algorithm is based on the NSGA-II algo-
rithm 17, which is a multi-objective evolutionary
algorithm with a non-dominated sorting approach.
NMEEF-SD is oriented towards SD and uses spe-
cific operators to promote the extraction of simple,
interpretable and high quality SD rules.

With respect to the representation of the rules,
each candidate solution is coded according to the
“Chromosome = Rule” approach, where only the an-
tecedent is represented in the chromosome and the
consequent is prefixed to one of the possible values
of the target variable in the evolution. Therefore,
the algorithm must be executed as many times as the
number of different values the target variable con-
tains. In this paper, a canonical representation with
as many genes as variables contained in the origi-
nal data set without considering the target variable
is used with NMEEF-SD.

This proposal permits a number of quality mea-
sures to be used both for the selection and the evalu-
ation of the rules within the evolutionary process. In
this study, the algorithm uses two quality measures
in the process: unusualness (Eq. 8) and sensitivity
(Eq. 7). With these quality measures the algorithm
follows to obtain rules with a good balance between
support and confidence, with also high values of un-
usualness.

NMEEF-SD uses a new operator to enhance the
diversity, the re-initialisation based on coverage to-
gether with the crowding distance in the selection
operator. On the other hand, the algorithm includes
operators of biased initialisation and biased muta-
tion to promote generalisation. In addition, only the
final solutions which reach a predetermined confi-
dence threshold are returned.

A complete study of this algorithm with respect
to other SD approaches using different quality mea-
sures, including a statistical analysis, can be ob-
served in 10.

4. Genetic lateral tuning

The main objective of this work is to improve the
performance of the SD algorithm NMEEF-SD by
means of a tuning approach based on the 2-tuples
linguistic representation. This methodology consists
of refining a previous definition of the DB once the
RB has been obtained 2. The tuning introduces a
lateral tuning in the membership functions that im-
proves their global interaction, with the main aim of
inducing a better cooperation among the rules 16,28.
In this way, the aim of the tuning process is not only
to find specific membership functions in an indepen-
dent way but to find the best global configuration of
the membership functions.

In next subsections, the lateral tuning process
and the genetic algorithm used for the tuning are in-
troduced.

4.1. Lateral tuning

In this approach, a rule representation model based
on the 2-tuples linguistic representation 31 is used.
This representation allows the lateral displacement
of the labels considering only one parameter (slight
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displacements to the left/right of the original mem-
bership functions). This involves a simplification of
the search space that eases the derivation of opti-
mal models. Furthermore, this process of contex-
tualizing the membership functions enables them to
achieve a better covering degree while maintaining
the original shapes, which results in accuracy im-
provements without a loss in the interpretability of
the fuzzy labels. In the specialised literature, the 2-
tuples representation has been used to tackle differ-
ent problems as regression 4 or classification 1,2,40.

The symbolic translation of a linguistic term is
a number within the interval [-0.5, 0.5) that ex-
presses the domain of a label when it is moving be-
tween its two lateral labels as can be observed in
Fig. 1. Let us consider a set of labels S represent-
ing a fuzzy partition. Formally, we have the pair,
(si,αi),si ∈ S,αi ∈ [−0.5,0.5).

There are two different possible methods to
perform the lateral tuning: the most interpretable
method, the global tuning of the semantics, and the
most accurate one, the local tuning of the rules.
For SD task the first one is used because the inter-
pretability of the models must be preserved. This
method is applied to the level of linguistic partition,
where the pair (si, αi) takes the same tuning value in
all the rules where it is considered.

Fig. 1. Symbolic translation of a label

4.2. CHC algorithm: the genetic algorithm for
tuning

The CHC algorithm 22 is used to design the pro-
posed learning method. It is a genetic algorithm that
presents a good trade-off between exploration and
exploitation, making it a good choice in problems

with complex search spaces. This genetic model
makes use of a mechanism of “Selection of Popula-
tions”: M parents and their corresponding offspring
are put together to select the best M individuals to
take part in the next population (with M being the
population size). In this paper, a single-objective al-
gorithm has been employed because using a multi-
objective algorithm mean that the expert would have
to choose the best tuning between the different solu-
tions in the Pareto front obtained by the algorithm.
On the contrary, a single solution that can be ex-
tracted automatically is needed, just what is obtained
using a single-objective algorithm. In the specialised
literature, some proposals have employed the CHC
algorithm to approach this problem 5,3,24.

In CHC, diversity is preserved through an incest
prevention mechanism and a restarting approach, in-
stead of using the well-known mutation operator.
This incest prevention mechanism is considered in
order to apply the crossover operator, i.e., two par-
ents are recombined if their distance (considering an
adequate metric) divided by two is above a predeter-
mined threshold, L. This threshold value is initial-
ized as the maximum possible distance between two
individuals divided by four. Following the original
CHC scheme, L is decremented by one when there
are no new individuals in the population in one gen-
eration. When L is below zero the algorithm restarts
the population.

The components needed to design this process
are: the coding scheme, the initial gene pool, the
chromosome evaluation, the crossover operator and
the restarting approach, which are explained below:

• A real coding is considered where the number of
variables m which involve in some rules extracted
multiplied for the n number of linguistic labels is
the size of the chromosome. Then, a chromosome
has the form (where each gene is associated with
the lateral displacement of the corresponding la-
bel in the DB),
CT = (c1

1, . . . ,c
n
1, . . . ,c

1
m, . . . ,c

n
m).

The values of the tuning parameter must be a real
number in [−0.5,0.5).

• For the evaluation of the chromosome, an aggre-
gation function have been performed with differ-
ent SD quality measures: Sensitivity (Sens, Eq.
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Fitness(Ri,chrome) =
(Sens(Ri,chrome)∗ω1)+(Unus(Ri,chrome)∗ω2)+(FCn f (Ri,chrome)∗ω3)

ω1 +ω2 +ω3
. (10)

7), Unusualness (Unus, Eq. 8) and Fuzzy confi-
dence (FCn f , Eq. 5). These measures have been
selected to improve the accuracy without affecting
the support. The aggregation function is shown in
Equation 10. The average of the set of rules for
the tuning chromosome is the final fitness value
for the chromosome of the CHC algorithm. With
respect to the weights for each quality measure,
ω1 = 0.2, ω2 = 0.4 and ω3 = 0.4 have been con-
sidered. It has been experimentally determined
that these weights provide the best combination
for the fitness.

• The crossover operator considered is the Par-
ent Centric BLX (PCBLX) operator 30, which is
based on the BLX-α .

• With respect to the restarting approach, the mech-
anism presented in 23 is employed when the
threshold value L is lower than zero. In this
case, all the chromosomes are generated at ran-
dom within the interval [−0.5,0.5). Furthermore,
the best global solution found is included in the
population to increase the convergence of the al-
gorithm.

5. Experimental study

In this experimental study the aim was to analyse the
performance of using a tuning based in the 2-tuples
linguistic approach for the NMEEF-SD algorithm in
data sets with continuous variables. The experimen-
tation was undertaken with real data sets from KEEL
repository 6,7.

Firstly, the experimental framework is presented
in Section 5.1. In Section 5.2 the results obtained
by the NMEEF-SD algorithm, with and without the
tuning based in the 2-tuples linguistic representa-
tion, can be observed. Section 5.3 shows the sta-
tistical study performed on these results. Finally, in
Section 5.4 an example of lateral tuning in a data set
is presented.

5.1. Experimental framework

The data sets employed in the experiments per-
formed to analyse the NMEEF-SD algorithm with
2-tuples linguistic approach can be observed in Ta-
ble 1, where the Name of the data set, the number
of discrete variables (nD), the number of continu-
ous variables (nC) and the number of Instances are
shown.

As can be observed in Table 1 the data sets se-
lected are diverse, where data sets with only con-
tinuous variables and data sets with both continuous
and discrete variables can be found. In addition, data
sets with a high number of instances and others with
low number of instances have been selected.

Table 1. Data sets employed in the experimental study

Name nD nC Instances
Appendicitis 0 7 106
Australian 8 6 690
Balance 0 4 625
Echo 1 5 131
Glass 0 9 214
Haberman 0 3 306
Ionosphere 0 34 351
Iris 0 4 150
Phoneme 0 5 5404
Pima 0 8 768
Wdbc 0 30 569
Wine 0 13 178

The parameters employed by the algorithms are
presented in Table 2. Due to the non-deterministic
nature of the NMEEF-SD, the algorithm is executed
five times for each data set with a 10-fold cross val-
idation for each data set. The results shown are the
average of the results obtained for each data set for
the different executions, i.e. the average of the 50
executions.

For the study of the genetic lateral tuning through
2-tuples linguistic representation in NMEEF-SD al-
gorithm, several linguistic labels have been em-
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ployed, such as 3 and 5. So, it is interesting to show
what is the improvement of the genetic lateral tuning
with respect to different number of linguistic labels
in a SD algorithm.

Table 2. Parameters of the algorithms employed

NMEEF-SD
Population size=50
Evaluations=10000
Crossover probability=0.60
Mutation probability=0.1
Re-initialisation based on coverage (50% of biased)
Minimum confidence=0.6
Representation of the rule=Canonical
CHC
Population size=50
Evalutions=10000
α=0.5

5.2. Results obtained

A complete study with respect to several quality
measures of SD is performed in this paper. There-
fore, the quality measures most used for SD are
analysed. For each quality measure, the average re-
sults obtained by the algorithms in the data sets men-
tioned in the previous section are shown.

The quality measures shown in Table 3 are the
average results for the rule sets, where the quality
measures of coverage (COV E), significance (SIGN),
unusualness (WRACC), accuracy (ACCU), sensitiv-
ity (SENS), crisp support (CSUP), fuzzy support
(FSUP), crisp confidence (CCNF) and fuzzy con-
fidence (FCNF) can be observed. Furthermore, the
number of linguistic labels (LL) used and the name
of the Algorithm are presented.

The results in Table 3 show an improvement of
the results using the NMEEF-SD algorithm with
Lateral Tuning based on 2-tuples (NMEEF-SD-LT),
obtaining higher average values in most of the qual-
ity measures than for the algorithm without the tun-
ning. Furthermore, it is really interesting the im-
provement of the values for both the support and the
confidence measures, as it is usual the degradation

of a measure when improving the other. However,
the results obtained for the unusualness measure are
better for the algorithm without the genetic lateral
tuning; this is because this quality measure has dif-
ferent properties like coverage, accuracy and nov-
elty, and it is very difficult to optimise it through an
aggregation function.

This is a preliminary analysis of the results. In
next Section, statistical tests are used in order to sup-
port this analysis, performing a complete statistical
analysis.

5.3. Statistical analysis

An analysis was performed in order to find signifi-
cant differences between both approaches through a
non-parametric test, following the recommendations
made in 20, providing a set of simple, safe and robust
methods for statistical comparisons. In this analy-
sis the Wilcoxom signed-ranks test 42,43 is selected
to do the comparison. Detailed information related
to this statistical test is available in 26,27 and on the
Website http://sci2s.ugr.es/sicidm/.

In all the experiments, a level of significance
of α = 0.05 has been used. The results for the
Wilcoxom test are presented in Table 4. This test
is performed with respect to the linguistic label
(LL), quality measure (Quamea) and the comparison
NMEEF-SD-LT versus NMEEF-SD algorithm. In
addition, in this table positives range (R+), negative
ranges (R−) and the p−Value for the test are shown.

The results obtained by the algorithm with ge-
netic lateral tuning are better in accuracy and crisp
confidence regardless of the number of labels as can
be observed in Table 4, where significant differences
are shown. Furthermore, the results obtained by the
2-tuples linguistic representation with 3 linguistic
labels gives also significant differences for the qual-
ity measure of significance.

As mentioned above, several quality measures
have been proposed for the SD task, and usually the
more suitable ones depend on the problem. Hence,
depending on the objectives to be analysed and the
problem to be tackled, the experts must select the
most appropriated quality measures. In the experi-
mental study performed, the results obtained by sev-
eral quality measures for SD have been presented to
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Table 3. Results for the simple NMEEF-SD algorithm and with genetic lateral tuning.

LL Algorithm COV E SIGN WRACC ACCU SENS CSUP FSUP FCNF CCNF

3 NMEEF-SD 0.499 3.292 0.103 0.696 0.876 0.622 0.700 0.729 0.765
NMEEF-SD-LT 0.517 4.327 0.075 0.711 0.887 0.636 0.718 0.741 0.782

5 NMEEF-SD 0.445 3.585 0.082 0.696 0.828 0.656 0.724 0.792 0.813
NMEEF-SD-LT 0.469 3.930 0.080 0.709 0.830 0.653 0.718 0.804 0.834

analyse the validity of the approach presented.

Table 4. Statistical analysis between NMEEF-SD and NMEEF-
SD-LT. The comparison performed is NMEEF-SD-LT Vs.
NMEEF-SD

LL Quamea R+ R− p−Value Result

3

COV E 47 31 0.530 Accepted
SIGN 66 12 0.034 Rejected by NMEEF-SD-LT
WRACC 16 62 0.071 Accepted
ACCU 73.5 4.5 0.007 Rejected by NMEEF-SD-LT
SENS 27 18 0.594 Accepted
CSUP 39 27 0.594 Accepted
FSUP 13 15 0.866 Accepted
FCNF 52 26 0.308 Accepted
CCNF 72 6 0.010 Rejected by NMEEF-SD-LT

5

COV E 44 22 0.328 Accepted
SIGN 46 20 0.248 Accepted
WRACC 17 49 0.155 Accepted
ACCU 57 9 0.033 Rejected by NMEEF-SD-LT
SENS 32 23 0.646 Accepted
CSUP 25 20 0.767 Accepted
FSUP 15 21 0.674 Accepted
FCNF 49 17 0.155 Accepted
CCNF 59 7 0.021 Rejected by NMEEF-SD-LT

The results of the experimental study performed
show that the use of genetic lateral tuning in
NMEEF-SD allows an improvement in the accuracy
of the model without degrading the support. In ad-
dition, in other quality measures like significance,
coverage and sensitivity, the average values obtained
for the approach with genetic lateral tuning are bet-
ter than for the algorithm without this tuning. As
a consequence, the use of the genetic lateral tuning
approach in the algorithm facilitates the usual objec-
tive of experts to obtain accurate results.

5.4. Case study: Genetic lateral tuning in the
data set Iris

The main objective of this study is to show graphi-
cally the conclusions obtained in the previous anal-

ysis. Therefore, a complete example of rules and
results for the approach presented in this paper is
shown for the data set Iris.

It should be noted that, as a global tuning of
the semantic is used in order to preserve the in-
terpretability of the model, the same pair “tuning
parameter-variable” is used for the same variable in
all the subgroups generated by the model.

In Table 5 the complete set of rules (for an
execution) extracted by the NMEEF-SD algorithm
can be observed. In this case, only the variables
petalLength and petalWidth involve in the rules. In
addition, the tuning parameter (T ) obtained in the
genetic lateral tuning using CHC is also shown.

PetalLength

Low Medium High

1.0 6.9

Fig. 2. Initial and lateral tuning for the variable PetalLength
in the iris data set

Graphically, the tuning parameter can be ob-
served in figures: Fig. 2 shows the use of genetic
lateral tuning with global tuning semantics in the
petalLenght variable and Fig. 3 in the petalWidth.
The membership functions are contextualized for
each one of the activated variables in the set of sub-
groups, adapting the fuzzy system to the problem,
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Table 5. Rules extracted for the NMEEF-SD algorithm and the tuning parameter obtained in the
genetic lateral tuning for the data set Iris.

Rule Parameter
1: IF petalLength = LL1 → Iris− setosa TpL = (LL1,−0.152)
2: IF petalWidth = LL1 → Iris− setosa TpW = (LL1,−0.063)
3: IF petalLength = LL1 AND petalWidth = LL1 → Iris− setosa TpL = (LL1,−0.152), TpW = (LL1,−0.063)
4: IF petalLength = LL2 AND petalWidth = LL2 → Iris− versicolor TpL = (LL2,0.274), TpW = (LL2,−0.319)
5: IF petalLength = LL3 → Iris− virginica TpL = (LL3,−0.212)
6: IF petalWidth = LL3 → Iris− virginica TpW = (LL3,−0.135)

Table 6. Results for the simple NMEEF-SD algorithm and with genetic lateral tuning for the rules
extracted in the data set Iris.

Algorithm COV E SIGN WRACC ACCU SENS CSUP FSUP FCNF CCNF

Rule 1 NMEEF-SD 0.333 4.771 0.222 0.750 1.000 0.333 0.333 0.954 1.000
NMEEF-SD-LT 0.333 4.771 0.152 0.750 1.000 0.333 0.228 0.999 1.000

Rule 2 NMEEF-SD 0.333 4.771 0.222 0.750 1.000 0.333 0.333 0.916 1.000
NMEEF-SD-LT 0.333 4.771 0.183 0.750 1.000 0.333 0.284 0.936 1.000

Rule 3 NMEEF-SD 0.333 4.771 0.222 0.750 1.000 0.333 0.333 0.953 1.000
NMEEF-SD-LT 0.333 4.771 0.152 0.750 1.000 0.333 0.228 0.999 1.000

Rule 4 NMEEF-SD 0.466 3.042 0.177 0.600 1.000 0.333 0.333 0.600 0.714
NMEEF-SD-LT 0.333 2.597 0.100 0.625 1.000 0.266 0.333 0.701 0.800

Rule 5 NMEEF-SD 0.066 0.954 0.044 0.500 1.000 0.066 0.333 0.753 1.000
NMEEF-SD-LT 0.333 4.771 0.103 0.750 1.000 0.333 0.205 0.669 1.000

Rule 6 NMEEF-SD 0.133 1.908 0.088 0.600 1.000 0.133 0.333 0.848 1.000
NMEEF-SD-LT 0.266 3.816 0.115 0.714 1.000 0.266 0.200 0.785 1.000

Average
NMEEF-SD 0.277 3.369 0.162 0.658 1.000 0.866 1.000 0.837 0.952
NMEEF-SD-LT 0.322 4.249 0.134 0.723 1.000 0.933 1.000 0.848 0.967

obtaining in this way better results.

PetalWidth

Low Medium High

0.1 2.5

Fig. 3. Initial and lateral tuning for the variable PetalWidth
in the iris data set

Finally, the results associated to the previously
shown rules can be observed in Table 6, where the

results for the NMEEF-SD algorithm and NMEEF-
SD with genetic lateral tuning are shown. In ad-
dition, the average results for the set of rules are
shown.

The results presented in Table 6 for data set Iris
support the conclusions previously mentioned in the
analysis: NMEEF-SD algorithm with genetic lateral
tuning is able to improve the accuracy of the model
without degrading the support. In addition, improve-
ments in coverage and significance can be observed.

6. Conclusions

In this paper, the application of the genetic lateral
tuning based on 2-tuples linguistic representation to
a SD algorithm, NMEEF-SD, to improve the perfor-
mance of this algorithm has been introduced. As far
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as we know, this is the first application of this widely
known technique in the data mining task of SD. The
process introduces a lateral tuning in the member-
ship functions of the linguistic labels of the variables
to improve their global interaction. Moreover, this
tuning allows to maintain the interpretability of the
subgroups, which is one of the most important di-
mensions in SD.

The genetic tuning using 2-tuples linguistic rep-
resentation has been implemented with a CHC al-
gorithm using the most interpretable lateral tuning:
the global tuning of the semantics. This technique
has been applied because in the SD task the inter-
pretability is one of the most important aspects. It
is applied to the linguistic partitions level where the
tuning value for the label is the same in all the rules
where it is considered.

The results obtained by the NMEEF-SD with
the tuning using the 2-tuples linguistic representa-
tion show in general better results with respect to
the initial partitions, highlighting the improvement
in accuracy without degrading the support. This
improvement in both dimensions shows a good be-
haviour of this technique. This statement is also
supported by the statistical results obtained, which
show in conclusion that the genetic tuning through
2-tuples linguistic representation improves the per-
formance of the NMEEF-SD algorithm.

In addition, the final results have also demon-
strated that, regardless of the number of linguistic la-
bels employed per variable, the results are improved.
Nevertheless, the choice of a lower level of granular-
ity performs better.
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