

Sponsors

Committees

Keynotes, Lectures

Papers

Author Index

Search

Proceedings of the

2013 Joint
IFSA World Congress
NAFIPS Annual Meeting
(IFSA/NAFIPS)

Edmonton, Canada June 24-28, 2013

IEEE Catalog No: CFP13750-USB

ISBN: 978-1-4799-0347-4

Edited by:

Witold Pedrycz

Marek Z. Reformat

Table of Contents

Scroll to the title and select a **Blue** link to open a paper.

Robust Radial Basis Function Networks Based on Least Trimmed Squares-Support Vector Regression Shun-Feng Su, Jin Tsong Jeng, Yue-Shiang Liu, Chen-Chia Chung and Imre J. Rudas	1
An Extended Numerical Analysis of an Intuitionistic Fuzzy Classifier for Imbalanced Classes Eulalia Szmidt, Janusz Kacprzyk and Marta Kukier	7
Evolutionary Fuzzy Classifiers for Imbalanced Datasets: An Experimental Comparison Michela Antonelli, Pietro Ducange, Francesco Marcelloni and Armando Segatori	13
Convergence Analysis of an Elitist Non-homogeneous Genetic Algorithm with Mutation Probability Adjusted by a Fuzzy Controller André G. C. Pereira, Jose A.F. Roveda, Luiz Amorim Carlos, Viviane Simioli Medeiros Campos and Sandra R.M.M. Roveda	19
A New Granular Particle Swarm Optimization Variant for Granular Optimization Problems Guohua Wu, Witold Pedrycz, Dishan Qiu and Manhao Ma	24
A Quantum-inspired Evolutionary Algorithm for Fuzzy Classification Waldir Nunes, Marley Vellasco and Ricardo Tanscheit	29
Dimensions of L-semilinear Spaces over Zerosumfree Semirings Shu Qianyu and Wang Xueping	35
Quantitative Domains via Fuzzy Sets: Locally order Preserving Functors Su Shuhua, Li Qingguo and Chen Huodi	41
Reflective Categories of Cut Systems and Fuzzy Sets in Ω-sets Jiří Močkoř	45
Generating Embedded Type-1 Fuzzy Sets by means of Convex Combination Omar Salazar and Jairo Soriano	51
Pythagorean Fuzzy Subsets Ronald R. Yager	57
On Properties of Fuzzy Ideals Flaulles Boone Bergamaschi and Regivan H. N. Santiago	62
Big Data Granulation Challenges Marcin Kowalski and Dominik Slezak An evolutionary fuzzy system for the detection of exceptions in subgroup	68

discovery Cristóbal J. Carmona, Pedro González, María José Del Jesus,Beatriz García-Domingo and Jorge Aguilera	74
Optimized Feature Selection using Neuroevolution of Augmenting Topologies (NEAT) Soroosh Sohangir, Shahram Rahimi and Bidyut Gupta	80
Neighborhood Rough Sets based Multi-label Classification Ying Yu, Witold Pedrycz, Duoqian Miao and Hongyun Zhang	86
Rule Induction Based on Rough Sets from Information Tables Containing Possibilistic Information Michinori Nakata and Hiroshi Sakai	91
Centroids of Fuzzy Sets When Membership Functions Have Spikes Janet Aisbett and John T. Rickard	97
Combining Chain-Ladder Claims Reserving with Fuzzy Numbers Jochen Heberle and Anne Thomas	102
Linguistic Weighted Standard Deviation Minshen Hao and Jerry M. Mendel	108
A Fuzzy Structuralist View on the Analytical Philosophy of Medicine R. Seising	114
Compressing the representation of a causal graph C. Puente, E. Garrido, J. A. Olivas and R. Seisdedos	122
A Public Health Decision Support System Framework Using Approximate Reasoning methods Nick. J. Pizzi	128
Possibilistic Stackelberg Solutions to Bilevel Linear Programming Problems wire Fuzzy Parameters H. Katagiri, K. Kato and T. Uno	th 134
Route Planning Problem under Fuzzy Sightseeing Times and Satisfaction Values of Sightseeing Places T. Hasuike, H. Katagiri, H. Tsubaki and H. Tsuda	140
Channel Coordination in the Supply Chain with the One-shot Decision Theory X. Ma, C. Wang and P. Guo	146
Operations on Bounded Fuzzy Lattices Ivan Mezzomo, Benjamin Bedregal and Regivan H. N. Santiago	151
alpha-Ideals of Fuzzy Lattices Ivan Mezzomo, Benjamin Bedregal and Regivan H. N. Santiago	157
Partial Orders on the Truth Value Algebra of Finite Type-2 Fuzzy Sets	163

Fixed Point Theorems in Fuzzy Metric Spaces Shaban Sedghi	169
The design of a CUSUM control chart for LR-fuzzy data Dabuxilatu Wang and Olgierd Hryniewicz	171
Context Modeling for the Clinical Predictors of Obstructive Sleep Apnea M. Kwiatkowska, J. Matthews and L. Matthews	181
A Preliminary Fuzzy Model for Screening Obstructive Sleep Apnea J. M. Matthews, M. Kwiatkowska and L. R. Matthews	187
Fuzzy Braunwald–Modified Chest Pain Assessment for Unstable Angina Angela S. K. Takesaki, Ernesto Araujo, Ricardo Simoes and Reinaldo G. I. Arakaki	192
Consumption-Investment Problems with the One-Shot Decision Theory Y. Li, P. Guo	198
The Karush-Kuhn-Tucker Optimality Conditions for a Class of Fuzzy Optimization problems using strongly generalized derivative Y. Chalco-Cano, W. A. Lodwick and H. Roman-Flores	on 203
Necessary Efficiency is Partitioned into Possible and Necessary Optimalities <i>M. Inuiguchi</i>	209
Formal Concept Analysis on Fuzzy Sets Lili Shen and Dexue Zhang	215
Toward Reduction of Formal Fuzzy Context Radim Belohlavek and Jan Konecny	221
Linear-Algebraic Representation of Generalised Fuzzy Petri Nets Zbigniew Suraj	226
Construction Project Risk Assessment Using Combined Fuzzy and FMEA Amir Mohammadi and Mehdi Tavakolan	232
A Relationship Hierarchy Structural Fuzzy ANP Model to Explore Development of Marketing Strategic Alliances Tsuen-Ho Hsu and Jia-Wei Tang	238
Interval-based Analysis of BOCR (Benefits, Opportunities, Costs and Risks) Models Evaluated by Multiple Experts K. Krishna Mohan, Marek Z. Reformat, and Witold Pedrycz	244
A Decision Support System for ICU Readmissions Prevention Susana M. Vieira, Joao P. Carvalho, Andre S. Fialho, S. R. Reti,S. N. Finkelstein and Joao M.C. Sousa	251

Acceptability and Difficulties of (Fuzzy) Decision Support Systems in

Clinical Practice Christian J. Schuh, Jeroen S. de Bruin and Walter Seeling	257
Optimization of Value-at-Risk Portfolios in Uncertain Lognormal Models Y. Yoshida	263
Relative evaluation of criteria for cooperative interval AHP in group decision making T. Entani	269
The Contributions of K. Asai and H. Tanaka in Fuzzy Optimization M. Inuiguchi and W. A. Lodwick	274
Constructing Dense Fuzzy Systems by Adaptive Scheduling of Optimization Algorithms Krisztián Balázs and Laszló T. Kóczy	280
Simulated Annealing-Based Optimization of Fuzzy Models for Magnetic Levitation Systems Claudia-Adina Dragos, Radu-Emil Precup, Radu-Codrut David, Emil Petriu, Stefan Preitl and Alexandra-Iulia Stinean	286
Multi-objective Iterative Genetic Approach for Learning Fuzzy Classification Rules with Semantic-based Selection of the Best Rule Edward C. Hinojosa and Heloisa A. Camargo	292
Hierarchical Genetic Algorithm for Type-2 Fuzzy Integration Applied to Human Recognition Daniela Sanchez and Patricia Melin	298
Dental Classification for Periapical Radiograph based on Multiple Fuzzy Attribute Martin L. Tangel, Chastine Fatichah, Fei Yan, Janet P. Betancourt, M. Rahmat Widyanto, Fangyan Dong and Kaoru Hirota	304
Face Recognition based on Fuzzy Probabilistic SOM Laura Lanzarini, Franco Ronchetti, César Estrebou, Aurelio Fernandez Bariviera and Luciana Lens	310
Intuitionistic Fuzzy Choquet Integrals and their Application in Modeling Linguistic Quantifiers Yongming Li and Lu Li	315
A Linguistic Quantifier-Based Approach for Skyline Refinement Katia Abbaci, Allel Hadjali, Ludovic Liétard and Daniel Rocacher	321
Modeling Linguistic Probabilities and Linguistic Quantifiers Using Interval Type-2 Fuzzy Sets Mohammad Reza Rajati and Jerry M. Mendel	327

sup-conjunctor composition Xiong Qingquan and Wang Xueping	333
Box Math and KSM: Extending ShermanMorrison to Functions of Interval Matrices Ralph Kelsey	338
Interval-Valued Fuzzy Associative Memories Based on Representable Conjunctions with Applications in Prediction Peter Sussner and T Schuster	344
Determining Beach Closures Necessary to Protect Bull Shark (Carcharhinus leucas) Species (and Bathers): A Fuzzy Rule-Based Model Margaret F. Shipley and J. Brooke Shipley-Lozano	350
Mining Fuzzy Rules Based on Pattern Trees Xinghua Feng and Xiaodong Liu	356
A Fuzzy-Genetic System for Rule Extraction from Support Vector Machines Cintia F. F. Carraro, Marley Vellasco and Ricardo Tanscheit	360
Approximation Properties of Higher Order Takagi-Sugeno Fuzzy Systems Barnabas Bede and Imre J. Rudas	368
Fuzzy Relational Structures: Learning Alternatives for Fuzzy Modeling Orion Fausto Reyes-Galaviz and Witold Pedrycz	374
Fuzzy Systems Modeling with Participatory Evolution Yi Ling Liu and Fernando Gomide	380
Intuitive Decision-Making Using Hyper Similarity Matching Ronald R. Yager and Fred E. Petry	386
A Similarity Measure with Uncertainty for Incompletely Known Fuzzy Sets Anna Stachowiak and Krzysztof Dyczkowski	390
Fuzzy Semantic Similarity in Linked Data using Wikipedia Infobox Parisa D. Hossein Zadeh and Marek Z. Reformat	395
Two Evolutionary Computation Approaches for Active Power Losses Minimization in Smart Grids F. Possemato, G. L. Storti, M. Paschero, A. Rizzi and F. M. F. Mascioli	401
Optimal Distribution Feeders Configuration for Active Power Losses Minimization by Genetic Algorithms G. L. Storti, F. Possemato, M. Paschero, A. Rizzi and F. M. F. Mascioli	407
The Design of Fuzzy C-Means Clustering based Neural Networks for Emotion Classification Byoung-Jun Park, Eun-Hye Jang, Sang-Hyeob Kim, Chul Huh and Myoung-Ae Chung	413
Genetic Optimization of a Fuzzy Control System for Energy Flow	

Management in Micro-Grids E. De Santis, A. Rizzi, A. Sadeghian and F. M. F. Mascioli	418
A new Approach based on Generalized Type-2 Fuzzy Logic for Edge Detection Claudia I. Gonzalez, Juan R. Castro, Gabriela E. Martinez, Patricia Melin and Oscar Castillo	424
Improved Fuzzy-Based Single-Stroke Character Recognizer Alex Tormási and László T. Kóczy	430
An approach to improve semantics in Smart Spaces using reactive fuzzy rules Natalia Díaz Rodríguez, Johan Lilius, Manuel Pegalajar Cuéllar and Miguel Delgado Calvo-Flores	436
Semantic Similarity Measure in Ontology Alignment Valerie Cross, P. Silwal and Xi Chen	442
Searching optimal product bundles by means of GA-based Engine and Market Basket Analysis C. Birtolo, D. D. Chiara, S. Losito, P. Ritrovato and M. Veniero	448
Estimating Third Central Moment C3 for Privacy Case under Interval and Fuzzy Uncertainty A. Jalal-Kamali and V. Kreinovich	454
An Overview of the Upcoming IEEE P-1788 Working Group Document: Standard for Interval Arithmetic R. B. Kearfott	460
Back to the Future: Advanced Control Techniques Justify-on a New Level-Traditional Education Practices O. Kosheleva, K. Villaverde and S. D. Cabrera	466
Fuzzy Theory in Cognition, Economic Man and Organization Behavior F. S. Nobre	471
Towards Intelligent Mining of Public Social Networks' Influence in Society J.P. Carvalho, V. C. Pedro and F. Batista	478
Quality of work and elderly care - Preliminary experiments G. Facchinetti, G. Solinas and T. Pirotti	484
A Novel Fuzzy Associative Classifier Based on Information Gain and Rule-Covering Yue Ma, Guoqing Chen and Qiang Wei	490
Theoretical Examination of Clustering Structure in Fuzzy Joint Points Method Gözde Ulutagay	496
From Clustering to Granular Clustering: A Granular Representation of Data in Pattern Recognition and System Modeling Adam Gacek	502

Clustering of Web Search Results based on an Iterative Fuzzy C-means Algorithm and Bayesian Information Criterion C. Cobos, M. Mendoza, E. León, M. Manic, E. Herrera-Viedma	507
Creating a Natural Language Summary from a Compressed Causal Graph C. Puente, E. Garrido, J. A. Olivas, R. Seisdedos	513
Enhancing Knowledge Management Capabilities in Web-based Decision Aids using Fuzzy Prototypes and Data Quality Criteria Francisco P. Romero, Jose A. Olivas Ismael Caballero, Jesus Serrano-Guerrero and Mauro J. Oruezabal	519
Likert-Scale Fuzzy Uncertainty from a Traditional Decision Making Viewpoint: It Incorporates Both Subjective Probabilities and Utility Information J. Lorkowski and V. Kreinovich	525
Sparse Fuzzy Techniques Improve Machine Learning R. Sanchez, C. Servin and M. Argaez	531
Towards Fuzzy Method for Estimating Prediction Accuracy for Discrete Inputs, with Application to Predicting At-Risk Students X. Wang, M. Ceberio and A. F. G. Contreras	536
An Overview of Fuzzy-Logic Based Approaches to Ecology: Addressing Uncertainty F. A. Pouw and M. Kwiatkowska	540
Ordered Fuzzy Numbers in Financial Stock and Sccounting Problems W. Kosinski and A. Chwastyk	546
How to Face the Arab Spring using Fuzzy Logic G. Facchinetti, G. Mastroleo and G. Ricci	552
"Beyond GDP": a Fuzzy Way to Measure the Country Wellbeing L. Anzilli, G. Facchinetti, G. Mastroleo	556
Reduction Fuzzy Social Computing for Gross National Income Cross-Country Comparison E. Araujo	561
A Granular Recursive Fuzzy Meta-clustering Algorithm for Social Networks Kishore Rathinavel and Pawan Lingras	567
Growing Rule-based Fuzzy Model Developed with the Aid of Fuzzy Clustering <i>WD. Kim, SK. Oh, KS. Seo and W. Pedrycz</i>	573
How Deep Data Becomes Big Data Marcin Szczuka and Dominik Slezak	579
Finding an λ-Representative Subset from Massive Data	585

A note on "Solving Fuzzy Linear Programming Problems with Interval Type-2 RHS" J. C. F. Garcia and G. Hernandez	591
Solving Multiobjective Programming Problems With Fuzzy Objective Functions M. K. Luhandjula	595
Fuzzy Set Based Multicriteria Decision Making in Power Engineering Problems G. B. Alves, P. Ya. Ekel, I. V. Kokshenev, R. O. Parreiras, H. S. Schuffner and P. M. N. Souza	
A Proposal of a Linguistic Group Decision Model to Support Public Decisions in Brazil V. B. S. Silva and D. C. Morais	605
Data Anonymization that Leads to the Most Accurate Estimates of Statistical Characteristics: Fuzzy-Motivated Approach G. Xiang, S. Ferson, L. Ginzburg, L. Longpre, E. Mayorga and O. Kosheleva	611
How to Generate Worst-Case Scenarios When Testing Already Deployed Systems Against Unexpected Situations F. Zapata, R. Pineda and M. Ceberio	617
Solving Linear Programming Problems with Interval Type-2 Fuzzy Constraints using Interval Optimization Juan Carlos Figueroa Garcia and German Hernandez	623
The Negation in the Checklist Paradigm based m₂ Non-Commutative Fuzzy Interval Logic System of Goguen and Gaines Eunjin Kim	629
Neural Network with Lower and Upper Type-2 Fuzzy Weights using the Backpropagation Learning Method Fernando Gaxiola, Patricia Melin and Fevrier Valdez	637
A Gaussian Process Echo State Networks Model for Time Series Forecasting Ying Liu, Jun Zhao and Wei Wang	643
The Linguistic Forecasting of Time Series based on Fuzzy Cognitive Maps Wei Lu, Jianhua Yang and Xiaodong Liu	649
Design of Face Recognition Algorithm Realized with Feature Extraction from 2D-LDA and Optimized Polynomial-based RBF NNs SH. Yoo, SK. Oh and W. Pedrycz	655
Optimizing Fuzzy Control of Energy Harvesting Remote Monitoring Systems A. G. Watts, P. Musilek and L. Wyard-Scott	661

Numerical Weather Predictions A. Zarnani and P. Musilek	667
The Fuzzy Set of Computer Science R. Seising	673
Technology and human sciences: a dialogue to be constructed or a common tread to be rediscovered? F. A. D'Asaro, V. Perticone, M. E. Tabacchi and S. Termini	679
Quest for Rigorous Intelligent Tutoring Systems under Uncertainty: Computing with Words and Images B. Kovalerchuk	685
Perceptual Computing in Social Networks John T. Rickard and Ronald R. Yager	691
Using Tagging in Social Networks to Find Groups of Compatible Users Marek Z. Reformat and Ronald R. Yager	697
Fuzzy regular tree expressions Xiaofeng Huang, Zhiwen Mo and Lan Shu	703
A comparative analysis of pruning strategies for fuzzy decision trees Mariana V. Ribeiro, Heloisa A. Camargo and Marcos E. Cintra	709
Fuzzy Pattern Trees as an Alternative to Rule-based Fuzzy Systems: Knowledge-driven, Data-driven and Hybrid Modeling of Color Yield in Polyester Dyeing Maryam Nasiri, Thomas Fober, Robin Senge and Eyke Hüllermeier	715
Identification of Atmospheric Pressure Troughs using Image Processing Techniques Y. Li, P. Musilek and E. Lozowski	722
An Image Recognition Approach to Classification of Jewelry Stone Defects P. Hurtik, M. Burda and I. Perfilieva	727
Recognition of Distorted Characters Printed on Metal using Fuzzy Logic Methods V. Novak, P. Hurtık and H. Habiballa	733
A Very Brief History of Soft Computing: Fuzzy Sets, Artificial Neural Networks and Evolutionary Computation R. Seising and M. E. Tabacchi	739
Twenty Years Later: Remarks on a Polemic E. Trillas	745

An Algorithm for Routes Recommendation Service Based on the Radio-Frequency Identification Application Y. Zhao, X. Gao and S. Wu	748
An Online Fuzzy Decision Support System for Resource Management in Cloud Environments F. Ramezani, J. Lu and F. Hussain	754
An Intelligent Recommender System for Personalized Fashion Design X. Zeng, L. Koehl, L. Wang and Y. Chen	760
Fuzzy Love Selection by Means of Perceptual Computing M. M. Korjani and J. M. Mendel	766
Eliciting Comparative Linguistic Expressions in Group Decision Making R. M. Rodrıguez, L. Martinez and F. Herrera	771
Fuzzy Linguistic Multicriteria Morphological Analysis in Scenario Planning P. J. Villacorta, A. D. Masegosa and M. T. Lamata	777
Classification of Damages on Jewelry Stones: Preprocessing I. Perfilieva, P. Hodakova, M. Vajgl and M. Dankova	783
Comparison of Fuzzy Rules and SVM Approach to the Value Estimation of the Use Case Parameters J. Štolfa, O. Koběrský, P. Krömer, S. Štolfa, M Kopka and V. Snášel	789
Facility Location Problems with Fuzzy Demands Based on Parametric Assessment Pei-Chun Lin, Junzo Watada and Berlin Wu	795
Using the Fuzzy Sets Theory in the Multimodal Transport Network Problem Juliana Verga, Ricardo Coelho Silva, Akebo Yamakami and Wesley V. I. Shirabayashi	801
Solution of a Fuzzy Resource Allocation Problem by Various Evolutionary Approaches Zsolt Dányádi, Péter Földesi and László T. Kóczy	807
A Fuzzy Tree Similarity Based Recommendation Approach for Telecom Products D. Wu, G. Zhang and J. Lu	813
An Approach for Incremental Maintenance of Approximations in Set-valued Ordered Decision Systems while Updating Criteria Values C. Luo, L. Lu, T. Li, A. Zeng and H. Chen	819
A hybrid model for migrating customer segmentation with missing attributes J. Ma, H. Lin, J. Lu and G. Zhang	825
Using a Semisupervised Fuzzy Clustering process for Identity Identification in Digital Libraries Irene Diaz-Valenzuela, Maria J.Martin-Bautista and M. Amparo Vila	831

Predicting the Outcome of Brace Treatment for Scoliosis Using Conditional Fuzzy Clustering Eric Chalmers, Witold Pedrycz and Edmond Lou	837
Applications of Realizable Boolean Matrices in Graph Theory Feng Sun, Xiao-Bing Qu, Tian-Fei Wang and Xue-Ping Wang	843
OWAD Operators in Type-2 Fuzzy Ontologies Jozsef Mezei and Robin Wikström	848
Psychologists: Are They Logically Fuzzy? Mark Wierman	854
Aggregating α-planes for Type-2 Fuzzy Set Matching L. Livi, H. Tahayori, A. Sadeghian and A. Rizzi	860
Matching General Type-2 Fuzzy Sets by Comparing the Vertical Slices A. Rizzi, L. Livi, H. Tahayori and A. Sadeghian	866
Managing Natural Noise in Collaborative Recommender Systems R. Y. Toledo, L. M. López and Y. C. Mota	872
Statistical Fault Localization in Decision Support System Based on Probability Distribution Criterion P. Hao, Z. Zheng, Y. Gao and Z. Zhang	878
An Interval Type-2 Neural Fuzzy Inference System (IT2NFIS) with Compensatory Operator Yang-Yin Lin, Jyh-Yeong Chang and Chin-Teng Lin	884
Advanced Learning of Fuzzy Cognitive Maps of Waste Management by Bacteria Algorithm Adrienn Buruzs, Miklós Ferenc Hatwágner, Claudiu Radu Pozna and László T. Kóczy	890
Networked Fuzzy Belief Rule-Based System for Spatiotemporal Monitoring Farzad Aminravan, Rehan Sadiq, Mina Hoorfar, Manuel J. Rodriguez, Alex Francisque and Homayoun Najjaran	896
The Look-up Table Controllers and a Particular Class of Mamdani Fuzzy Controllers Are Equivalent – Implications to Real-World Applications Dimitar Filev and Hao Ying	902
Fuzzy systems of Mamdani type in the LU representation Matthew P. Peterson, Barnabas Bede and Luciano Stefanini	908
Cybernetic Theory of Informational Modeling of Teacher's Behavior in the Learn Process based on Fuzzy Logic Shahnaz N. Shahbazova	ing 914
Towards Retranslation of Fuzzy Values in Computing with Words Nina Marhamati, Purvag Patel, Elham S. Khorasani and Shahram Rahimi	922

Computing with Prepositions: Syntax Lauren M. Stuart, Julia M. Taylor and Victor Raskin	929
Computing With Prepositions: Fuzzy Semantics Julia M. Taylor, Victor Raskin and Lauren M. Stuart	934
Selecting the Best Taste: a Group Decision-making Application to Chocolates Design N. Agell, G. Sanchez, M. Sanchez and F. Javier Ruiz	939
Challenges and Open Questions in Soft Consensus Models F.J. Cabrerizo, F. Chiclana, M.R. Urena and E. Herrera-Viedma	944
Fuzzy Reasoning for Medical Diagnosis based on Subjective Attributes and Objective Attributes Alignment H. Fujita	950
Fuzzy Granular Principal Curves Algorithm for Large Data Sets Hongyun Zhang, Witold Pedrycz and Duoqian Miao	956
A Visualization Method of Third-Order Tensor for Knowledge Extraction from Questionnaire Data Hiroaki Masai, Tomohiro Yoshikawa and Takeshi Furuhashi	962
On Soft Measurements and Data Mining Based on Granular Pragmatics, Multi-Valued and Fuzzy Logics Valery B. Tarassov and Maria N. Svyatkina	968
Granular Regression Przemyslaw Grzegorzewski	974
Outlier Detection Approaches in Fuzzy Regression Models Chao Wang and Peijun Guo	980
On Pseudo Gradient Search for Solving Nonlinear Multiregression with the Choquet Integral Bo Guo, Li Zhang-Westman and Zhenyuan Wang	986
A Type 2 Fuzzy Multi Agent based System for Scheduling of Steel Production M. H. Fazel Zarandi and F. Kashani Azad	992
A New Diamond Shape Architecture based on Multi Agents for Supply Chain in uncertain Environment M.H Fazel Zarandi, B.Bahrami, M.Sayad and I.B. Türkşen	an 997
A Fuzzy Hybrid Intelligent Agent System for Mitigating Demand Amplification in Supply Chain of Steel Manufacturing R. Gamasaee and M.H. Fazel Zarandi	1003
Consensus-based Hierarchical Agglomerative Clustering in the Context of Weak Orders J. L. Garcia-Lapresta and D. Perez-Roman	1010

Aggregating fuzzy implications to measure group consensus G. Beliakov, S. James and T. Calvo	1016
New Classes of Threshold Aggregation Functions Based upon the Tsallis q-Exponential John T. Rickard and Janet Aisbett	1022
On Consistent Induced Matrix Aggregation Operators Daowu Pei, Yuying Shan and Huanzhang Liu	1028
Consistency and Stability in Aggregation Operators with Data Structure Daniel Gomez, Javier Montero, J. Tinguaro Rodriguez and Karina Rojas	1034
Ranking Fuzzy Numbers by Their Left and Right Wingspans Li Zhang-Westman and Zhenyuan Wang	1039
The Cardinality of the Set of All Fuzzy Numbers Zhenyuan Wang and Li Westman	1045
Type-2 Fuzzy Numbers and Operations by F-transform Luciano Stefanini and Laerte Sorini	1050
Statistical Comparison of Type-1 and Type-2 Fuzzy Systems Design with Genetic Algorithms in the Case of Three Tank Water Control Leticia Cervantes and Oscar Castillo	i c 1056
Comparison of Fuzzy Controllers for the Water Tank Problem with Type-1 and Type-2 Fuzzy Logic Leticia Amador-Angulo, Oscar Castillo and Martha Pulido	1062
Design of Optimal Membership Functions for Fuzzy Controllers of the Water Tank and Inverted Pendulum with PSO Variants Resffa Fierro, Oscar Castillo, Fevrier Valdez and Leticia Cervantes	1068
Line-shaped Non-precipitation Echo Detection using Fuzzy Inference System Hansoo Lee, Ji Chul Park, Jong Geun Kim and Sungshin Kim	1074
Unifying Fuzzy controller for Indoor Environment Quality Miguel Molina-Solana, Maria Ros and Miguel Delgado	1080
Reconstruction of the Environmental Quality Fuzzy Index José Arnaldo F. Roveda, Ana Carolina do Amaral Burghi and Sandra R. M. M. Roveda	1086
A Preliminary Approach to Classify Work Descriptions in Construction Projects M. Martinez-Rojas, N. Marin and M. A. Vila	1090
Application of Granular Fuzzy Modeling for Abstracting Labour Productivity Knowledge Bases A. A. Tsehayae W. Pedrycz and A. Robinson Fayek	1096
Developing a Fuzzy Discrete Event Simulation Framework within a Traditional Simulation Engine N. Sadeghi, A. Robinson Fayek and S. P. Mosayebi	1102

Human Motion Recognition through an Adaptive Fuzzy Estimation of Inertial Sensing Jesus A. Garcia and Leocundo Aguilar					
Internet Service for the Analysis of Enterprise Economics using Time Series Fuzzy Modeling I.G. Perfilieva, N.G. Yarushkina, T.V. Afanasieva, and A.A. Romanov	1113				
Intelligent Hybrid-Learning Mechanism for IT2 TSK NSFLS2 Composed by REFIL-BP Methods Gerardo M. Méndez and M. A. Hernández					
A Multi-Stage Expert System for Classification of Pavement Cracking H. Zakeri, F. Moghadas Nejad, A. Doostparast Torshizi, M. H. Fazel Zarandi, A. Fahimifar	1125				
A new Image Enhancement Method Type-2 Possibilistic C-Mean Approach M.H. Fazel Zarandi, M. Zarinbal	1131				
Possibilistic C-Means Clustering Using Fuzzy Relations M. H. Fazel Zarandi M. Rostam Niakan Kalhori M. F. Jahromi	1137				
Enhanced Fuzzy Evidential Reasoning using an Optimization Approach for Water Quality Monitoring Farzad Aminravan, Rehan Sadiq, Mina Hoorfar, Manuel Rodriguez and Homayoun Najjaran	1143				
A Fuzzy Rule-Based Approach for Water Quality Assessment in the Distribution Network Elaheh Aghaarabi, Farzad Aminravan, Rehan Sadiq, Mina Hoorfar, Manuel J. Rodriguez and Homayoun Najjaran	1149				
Fuzzy Index for Public Supply Water Quality Jose A.F. Roveda, Larissa T. Arashiro, Sandra R.M.M. Roveda and Jessica M. Silverio	1155				
Fuzzy Consensus Qualitative Risk Analysis Framework for Building Construction Projects A. M. Aboushady, M. M. Marzouk and M. M. G. Elbarkouky	on 1160				
A Hybrid Fuzzy C-Means Clustering-AHP Framework to Select Construction Contractors M. M. G. Elbarkouky, A. M. El-Deep and M. M. Marzouk	1166				
Fuzzy Dynamic Programming for Optimized Scheduling of Repetitive Construction Projects I. Bakry, O. Moselhi, and T. Zayed	1172				
Quantitative and Qualitative Risk in EPCM Projects Using Fuzzy Set Theory A. Salah and O. Moselhi	1177				
Fuzzy Operators for Quality Evaluation in Images Edge Detection Felicitas Perez-Ornelas, Olivia Mendoza, Patricia Melin and Juan R. Castro	1182				
Fuzzy Logic to Determine Poverty Levels in a Society Alberto Ochoa, Saúl González, Fernando Maldonado and Daniel Azpeitia	1188				

Ant Colony Optimization for Solving the TSP Symmetric with Parallel Processing Fevrier Valdez and Ivan Chaparro	1192
Fuzzy Logic for Dynamic Adaptation in PSO with Multiple Topologies Juan Carlos Vazquez and Fevrier Valdez	1197
Difficulties in Choosing a Single Final Classifier from Non-Dominated Solutions Multiobjective Fuzzy Genetics-Based Machine Learning H. Ishibuchi and Y. Nojima	in 1203
A Design of FCM-based Interval Type-2 Fuzzy Neural Network Classifier with the Aid of PSO WD. Kim, SK. Oh KS. Seo and W. Pedrycz	1209
Dual centers Fuzzy Type-2 Clustering M. H. Fazel Zarandi, S. MalekMohamadi Golsefid and S. Bastani	1215
Fuzzy Type-2 c-ellipses Clustering S. MalekMohamadi Golsefid, M. H. Fazel Zarandi and S. Bastani	1221
A Conceptual Method for Modeling Residential Utility Consumption Using Comp Fuzzy Sets J. Ma, R. Wickramasuriya, M. Safari, T. Davies and P. Perez	olex 1227
Why Complex-Valued Fuzzy? Why Complex Values in General? A Computationa Explanation O. Kosheleva, V. Kreinovich and T. Ngamsantivong	al 1233
Fuzzy in 3-D: Contrasting Complex Fuzzy Sets with Type-2 Fuzzy Sets S. Greenfield and F. Chiclana	1237
Predicting Solar Power Output using Complex Fuzzy Logic O. Yazdanbaksh, A. Krahn and S. Dick	1243
Fuzzy Logic as a Geometry Peter Lawrence Belluce, Antonio Di Nola and Giacomo Lenzi	1249
Query Answering over Fact Bases in Fuzzy Propositional Logic Gerald S. Plesniewicz	1252
On Classic-like Fuzzy Modal Logics Adriano Alves Dodó, João Marcos and Flaulles Boone Bergamaschi	1256
A System Based on Interval Fuzzy Approach to Predict the Appearance of Pests in Agriculture Leonardo Martins Rodrigues, Graçaliz Pereiri Dimuro, Denis Teixeira Franco and José Carlos Fachinello	1262

Justifiable Granularity and PSO for Spread Optimization Mauricio A. Sanchez, Juan Ramon Castro, Felicitas Perez-Ornelas and Oscar Castillo	1268
Algorithm for Interval Linear Programming Involving Interval Constraints Ibraheem Alolyan	1274
Bipolar Linguistic Summaries: a Novel Fuzzy Querying Driven Approach M. Dziedzic, J. Kacprzyk and S. Zadrozny	1279
The Conceptual Framework of Fairness in Consensus Reaching Process Under Fuzziness J. Kacprzyk and D. Gołuńska	1285
A New Measure of Groups Perturbation M. Krawczak and G. Szkatuła	1291
The K-Modes Method using Possibility and Rough Set Theories Asma Ammar, Zied Elouedi and Pawan Lingras	1297
Semantic Issues in Game-theoretic Rough Sets Nouman Azam and Jingtao Yao	1303
Fuzzy Interval Decision-theoretic Rough Sets Dun Liu, Tianrui Li and Decui Liang	1315
Exchange Rate Prediction Using Fuzzy System Neural Network Approach A. F.M. Khodadad Khan, Mohammed Anwer and Shipra Banik	1321
A Development of Granular Logic Neural Networks Mingli Song, Yongbin Wang and Shujuan Wang	1327
Generalized Type-2 Fuzzy Logic in Response Integration of Modular Neural Networks Gabriela E. Martinez, Olivia Mendoza, Juan Ramon Castro, Patricia Melin and Oscar Castillo	1331
Uncertainty Quantification for Possibilistic/Probabilistic Simulation Thomas Whalen, Brad Morantz and Murray Cohen	1337
Simultaneous Assessment of Teams in Collaborative Virtual Environments Using Fuzzy Naive Bayes Ronei Marcosde Moraes and Liliane S. Machado	1343
Towards a Better Understanding of Space-Time Causality: Kolmogorov Complexity and Causality as a Matter of Degree Vladik Kreinovich and Andres Ortiz	1349
Coreference Detection in XML Metadata M. Szymczak, S. Zadrozny and G. De Tre	1354

Finite Automata with Imperfect Information as Tools for Accumulating Information W. Homenda and W. Pedrycz	1360
A Harmonization Model with Partial Fuzzy Knowledge M. Rybnik and W. Homenda	1366
Mining top-k Granular Association Rules for Recommendation Fan Min and William Zhu	1372
Multi-objective Cost-sensitive Attribute Reduction Bingxin Xu, Huiping Chen, William Zhu and Xiaozhong Zhu	1377
Mean-value-based decision-theoretic shadowed sets Xiaofei Deng and Yiyu Yao	1382
Learning Aggregation Weights from 3-tuple Comparison Sets Gleb Beliakov, Simon James and Dale Nimmo	1388
Correlations from Conjugate and Dual Intuitionistic Fuzzy Triangular Norms and Conorms Renata Reiser, Lidiane Visintin, Ibero Benitez and Benjamin Bedregal	d 1394
An Approach for Aggregation of Experts' Qualitative Evaluations by Means of Fuzzy Sets Teimuraz V. Tsabadze	1400
Type 1 Fuzzy Sets in Complex Control Applied to Evaluation of Resort Manager System Elisabeth Rakus-Andersson and Lujiao Tan	nent 1406
Application of Fuzzy Classification and Fuzzy Pattern Recognition for Distribute Production and Global Supply Chain Dieter Roller and Erik Engesser	ed 1412
Genetic Optimization of Interval Type-2 Fuzzy Reactive Controllers for Mobile Robots Abraham Melendez, Oscar Castillo and Patricia Melin	1418
Nature Inspired Chemical Optimization to Design a Type-2 Fuzzy Controller for Mobile Robot Leslie Astudillo, Patricia Melin and Oscar Castillo	a 1423
Fuzzy Separation Potential Function Based Flocking Control of Multiple AUVs Basant Kumar Sahu, Madan M. Gupta and Bidyadhar Subudhi	1429
Image Classification using Evolving Fuzzy Inference Systems Ahmed A. Othman and Hamid R. Tizhoosh	1435
Fuzzy clustering based encoding for Visual Object Classification Danilo Dell'Agnello, Gustavo Carneiro, Tat-Jun Chin, Giovanna Castellano and Anna Maria Fa	1439 anelli

Fuzzy Fractional-Order PID Controller Design using Multi-Objective Optimization Amir Hajiloo and Wen-Fang Xie	1445
Study on Interval Fuzzy Series Forecasting based on GM(1,1) Model Xiangyan Zeng and Lan Shu	1451
A Note on Gronwall Type Inequality for Interval Valued Functions Heriberto Roman-Flores, Yurilev Chalco-Cano and Geraldo N. Silva	1455
An Ostrowski Type Inequality for Interval-valued Functions Arturo Flores-Franulic, Yurilev Chalco-Cano and Heriberto Roman-Flores	1459
Characterizing Quantum Channels via Wigner-Yanase Skew Information Zhihua Zhang, Lan Shu, Zhiwen Mo and Jun Zheng	1463
A Supervised Fuzzy Network Analysis for Risk Assessment in Stock Markets: An ANFIS Approach M.H. Fazel Zarandi, S.Farivar, I.B. Türkşen	1470
Developing Type-2 Fuzzy FCA for Similarity Reasoning in the Semantic Web H. Safaeipour, M. H. Fazel Zarandi, I. B. Türkşen	1477
Biogas Intelligence - operate Biogas Plants using Neural Network and Fuzzy Logic Christine Wahmkow, Maximilian Knape and Egon Konnerth	1483
Fuzzy Defect Based Condition Assessment of Concrete Bridges Sami A. Moufti, Tarek Zayed and Saleh Abu Dabous	1489
Pipeline Risk Assessment Using a Fuzzy Systems Network Gustavo Perez	1495
An Approach to Issue of Diagnosing Marginal Oil Wells R.A.Guliyev	1499
Space-time Support System using Simplified Time-Change Fuzzy Set Xiang Liu, Shibuya Takeshi and Yasunobu Seiji	1502
Optimization of Type-2 Fuzzy Integration in Ensemble Neural Networks for Predicting the US Dolar/MX Pesos Time Series Martha Pulido, Patricia Melin and Oscar Castillo	1508
Anomaly Detection in Time Series Data using a Fuzzy C-Means Clustering Hesam Izakian and Witold Pedrycz	1513
Parameters to use a fuzzy rulebase approach to remap gridded spatial data	1519

An evolutionary fuzzy system for the detection of exceptions in subgroup discovery

C.J. Carmona, P. González, M.J. Del Jesus SIMIDAT Research Group Department of Computer Science

University of Jaén - 23071, Jaén, Spain E-mail: ccarmona,pglez,mjjesus@ujaen.es

B. García-Domingo, J. Aguilera IDEA Research Group Department of Electronics and Automation Engineering

University of Jaén - 23071, Jaén, Spain E-mail: bgarcia,aguilera@ujaen.es

Abstract—Subgroup Discovery (SD) is a data mining technique whose main objective is the search for descriptions of subgroups of data that are statistically unusual with respect to a property of interest. General rules describing as many instances as possible are preferred in SD, but this can lead to less accurate descriptions that incorrectly describe some instances. These negative examples can be grouped into exceptions.

The paper presents a new evolutionary fuzzy system for the detection of exceptions associated to rules previously obtained by a SD algorithm. Considering the initial subgroup and associated exceptions, the aim is to obtain a new description in order to increase the accuracy of the initial subgroup. This algorithm can be applied to the results of any SD algorithm. An experimental study shows the utility of the proposal, which is also applied in a real problem related to concentrating photovoltaic technology, providing useful information to the experts.

I. INTRODUCTION

SD [1]–[3] is a supervised induction technique which obtains descriptive rules through the use of supervised learning. The aim is to find interesting rules regarding a property of interest, in the sense that they provide unknown information, confirm information known by intuition or give extraordinary knowledge for experts. Knowledge extracted should be simple to be useful for experts, and sometimes the search for simplicity in SD algorithms can lead to a reduction of precision if general rules with negative examples are obtained.

The detection of these negative examples and their description using rules with exceptions [4] can improve the knowledge extracted on the property of interest. The modified subgroups including exceptions would not only improve the accuracy of SD rules but also offer novel and valuable knowledge to the experts.

SD task usually implies the optimisation of different quality measures related to precision, simplicity and interest aspects of SD descriptions, which are generally represented as rules and sometimes as fuzzy rules. Evolutionary algorithms are general propose search methods which have shown good behaviour for rule learning processes and multi-objective problems. The hybridization between multiobjective evolutionary algorithms and fuzzy systems is known as multiobjective fuzzy systems [5] and it has been successfully applied to SD task citeDghm07,Bdghm06.

This paper presents a new post-processing algorithm based on an evolutionary multi-objective fuzzy system for the detection of exceptions in subgroups. This proposal searches with a multiobjective approach for exceptions within subgroups previously obtained by any SD algorithm. In short the process is the following: exceptions composed of a small number of examples described by the subgroup corresponding to the opposite value of the target variable are detected for each initial SD rule. Then, it is obtained a new modified subgroup describing the initial subgroup and its exceptions. The performance of the algorithm is verified through an experimental study, and a case study related to the description of the behaviour of a kind of concentrating photovoltaic module is presented.

The paper is organised as follows: In Section II, the main concepts used in this paper are described. An algorithm for the detection of exceptions associated to SD rules is presented in Section III. In Section IV the experimental study can be observed, and Section V shows the case study. Finally, concluding remarks are outlined in Section VI.

II. RELATED WORK

A. Subgroup discovery

The concept of SD was initially introduced by Kloesgen [1] and Wrobel [2]. It has been defined as [6]:

"In subgroup discovery, we assume we are given a so-called population of individuals and a property of those individuals we are interested in. The task of subgroup discovery is then to discover the subgroups of the population that are statistically "most interesting", i.e., are as large as possible and have the most unusual statistical (distributional) characteristics with respect to the property of interest."

The main objective of the SD task is to extract descriptive knowledge concerning a property of interest (TargetVar) from the data [7]. The knowledge is represented by patterns that may characterise the data represented in such a way that domain experts can understand them. Thus, in SD it is not necessary to obtain complete but rather partial relations usually represented as rules:

$$R: Cond \rightarrow TargetVar$$
 (1)

One of the most important aspects in a SD algorithm is the quality measures used to analyse the interest of the subgroups obtained. Throughout the literature, a wide range of

quality measures have been employed, which can be divided into different groups depending on their main objective [3]: complexity, generality, precision, and interest.

Proposals for SD can be classified in extensions of classification algorithms (such as EXPLORA [1], MIDOS [2] or CN2-SD [8]), extensions of association algorithms (as APRIORI-SD [9] or SD-MAP [10]) and evolutionary fuzzy systems (EFSs) (SDIGA [11], MESDIF [12] or NMEEF-SD [13]). EFSs have demonstrated their ability to extract SD descriptions and specially NMEEF-SD is a robust EFS which obtains better results obtaining simple, accurate and interpretable SD fuzzy rules with respect to different complex real-world problems in a large number of applications. See [3] for an overview of SD algorithms, quality measures and applications.

B. Exception rule mining

An exception can be defined as something different from most of the rest [14]. Exception rule mining was introduced by Hussain et al. in [4] as the extraction of rules with low support and high confidence. The problem is that most data mining methods are focused on obtaining general rules with high support and confidence, which are considered as interesting. However, rules with low support could provide interesting and extraordinary knowledge to the experts.

Two different approaches can be distinguished when searching for exception rules [4]: directed (or subjective), which obtains a set of exception rules each of which contradicts to a user-specified belief; and undirected (or objective), which obtains a set of pairs of an exception rule and a general rule.

Applied to the results of any SD algorithm, the detection of undirect exceptions could lead to an improvement in the precision and description because small areas within subgroups with negative examples, i.e. incorrectly-described examples, are discovered and described.

III. A MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM FOR DETECTION OF EXCEPTIONS IN SUBGROUPS

This section presents a post-processing algorithm for the detection of exceptions in SD. The main idea is the following: small areas formed by examples with the opposite value of the target variable of the initial subgroup are searched for. They describe exceptions to the knowledge represented by the subgroup. Next, with the initial subgroup and its exceptions, a new rule is obtained where precision and description are improved. This process is repeated for each SD rule.

This concept is graphically explained below. A subgroup for the target value o is represented in Fig. 1 as a grey circle. This subgroup covers all the examples of the value o of the target variable, also covering some examples of the other value of the target variable (value x), but the knowledge representation is simple and valuable for experts. However, these negative examples (shown in a dark grey) are exceptions of the subgroup.

The proposal is an multi-objective fuzzy system [5], [15] which is able to work in fuzzy and/or crisp domains obtaining

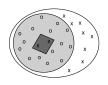


Fig. 1. Detection of exceptions within a subgroup

modified subgroups which are formed by initial subgroups and their exceptions. Specifically, this algorithm will obtain crisp modified subgroups if the initial subgroups are crisp and fuzzy subgroups if they are fuzzy. The main features of the proposal are presented below.

A. Individual representation

An integer representation model with as many genes as variables contained in the original data set without considering the target variable is used. It works with categorical and/or continuous variables depending on whether the initial subgroup rules are crisp or fuzzy rules.

In domains with continuous variables different SD algorithms use fuzzy logic to manage these continuous features without a previous discretisation. In this situation the proposal considers continuous variables as linguistic ones, and the fuzzy sets corresponding to the linguistic labels are those defined by the SD algorithm used previously.

Codification is performed according to the "Chromosome = Rule" approach [15], where only the antecedent is represented in the chromosome. The value of the target variable for the individuals is considered to be the opposite value of the initial subgroup. If we consider the rule $IF\ x_1 = Medium\ AND\ x_3 = Low\ THEN\ TargetVar$ as a previously obtained fuzzy SD rule, the exception associated to the subgroup maintains the values of the attributes of the initial subgroup. In this way, the exception $IF\ x_1 = Medium\ AND\ x_3 = Low\ AND\ x_5 = Medium\ THEN\ TargetVar$ will be more specific than the initial subgroup.

Individual representation in crisp rules is also performed with "Chromosome = Rule approach. The set of possible features for these rules are both categorical or continuous, but discretised previously in the last case.

B. Multi-objective evolutionary algorithm approach

Algorithm starts with a set of i subgroups obtained by any SD algorithm ($S_R = \{R_1, R_2, \ldots, R_i\}$) represented with the following type of rule:

$$R_i: IF\ Cond_i\ THEN\ TargetVar$$
 (2)

The algorithm searches for small sets of examples within the space delimited by the antecedent of a rule that possess a value for the target variable different to the one established in the consequent of the subgroup, This search is performed through a multi-objective evolutionary algorithm with the NSGA-II approach [16], according to a two-step process:

- Detection of group of exceptions associated with each subgroup. These exceptions are more specific than the initial subgroup (each one is composed by the same variables as the subgroup in addition to others) but corresponding to the opposite value of the target variable of the subgroup.
- 2) Generation of the modified subgroups. A new subgroup formed by the initial one and the exceptions of the previous step is obtained:

$$R'_{i}: IF\ Cond_{i}\ AND\ \overline{Exc_{i}}\ THEN\ TargetVar\ (3)$$

where Exc_i represents conditions for associated exceptions to the rule R_i (without the common variables).

The algorithm uses adapted expressions for sensitivity [1] and confidence [11] measures to evaluate exceptions and to direct the learning process:

Sensitivity that measures the proportion of actual positives which are correctly identified.

$$Sens(Exc) = \frac{TP}{TP + FN} = \frac{n(\overline{TargetVar} \cdot Cond)}{n(\overline{TargetVar})}$$
(4

where $n(\overline{TargetVar})$ are the examples with the opposite value to the target variable of the initial subgroup, and $n(\overline{TargetVar} \cdot Cond)$ are the examples covered by the exception with the opposite value of the target variable to that of the subgroup.

• Fuzzy/crisp confidence that measures the proportion of examples which are correctly identified with respect to the opposite value of the target variable.

$$FCnf(Exc) = \frac{\sum\limits_{E^k \in E/E^k \in \overline{TargetVar}} APC(E^k, Exc)}{\sum\limits_{E^k \in E} APC(E^k, Exc)}$$

where $E = \{E^k = (e_1^k, e_2^k, \dots, e_v^k), TargetVar^k\} / k = 1, \dots, N, TargetVar^k \in T\}$ is a set of examples, e_v is the number of variables for the example, $TargetVar^k$ is the value of the target variable for the example E^k (i.e., the target variable for this example), APC is the degree of compatibility between an example and the antecedent part of an exception rule. In crisp domains the degree of compatibility for an example and the antecedent part of the rule is 1 or 0.

The Pareto front obtained at the end of the evolutionary process contains all different exceptions which reach a confidence threshold, and so only exceptions with high precision values and describing specific areas with incorrectly-described examples are obtained.

C. Genetic operators

The evolutionary post-processing algorithm includes tournament selection and multi-point crossover operators [17], in addition to specific operators:

• Oriented initialisation. It is generated a population of individuals which contain the same values as the initial

- subgroup, together with new values for the remaining attributes. To do so, part of the population is generated with biased individuals and the rest are generated randomly. The values of the variables taking part in the initial subgroup are directly copied in the new individuals of the population. The remaining values are generated in the following way: the values of 75% of the individuals are generated considering that a maximum of 90% of the variables can take part in the rule; for the rest (25%) the values are generated randomly. These random individuals always have a value in all the variables.
- Oriented mutation. It is derived from standard mutation [17] but the values of the variables of the initial subgroup can not be modified. Furthermore, the mutation of a variable which does not form part of the initial subgroup does not imply its removal in the chromosome; i.e. a possible value is assigned to the variable which is different to the actual one, but never 0.
- Oriented re-initialisation based on coverage. The algorithm uses a modification of the operator defined for NMEEF-SD [13]. In the original operator, a verification is made before generating the population for the next generation, to see whether the Pareto evolves or not. If it does not evolve, all non-repeated individuals of the Pareto are introduced into the population of the next generation and the remaining individuals to complete de population are generated to cover examples of the data set not covered by the Pareto. Modification is that the generated individuals must be a specification of the initial subgroup, and all individuals keep the same values of the initial subgroup. New individuals generated are associated to examples not covered by the Pareto because an uncovered example is selected randomly and the values of the individual are codified with respect to this example.
- Stop condition. The evolutionary process ends when the algorithm reaches a number of evaluations. It returns the non-repeated individuals of the Pareto front which reach a confidence threshold. These individuals (exceptions) are associated to the correspondent initial subgroup.
- Generation of subgroups with exceptions. Once the evolutionary algorithm has been executed for each initial subgroup and their exceptions are obtained, subgroups with exceptions are generated. It is done by combining the initial subgroups with their associated exceptions. It is important to remark that the number of modified subgroups is the same as the initial ones.

IV. EXPERIMENTAL STUDY

The experimentation was undertaken with data sets from KEEL [18], [19] repository¹. Their properties are presented in Table I, including number of variables (n_v) , discrete variables (n_{vD}) , continuous variables (n_{vC}) and examples (N). To estimate quality measures on new data, 10 fold-cross validation

¹http://www.keel.es

procedure is employed and 3 executions are considered for non-deterministic algorithms.

 $\label{thm:table in the lambda} TABLE\ I$ Properties of the data sets used from the KEEL repository

#	Name	n_v	n_{vD}	n_{vC}	N
1	Australian	14	8	6	690
2	Crx	15	12	3	690
3	Heart	13	6	7	270
4	Hepatitis	19	13	6	155
5	Mammographic	5	5	0	961
6	Monk-2	6	6	0	432
7	Housevotes	16	16	0	435
3	Saheart	9	4	5	462
9	Tic-tac-toe	9	9	0	958
10	Titanic	3	0	3	2201
11	Wisconsin	9	9	0	699

To show the advantages given by the evolutionary post-processing algorithm, two SD algorithms are employed to obtain the initial subgroups: NMEEF-SD [13] and Apriori-SD [9]. Then is applied the evolutionary proposal in order to extract exceptions for them. The evaluation of the subgroups with exceptions is performed with adapted expressions for the quality measures of significance (SIG) [1], unusualness (UNU) [20], sensitivity (SEN) [1] and confidence (CNF) [21].

• Significance of a subgroup with exceptions (R'):

$$Sign'(R_i') = 2 \cdot \sum_{k=1}^{n_c} (TP_{R_i'})_k \cdot log \frac{(TP_{R_i'})_k}{((TP + FN)_{R_i})_k \cdot \frac{((TP + FP)_{R_i'})_k}{N}}$$
(6)

where $TP_{R_i'} = TP_{R_i} - FP_{Exc_i}$, TP_{R_i} are the number of correctly-described examples of the rule, FP_{Exc_i} are the number of incorrectly-described examples for the set of associated exceptions to the rule, $(TP+FN)_{R_i}$ are the number of examples for values of the target variable, $(TP+FP)_{R_i'} = (TP+FP)_{R_i} - (TP+FP)_{Exc_i}$, $(TP+FP)_{R_i}$ are the number of examples covered by the rule and $(TP+FP)_{Exc_i}$ are the examples covered by the set of associated exceptions to the initial rule.

• Unusualness of a subgroup with exceptions:

$$Unus'(R_i') = \left(\frac{TP_{R_i'}}{(TP + FP)_{R_i'}} - \frac{(TP + FN)_{R_i}}{N}\right) \cdot \frac{(TP + FP)_{R_i'}}{N}$$

• Sensitivity for a subgroup with exceptions:

$$Sens'(R_i') = \frac{TP_{R_i'}}{(TP + FN)_{R_i}}$$

$$\tag{8}$$

• Fuzzy confidence of a subgroup with exceptions:

$$FCnf'(R'_i) = \frac{\sum\limits_{E^k \in E/E^k \in TargetVar} APC(E^k, R'_i)}{\sum\limits_{E^k \in E} APC(E^k, R'_i)}$$
(9)

where $APC(E^k, R'_i) = APC(E^k, R_i) - APC(E^k, Exc_i)$.

The average results of the SD algorithms and the same algorithms with the post-processing algorithm are presented

in Table II, where n_r represents the number of subgroups, and n_v represents the average of variables for each subgroup. For reasons of brevity, the paper only includes the average results and results of statistical tests.

TABLE II
RESULTS OBTAINED FOR THE ALGORITHMS

$\overline{Algorithm}$	n_r	n_v	SIG	UNU	SEN	CNF
Apriori-SD	5.42	2.18	3.337	0.067	0.508	0.616
Apriori-SD+Exceptions	5.42	5.78	3.554	0.076	0.487	0.638
NMEEF-SD	4.41	2.52	5.154	0.119	0.846	0.809
NMEEF-SD+Exceptions	4.41	6.93	5.924	0.131	0.821	0.842

For statistical analysis the Wilconxon signed-rank test [22] is selected with level of confidence $\alpha=0.05$ in the experiments. In Table III the results of the Wilcoxon test for each quality measure can be observed with the correspondent p-val, and the result of the Hypothesis. The results obtained show significant differences in the majority of the quality measures and algorithms with the use of the new post-processing approach.

TABLE III
WILCOXON TEST FOR THE COMPARISON OF
APRIORI-SD/NMEEF-SD+EXCEPTIONS VS. APRIORI-SD/NMEEF-SD

Algorithm		p-val	Hypothesis
	SIG	0.173	Non-rejected
Apriori-SD	UNU	0.018	Rejected by Apriori-SD+Exceptions
Aprion-SD	SEN	0.011	Rejected by Apriori-SD
	CNF	0.038	Rejected by Apriori-SD+Exceptions
	SIG	0.005	Rejected by NMEEF-SD+Exceptions
NMEEF-SD	UNU	0.009	Rejected by NMEEF-SD+Exceptions
	SEN	0.008	Rejected by NMEEF-SD
	CNF	0.003	Rejected by NMEEF-SD+Exceptions

As can be observed in Table II and Table III, the results after applying the post-processing algorithm improve those obtained by the SD algorithms. In sensitivity, small reductions of the values of the original algorithms in comparison with the results of this proposal are obtained in all the experiments. Due to the fact that this quality measure quantifies the ratio of examples per target variable covered, the ideal values would be the same as the initial subgroups, i.e. it is impossible to improve the results of this quality measure because modified subgroups measure only the examples for the target value of the original subgroup. With respect to the remaining quality measures, the use of exceptions increments precision and interest of the initial subgroups.

V. CASE STUDY: CONCENTRATING PHOTOVOLTAIC TECHNOLOGY, PERFORMANCE AND CHARACTERISATION

Concentrating Photovoltaic (CPV) Technology is an alternative to the conventional Photovoltaic for the electric generation. CPV technology is based on using concentrated sunlight to produce electricity in a cheaper way by means of High Efficiency Multijunction solar cells, specifically designed for this type of technology. The efficiency of this type of solar cells has experienced a fast evolution, from 32.6% in 2000 to 43.5% in 2012 [23] and has a very strong potential of increasing along next years.

Despite of these expectations, several obstacles to develop CPV technology currently still remain, as the lack of CPV normalisation and standardisation, the lack of knowledge of the influence of the meteorological parameters on the performance of High Efficiency Multijunction Solar Cells, or the development of complex regression models for their performance. So, it is necessary to deepen in the study and knowledge of CPV technology.

The most interesting parameter to analyse in CPV is the Maximum Module Power (P_m) and so the study is focused in this variable. It is known that the P_m is highly influenced by atmospheric conditions, but it is needed to know what happens with the combination of real atmospheric conditions. This knowledge can be very useful to predict the energy production in a determined period of time.

IDEA group researchers have designed an Automatic Test & Measurement System which is able to measure simultaneously P_m of the CPV modules and outdoor atmospheric conditions. Data are registered each 5 minutes and include:

- Target variable: max Module Power $P_m \epsilon [0, 150]$ (W),
- ambient temperature $T_{amb}\epsilon[-3,50]$ (°C),
- direct normal irradiance $DNI\epsilon[143, 1034]$ (W/m^2) ,
- wind speed $W_s \epsilon [0, 30]$ (m/s),
- incident global irradiance $G\epsilon[290,1410]~(W/m^2)$ and
- spectral irradiance distribution of the incident global irradiance, described through average photon energy (APE) values, $APE\epsilon[1.6, 1.95]$.

Measures are taken at University of Jaen from June 2009 to November 2012 (Fig.2). The data set for the CPV solar module analysed in this section has 28182 examples.

Fig. 2. Solar tracker at High Technical School at University of Jaén

The P_m values of the kind of solar module under study have been discretised in four different intervals according their interest: I1: [7.5, 64.5], I2:]64.5, 93], I3:]93, 121.5] and I4:]121.5, 150]. Table IV presents the initial subgroups obtained by NMEEF-SD, the exceptions discovered and the modified subgroups. NMEEF-SD obtains subgroups describing general knowledge about three of the four values for the target variable (the low number of samples corresponding to the fourth interval, prevents the extraction of knowledge for this value).

Table V presents the results with respect to the quality measures analysed. The initial subgroups have a good confidence since the majority of examples are well described. However exceptions cover new examples that were previously incorrectly described. In brief, rules with exception are relevant and interesting taking into account high values for confidence,

unusualness, sensitivity and significance. Moreover, subgroups with exceptions give new information to experts for specific situations within different P_m intervals.

TABLE V
RESULTS OBTAINED IN Concentrating Photovoltaic Module DATA SET

Rule	SIGN	UNUS	SENS	CONF
$\overline{R_1}$	2790.523	0.049	0.796	0.786
R'_1	2793.111	0.049	0.796	0.788
$\overline{R_2}$	4092.492	0.095	0.942	0.811
$\frac{R_2'}{R_3}$	4095.232	0.095	0.942	0.812
$\overline{R_3}$	2462.399	0.095	0.974	0.696
R_3'	3091.127	0.110	0.973	0.720
Without exceptions	3115.138	0.080	0.904	0.764
With exceptions	3326.490	0.085	0.903	0.773

IDEA group researchers establish that:

- Consequent I1 (interval 1) covers the performance of the CPV module at sunrise, sunset and strong cloudy days. Usually under these conditions the P_m of the CPV module must be low, but presents a relevant exception. In opposition to conventional PV, in CPV technology the influence of the ambient temperature (T_{amb}) in the P_m always has been considered negligible. In this case, for a medium Direct Normal Irradiance value (DNI) the P_m of the module increases if the ambient temperature is low.
- Consequent I2 (interval 2) covers the performance of the module during moderate sunny and cloudy days. This subgroup has three exceptions, explaining that if espectral irradiance distribution, APE, is low (sunny days) and ambient temperature is high, the P_m does not belong to the interval 1. In this sense, CPV performance is similar to that of the conventional PV.
- Consequent I3 (interval 3) covers the performance of the module during a sunny day. In this subgroup, it is possible to extract relevant information concerning APE variable. This parameter (not considered in conventional PV technology) could be a crucial to explain the performance of the CPV module as a consequence of the special solar cells used. In this case, exception shows that high values of APE improve the performance of the CPV module.

The last result induces to analyse in more detail the influence of the APE in the performance of the CPV module. APE values offer information about the spectral distribution of the irradiance collected by the CPV module and it is very useful to analyse the fitting of the spectral response of the solar cells.

VI. CONCLUSIONS

A new post-processing multi-objective EFS to improve the subgroups obtained by any SD algorithm is presented in this paper. The aim is the detection of exceptions with two objectives: on the one hand, to describe new small spaces in the data with unusual behaviour within subgroups; and on the other hand, to increase the accuracy of the subgroups by detecting and describing samples within the unusual subgroups which can be interesting for the experts.

TABLE IV INITIAL SUBGROUPS STUDIED (OBTAINED BY NMEEF-SD), EXCEPTIONS AND SUBGROUPS WITH EXCEPTIONS OBTAINED FOR THE CPV DATA SET

Initial Subgroup	Exceptions $(Exc_i = Exc_{R_i}^1 \lor \ldots \lor Exc_{R_i}^{n_i})$	Modified Subgroup
R_1 :IF DNI =Low THEN P_m =I1	$\operatorname{Exc}^1_{R_1}$: G=High \wedge W_s =Very Low \wedge T_{amb} =Low	R_1' :IF DNI =Low $\wedge \overline{Exc_{R1}}$ THEN P_m =I1
R_2 :IF DNI =Med THEN P_m =12	$\begin{array}{l} \operatorname{Exc}_{R_2}^1 \colon APE = \operatorname{Very\ Low} \wedge \operatorname{G=Low} \\ \operatorname{Exc}_{R_2}^2 \colon APE = \operatorname{Low} \wedge T_{amb} = \operatorname{High} \\ \operatorname{Exc}_{R_2}^3 \colon APE = \operatorname{Very\ Low} \end{array}$	R_2' :IF DNI =Med \wedge $\overline{Exc_{R2}}$ THEN P_m =I2
R_3 :IF G=High THEN P_m =I3	$\begin{array}{l} \operatorname{Exc}_{R_3}^1 : W_s = & \operatorname{Extremely Low} \wedge DNI = & \operatorname{Med} \\ \operatorname{Exc}_{R_3}^2 : DNI = & \operatorname{Med} \\ \operatorname{Exc}_{R_3}^3 : T_{amb} = & \operatorname{High} \wedge DNI = & \operatorname{Med} \\ \operatorname{Exc}_{R_3}^4 : W_s = & \operatorname{Very Low} \wedge T_{amb} = & \operatorname{High} \wedge DNI = & \operatorname{Med} \\ \operatorname{Exc}_{R_3}^5 : APE = & \operatorname{Very High} \wedge DNI = & \operatorname{Med} \\ \end{array}$	$R_3'. \text{IF G=High} \wedge \overline{Exc_{R3}} \text{ THEN } P_m \text{=} \text{I} \text{3}$

An experimental study, supported by statistical tests, shows that the algorithm improves the results obtained by a previous SD algorithm (confidence and sensitivity). Furthermore, not only the quality measures used in the evolutionary process are improved but also other quality measures considered in the SD task. Moreover, the algorithm can be applied to real-world problems where experts need to obtain information to improve the analysis and description. For the CPV module problem, SD fuzzy rules with exceptions obtained give new knowledge related to relationships among atmospherical conditions when the CPV provides a certain Pm. Both SD rules and exceptions improve the knowledge about the behaviour of CPV modules.

ACKNOWLEDGMENT

This paper was supported by the Spanish Ministry of Education, Social Policy and Sports under projects TIN201233856, and ENE200908302 (FEDER Founds), and by the Andalusian Research Plan under projects TIC-3928 and TEP-5045M (FEDER Founds).

REFERENCES

- [1] W. Kloesgen, "Explora: A Multipattern and Multistrategy Discovery Assistant," in Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence, 1996, pp. 249-271.
- S. Wrobel, "An Algorithm for Multi-relational Discovery of Subgroups," in Proceedings of the 1st European Symposium on Principles of Data Mining and Knowledge Discovery, ser. LNAI, vol. 1263. 1997, pp. 78-87.
- [3] F. Herrera, C. J. Carmona, P. González, and M. J. del Jesus, "An overview on Subgroup Discovery: Foundations and Applications," Knowledge and Information Systems, vol. 29, no. 3, pp. 495-525, 2011.
- [4] F. Hussain, H. Liu, E. Suzuki, and H. Lu, "Exception rule mining with a relative interesting measure," in Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, ser. LNAI, vol. 1805, 2000, pp. 86-97.
- [5] M. Fazzolari, R. Alcalá, Y. Nojima, H. Ishibuchi, and F. Herrera, "A review of the application of Multi-Objective Evolutionary Systems: Current status and further directions," IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 45-65, 2013.
- [6] S. Wrobel, Inductive logic programming for knowledge discovery in
- databases. Springer, 2001, ch. Relational Data Mining, pp. 74–101. N. Lavrac, B. Kavsek, P. A. Flach, and L. Todorovski, "Subgroup Discovery with CN2-SD," Journal of Machine Learning Research, vol. 5, pp. 153-188, 2004.
- N. Lavrac, B. Cestnik, D. Gamberger, and P. A. Flach, "Decision Support Through Subgroup Discovery: Three Case Studies and the Lessons Learned," Machine Learning, vol. 57, no. 1-2, pp. 115-143, 2004.
- [9] B. Kavsek and N. Lavrac, "APRIORI-SD: Adapting association rule learning to subgroup discovery," Applied Artificial Intelligence, vol. 20, pp. 543-583, 2006.

- [10] M. Atzmueller and F. Puppe, "SD-Map A Fast Algorithm for Exhaustive Subgroup Discovery," in *Proceedings of the 17th European* Conference on Machine Learning and 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, ser. LNCS, vol. 4213. Springer, 2006, pp. 6-17.
- [11] M. J. del Jesus, P. González, F. Herrera, and M. Mesonero, "Evolutionary Fuzzy Rule Induction Process for Subgroup Discovery: A case study in marketing," IEEE Transactions on Fuzzy Systems, vol. 15, no. 4, pp. 578-592, 2007.
- [12] F. J. Berlanga, M. J. del Jesus, P. González, F. Herrera, and M. Mesonero, "Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing," in Proceedings of the 6th Industrial Conference on Data Mining, ser. LNCS, vol. 4065. Springer, 2006, pp. 337-349
- [13] C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera, "NMEEF-SD: Non-dominated Multi-objective Evolutionary algorithm for Extracting Fuzzy rules in Subgroup Discovery," IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 958-970, 2010.
- E. Suzuki, "Data mining methods for discovering interesting exceptions from an unsupervised table," Journal of Universal Computer Science, vol. 12, no. 6, pp. 627-653, 2006.
- [15] F. Herrera, "Genetic fuzzy systems: taxomony, current research trends and prospects," Evolutionary Intelligence, vol. 1, pp. 27-46, 2008.
- K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.
- [17] D. E. Goldberg, Genetic Algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., 1989.
- [18] J. Alcalá-Fdez, L. Sánchez, S. García, M. del Jesus, S. Ventura, J. Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, and F. Herrera, "KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems," Soft Computing, vol. 13, no. 3, pp. 307-318, 2009
- [19] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, and F. Herrera, "KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework," Journal of Multiple-Valued Logic and Soft Computing, vol. 17, no. 2-3, pp. 255-287, 2011.
- N. Lavrac, P. A. Flach, and B. Zupan, "Rule Evaluation Measures: A Unifying View," in Proceedings of the 9th International Workshop on Inductive Logic Programming, ser. LNCS, vol. 1634. Springer, 1999, pp. 174-185.
- [21] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo, "Fast discovery of association rules," in Advances in Knowledge Discovery and data mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, 1996, pp. 307-328.
- [22] F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics, vol. 1, pp. 80-83, 1945.
- [23] A. Green-Martin, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics Research and Applications, vol. 20, no. 1, pp. 12-20, 2012.