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Abstract—Subgroup Discovery (SD) is a data mining technique

whose main objective is the search for descriptions of subgroups

of data that are statistically unusual with respect to a property of

interest. General rules describing as many instances as possible

are preferred in SD, but this can lead to less accurate descriptions

that incorrectly describe some instances. These negative examples

can be grouped into exceptions.

The paper presents a new evolutionary fuzzy system for the

detection of exceptions associated to rules previously obtained by

a SD algorithm. Considering the initial subgroup and associated

exceptions, the aim is to obtain a new description in order to

increase the accuracy of the initial subgroup. This algorithm can

be applied to the results of any SD algorithm. An experimental

study shows the utility of the proposal, which is also applied in

a real problem related to concentrating photovoltaic technology,

providing useful information to the experts.

I. INTRODUCTION

SD [1]–[3] is a supervised induction technique which ob-
tains descriptive rules through the use of supervised learning.
The aim is to find interesting rules regarding a property of
interest, in the sense that they provide unknown information,
confirm information known by intuition or give extraordinary
knowledge for experts. Knowledge extracted should be simple
to be useful for experts, and sometimes the search for sim-
plicity in SD algorithms can lead to a reduction of precision
if general rules with negative examples are obtained.

The detection of these negative examples and their de-
scription using rules with exceptions [4] can improve the
knowledge extracted on the property of interest. The modi-
fied subgroups including exceptions would not only improve
the accuracy of SD rules but also offer novel and valuable
knowledge to the experts.

SD task usually implies the optimisation of different quality
measures related to precision, simplicity and interest aspects of
SD descriptions, which are generally represented as rules and
sometimes as fuzzy rules. Evolutionary algorithms are general
propose search methods which have shown good behaviour
for rule learning processes and multi-objective problems. The
hybridization between multiobjective evolutionary algorithms
and fuzzy systems is known as multiobjective fuzzy sys-
tems [5] and it has been successfully applied to SD task
citeDghm07,Bdghm06.

This paper presents a new post-processing algorithm based
on an evolutionary multi-objective fuzzy system for the detec-

tion of exceptions in subgroups. This proposal searches with
a multiobjective approach for exceptions within subgroups
previously obtained by any SD algorithm. In short the process
is the following: exceptions composed of a small number
of examples described by the subgroup corresponding to the
opposite value of the target variable are detected for each
initial SD rule. Then, it is obtained a new modified subgroup
describing the initial subgroup and its exceptions.The perfor-
mance of the algorithm is verified through an experimental
study, and a case study related to the description of the
behaviour of a kind of concentrating photovoltaic module is
presented.

The paper is organised as follows: In Section II, the main
concepts used in this paper are described. An algorithm for
the detection of exceptions associated to SD rules is presented
in Section III. In Section IV the experimental study can
be observed, and Section V shows the case study. Finally,
concluding remarks are outlined in Section VI.

II. RELATED WORK

A. Subgroup discovery

The concept of SD was initially introduced by Kloesgen [1]
and Wrobel [2]. It has been defined as [6]:

“In subgroup discovery, we assume we are given a so-called
population of individuals and a property of those individuals
we are interested in. The task of subgroup discovery is then to
discover the subgroups of the population that are statistically
“most interesting”, i.e., are as large as possible and have the
most unusual statistical (distributional) characteristics with
respect to the property of interest.”

The main objective of the SD task is to extract descriptive
knowledge concerning a property of interest (TargetV ar)
from the data [7]. The knowledge is represented by patterns
that may characterise the data represented in such a way that
domain experts can understand them. Thus, in SD it is not
necessary to obtain complete but rather partial relations usually
represented as rules:

R : Cond ! TargetV ar (1)

One of the most important aspects in a SD algorithm
is the quality measures used to analyse the interest of the
subgroups obtained. Throughout the literature, a wide range of
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quality measures have been employed, which can be divided
into different groups depending on their main objective [3]:
complexity, generality, precision, and interest.

Proposals for SD can be classified in extensions of clas-
sification algorithms (such as EXPLORA [1], MIDOS [2]
or CN2-SD [8]), extensions of association algorithms (as
APRIORI-SD [9] or SD-MAP [10]) and evolutionary fuzzy
systems (EFSs) (SDIGA [11], MESDIF [12] or NMEEF-
SD [13]). EFSs have demonstrated their ability to extract
SD descriptions and specially NMEEF-SD is a robust EFS
which obtains better results obtaining simple, accurate and
interpretable SD fuzzy rules with respect to different complex
real-world problems in a large number of applications. See
[3] for an overview of SD algorithms, quality measures and
applications.

B. Exception rule mining

An exception can be defined as something different from
most of the rest [14]. Exception rule mining was introduced by
Hussain et al. in [4] as the extraction of rules with low support
and high confidence. The problem is that most data mining
methods are focused on obtaining general rules with high
support and confidence, which are considered as interesting.
However, rules with low support could provide interesting and
extraordinary knowledge to the experts.

Two different approaches can be distinguished when search-
ing for exception rules [4]: directed (or subjective), which
obtains a set of exception rules each of which contradicts to
a user-specified belief; and undirected (or objective), which
obtains a set of pairs of an exception rule and a general rule.

Applied to the results of any SD algorithm, the detection of
undirect exceptions could lead to an improvement in the pre-
cision and description because small areas within subgroups
with negative examples, i.e. incorrectly-described examples,
are discovered and described.

III. A MULTI-OBJECTIVE EVOLUTIONARY FUZZY SYSTEM
FOR DETECTION OF EXCEPTIONS IN SUBGROUPS

This section presents a post-processing algorithm for the
detection of exceptions in SD. The main idea is the following:
small areas formed by examples with the opposite value of
the target variable of the initial subgroup are searched for.
They describe exceptions to the knowledge represented by the
subgroup. Next, with the initial subgroup and its exceptions,
a new rule is obtained where precision and description are
improved. This process is repeated for each SD rule.

This concept is graphically explained below. A subgroup
for the target value o is represented in Fig. 1 as a grey
circle. This subgroup covers all the examples of the value
o of the target variable, also covering some examples of the
other value of the target variable (value x), but the knowledge
representation is simple and valuable for experts. However,
these negative examples (shown in a dark grey) are exceptions
of the subgroup.

The proposal is an multi-objective fuzzy system [5], [15]
which is able to work in fuzzy and/or crisp domains obtaining

Fig. 1. Detection of exceptions within a subgroup

modified subgroups which are formed by initial subgroups and
their exceptions. Specifically, this algorithm will obtain crisp
modified subgroups if the initial subgroups are crisp and fuzzy
subgroups if they are fuzzy. The main features of the proposal
are presented below.

A. Individual representation

An integer representation model with as many genes as
variables contained in the original data set without consid-
ering the target variable is used. It works with categorical
and/or continuous variables depending on whether the initial
subgroup rules are crisp or fuzzy rules.

In domains with continuous variables different SD algo-
rithms use fuzzy logic to manage these continuous features
without a previous discretisation. In this situation the proposal
considers continuous variables as linguistic ones, and the fuzzy
sets corresponding to the linguistic labels are those defined by
the SD algorithm used previously.

Codification is performed according to the “Chromosome
= Rule” approach [15], where only the antecedent is
represented in the chromosome. The value of the target
variable for the individuals is considered to be the opposite
value of the initial subgroup. If we consider the rule
IF x1 = Medium AND x3 = Low THEN TargetV ar
as a previously obtained fuzzy SD rule, the exception
associated to the subgroup maintains the values of the
attributes of the initial subgroup. In this way, the exception
IF x1 = Medium AND x3 = Low AND x5 = Medium
THEN TargetV ar will be more specific than the initial
subgroup.

Individual representation in crisp rules is also performed
with “Chromosome = Rule approach. The set of possible
features for these rules are both categorical or continuous, but
discretised previously in the last case.

B. Multi-objective evolutionary algorithm approach

Algorithm starts with a set of i subgroups obtained by any
SD algorithm (SR = {R1, R2, . . . , Ri}) represented with the
following type of rule:

Ri : IF Condi THEN TargetV ar (2)

The algorithm searches for small sets of examples within the
space delimited by the antecedent of a rule that possess a value
for the target variable different to the one established in the
consequent of the subgroup, This search is performed through
a multi-objective evolutionary algorithm with the NSGA-II
approach [16], according to a two-step process:
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1) Detection of group of exceptions associated with each
subgroup. These exceptions are more specific than the
initial subgroup (each one is composed by the same
variables as the subgroup in addition to others) but
corresponding to the opposite value of the target variable
of the subgroup.

2) Generation of the modified subgroups. A new subgroup
formed by the initial one and the exceptions of the
previous step is obtained:

R0
i : IF Condi AND Exci THEN TargetV ar (3)

where Exci represents conditions for associated excep-
tions to the rule Ri (without the common variables).

The algorithm uses adapted expressions for sensitivity [1]
and confidence [11] measures to evaluate exceptions and to
direct the learning process:

• Sensitivity that measures the proportion of actual posi-
tives which are correctly identified.

Sens(Exc) =
TP

TP + FN
=

n(TargetV ar · Cond)

n(TargetV ar)
(4)

where n(TargetV ar) are the examples with the opposite
value to the target variable of the initial subgroup, and
n(TargetV ar · Cond) are the examples covered by the
exception with the opposite value of the target variable
to that of the subgroup.

• Fuzzy/crisp confidence that measures the proportion of
examples which are correctly identified with respect to
the opposite value of the target variable.

FCnf(Exc) =

P

Ek2E/Ek2TargetV ar

APC(Ek, Exc)

P
Ek2E

APC(Ek, Exc)

(5)
where E = {Ek = (ek1 , e

k
2 , . . . , e

k
v), TargetV ark) /k =

1, . . . , N, TargetV ark 2 T} is a set of examples, ev
is the number of variables for the example, TargetV ark

is the value of the target variable for the example Ek (i.e.,
the target variable for this example), APC is the degree
of compatibility between an example and the antecedent
part of an exception rule. In crisp domains the degree of
compatibility for an example and the antecedent part of
the rule is 1 or 0.

The Pareto front obtained at the end of the evolutionary
process contains all different exceptions which reach a confi-
dence threshold, and so only exceptions with high precision
values and describing specific areas with incorrectly-described
examples are obtained.

C. Genetic operators

The evolutionary post-processing algorithm includes tour-
nament selection and multi-point crossover operators [17], in
addition to specific operators:

• Oriented initialisation. It is generated a population of
individuals which contain the same values as the initial

subgroup, together with new values for the remaining
attributes. To do so, part of the population is generated
with biased individuals and the rest are generated ran-
domly. The values of the variables taking part in the
initial subgroup are directly copied in the new individuals
of the population. The remaining values are generated in
the following way: the values of 75% of the individuals
are generated considering that a maximum of 90% of the
variables can take part in the rule; for the rest (25%) the
values are generated randomly. These random individuals
always have a value in all the variables.

• Oriented mutation. It is derived from standard mutation
[17] but the values of the variables of the initial subgroup
can not be modified. Furthermore, the mutation of a
variable which does not form part of the initial subgroup
does not imply its removal in the chromosome; i.e.
a possible value is assigned to the variable which is
different to the actual one, but never 0.

• Oriented re-initialisation based on coverage. The algo-
rithm uses a modification of the operator defined for
NMEEF-SD [13]. In the original operator, a verification
is made before generating the population for the next
generation, to see whether the Pareto evolves or not. If it
does not evolve, all non-repeated individuals of the Pareto
are introduced into the population of the next generation
and the remaining individuals to complete de population
are generated to cover examples of the data set not
covered by the Pareto. Modification is that the generated
individuals must be a specification of the initial subgroup,
and all individuals keep the same values of the initial
subgroup. New individuals generated are associated to
examples not covered by the Pareto because an uncovered
example is selected randomly and the values of the
individual are codified with respect to this example.

• Stop condition. The evolutionary process ends when the
algorithm reaches a number of evaluations. It returns the
non-repeated individuals of the Pareto front which reach
a confidence threshold. These individuals (exceptions) are
associated to the correspondent initial subgroup.

• Generation of subgroups with exceptions. Once the evo-
lutionary algorithm has been executed for each initial
subgroup and their exceptions are obtained, subgroups
with exceptions are generated. It is done by combining
the initial subgroups with their associated exceptions.
It is important to remark that the number of modified
subgroups is the same as the initial ones.

IV. EXPERIMENTAL STUDY

The experimentation was undertaken with data sets from
KEEL [18], [19] repository1. Their properties are presented in
Table I, including number of variables (nv), discrete variables
(nvD), continuous variables (nvC) and examples (N ). To es-
timate quality measures on new data, 10 fold-cross validation

1http://www.keel.es
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procedure is employed and 3 executions are considered for
non-deterministic algorithms.

TABLE I
PROPERTIES OF THE DATA SETS USED FROM THE KEEL REPOSITORY

] Name nv nvD nvC N

1 Australian 14 8 6 690
2 Crx 15 12 3 690
3 Heart 13 6 7 270
4 Hepatitis 19 13 6 155
5 Mammographic 5 5 0 961
6 Monk-2 6 6 0 432
7 Housevotes 16 16 0 435
8 Saheart 9 4 5 462
9 Tic-tac-toe 9 9 0 958
10 Titanic 3 0 3 2201
11 Wisconsin 9 9 0 699

To show the advantages given by the evolutionary post-
processing algorithm, two SD algorithms are employed to
obtain the initial subgroups: NMEEF-SD [13] and Apriori-
SD [9]. Then is applied the evolutionary proposal in order to
extract exceptions for them. The evaluation of the subgroups
with exceptions is performed with adapted expressions for
the quality measures of significance (SIG) [1], unusualness
(UNU ) [20], sensitivity (SEN ) [1] and confidence (CNF )
[21].

• Significance of a subgroup with exceptions (R0):

Sign
0(R0

i) = 2·
ncX

k=1

(TPR0
i
)k ·log

(TPR0
i
)k

((TP + FN)Ri )k ·
((TP+FP )

R0
i
)k

N
(6)

where TPR0
i
= TPRi � FPExci , TPRi are the number

of correctly-described examples of the rule, FPExci are
the number of incorrectly-described examples for the set
of associated exceptions to the rule, (TP + FN)Ri are
the number of examples for values of the target variable,
(TP + FP )R0

i
= (TP + FP )Ri � (TP + FP )Exci ,

(TP + FP )Ri are the number of examples covered by
the rule and (TP + FP )Exci are the examples covered
by the set of associated exceptions to the initial rule.

• Unusualness of a subgroup with exceptions:

Unus
0(R0

i) =

0

@
TPR0

i

(TP + FP )R0
i

�
(TP + FN)Ri

N

1

A ·
(TP + FP )R0

i

N

(7)

• Sensitivity for a subgroup with exceptions:

Sens
0(R0

i) =
TPR0

i

(TP + FN)Ri

(8)

• Fuzzy confidence of a subgroup with exceptions:

FCnf
0(R0

i) =

P

Ek2E/Ek2TargetV ar

APC(Ek, R0
i)

P

Ek2E

APC(Ek, R0
i)

(9)

where APC(Ek, R0
i) = APC(Ek, Ri) � APC(Ek, Exci).

The average results of the SD algorithms and the same
algorithms with the post-processing algorithm are presented

in Table II, where nr represents the number of subgroups,
and nv represents the average of variables for each subgroup.
For reasons of brevity, the paper only includes the average
results and results of statistical tests.

TABLE II
RESULTS OBTAINED FOR THE ALGORITHMS

Algorithm nr nv SIG UNU SEN CNF

Apriori-SD 5.42 2.18 3.337 0.067 0.508 0.616
Apriori-SD+Exceptions 5.42 5.78 3.554 0.076 0.487 0.638

NMEEF-SD 4.41 2.52 5.154 0.119 0.846 0.809
NMEEF-SD+Exceptions 4.41 6.93 5.924 0.131 0.821 0.842

For statistical analysis the Wilconxon signed-rank test [22]
is selected with level of confidence ↵ = 0.05 in the ex-
periments. In Table III the results of the Wilcoxon test for
each quality measure can be observed with the correspondent
p � val, and the result of the Hypothesis. The results
obtained show significant differences in the majority of the
quality measures and algorithms with the use of the new post-
processing approach.

TABLE III
WILCOXON TEST FOR THE COMPARISON OF

APRIORI-SD/NMEEF-SD+EXCEPTIONS VS. APRIORI-SD/NMEEF-SD

Algorithm p � val Hypothesis

Apriori-SD

SIG 0.173 Non-rejected
UNU 0.018 Rejected by Apriori-SD+Exceptions
SEN 0.011 Rejected by Apriori-SD
CNF 0.038 Rejected by Apriori-SD+Exceptions

NMEEF-SD

SIG 0.005 Rejected by NMEEF-SD+Exceptions
UNU 0.009 Rejected by NMEEF-SD+Exceptions
SEN 0.008 Rejected by NMEEF-SD
CNF 0.003 Rejected by NMEEF-SD+Exceptions

As can be observed in Table II and Table III, the results after
applying the post-processing algorithm improve those obtained
by the SD algorithms. In sensitivity, small reductions of the
values of the original algorithms in comparison with the results
of this proposal are obtained in all the experiments. Due to the
fact that this quality measure quantifies the ratio of examples
per target variable covered, the ideal values would be the same
as the initial subgroups, i.e. it is impossible to improve the
results of this quality measure because modified subgroups
measure only the examples for the target value of the original
subgroup. With respect to the remaining quality measures,
the use of exceptions increments precision and interest of the
initial subgroups.

V. CASE STUDY: CONCENTRATING PHOTOVOLTAIC
TECHNOLOGY, PERFORMANCE AND CHARACTERISATION

Concentrating Photovoltaic (CPV) Technology is an al-
ternative to the conventional Photovoltaic for the electric
generation. CPV technology is based on using concentrated
sunlight to produce electricity in a cheaper way by means of
High Efficiency Multijunction solar cells, specifically designed
for this type of technology. The efficiency of this type of
solar cells has experienced a fast evolution, from 32.6% in
2000 to 43.5% in 2012 [23] and has a very strong potential
of increasing along next years.
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Despite of these expectations, several obstacles to develop
CPV technology currently still remain, as the lack of CPV
normalisation and standardisation, the lack of knowledge
of the influence of the meteorological parameters on the
performance of High Efficiency Multijunction Solar Cells,
or the development of complex regression models for their
performance. So, it is necessary to deepen in the study and
knowledge of CPV technology.

The most interesting parameter to analyse in CPV is the
Maximum Module Power (Pm) and so the study is focused in
this variable. It is known that the Pm is highly influenced by
atmospheric conditions, but it is needed to know what happens
with the combination of real atmospheric conditions. This
knowledge can be very useful to predict the energy production
in a determined period of time.

IDEA group researchers have designed an Automatic Test &
Measurement System which is able to measure simultaneously
Pm of the CPV modules and outdoor atmospheric conditions.
Data are registered each 5 minutes and include:

• Target variable: max Module Power Pm✏[0, 150] (W),
• ambient temperature Tamb✏[�3, 50] (�C),
• direct normal irradiance DNI✏[143, 1034] (W/m2),
• wind speed Ws✏[0, 30] (m/s),
• incident global irradiance G✏[290, 1410] (W/m2) and
• spectral irradiance distribution of the incident global irra-

diance, described through average photon energy (APE)
values, APE✏[1.6, 1.95].

Measures are taken at University of Jaen from June 2009 to
November 2012 (Fig.2). The data set for the CPV solar module
analysed in this section has 28182 examples.

Fig. 2. Solar tracker at High Technical School at University of Jaén

The Pm values of the kind of solar module under study
have been discretised in four different intervals according their
interest: I1: [7.5, 64.5], I2: ]64.5, 93], I3: ]93, 121.5] and I4:
]121.5, 150]. Table IV presents the initial subgroups obtained
by NMEEF-SD, the exceptions discovered and the modified
subgroups. NMEEF-SD obtains subgroups describing general
knowledge about three of the four values for the target variable
(the low number of samples corresponding to the fourth
interval, prevents the extraction of knowledge for this value).

Table V presents the results with respect to the quality mea-
sures analysed. The initial subgroups have a good confidence
since the majority of examples are well described. However
exceptions cover new examples that were previously incor-
rectly described. In brief, rules with exception are relevant
and interesting taking into account high values for confidence,

unusualness, sensitivity and significance. Moreover, subgroups
with exceptions give new information to experts for specific
situations within different Pm intervals.

TABLE V
RESULTS OBTAINED IN Concentrating Photovoltaic Module DATA SET

Rule SIGN UNUS SENS CONF

R1 2790.523 0.049 0.796 0.786
R0

1 2793.111 0.049 0.796 0.788

R2 4092.492 0.095 0.942 0.811
R0

2 4095.232 0.095 0.942 0.812

R3 2462.399 0.095 0.974 0.696
R0

3 3091.127 0.110 0.973 0.720

Without exceptions 3115.138 0.080 0.904 0.764
With exceptions 3326.490 0.085 0.903 0.773

IDEA group researchers establish that:
• Consequent I1 (interval 1) covers the performance of

the CPV module at sunrise, sunset and strong cloudy
days. Usually under these conditions the Pm of the CPV
module must be low, but presents a relevant exception.
In opposition to conventional PV, in CPV technology the
influence of the ambient temperature (Tamb) in the Pm

always has been considered negligible. In this case, for a
medium Direct Normal Irradiance value (DNI) the Pm

of the module increases if the ambient temperature is low.
• Consequent I2 (interval 2) covers the performance of the

module during moderate sunny and cloudy days. This
subgroup has three exceptions, explaining that if espectral
irradiance distribution, APE, is low (sunny days) and
ambient temperature is high, the Pm does not belong to
the interval 1. In this sense, CPV performance is similar
to that of the conventional PV.

• Consequent I3 (interval 3) covers the performance of the
module during a sunny day. In this subgroup, it is possible
to extract relevant information concerning APE variable.
This parameter (not considered in conventional PV tech-
nology) could be a crucial to explain the performance of
the CPV module as a consequence of the special solar
cells used. In this case, exception shows that high values
of APE improve the performance of the CPV module.

The last result induces to analyse in more detail the influ-
ence of the APE in the performance of the CPV module. APE
values offer information about the spectral distribution of the
irradiance collected by the CPV module and it is very useful
to analyse the fitting of the spectral response of the solar cells.

VI. CONCLUSIONS

A new post-processing multi-objective EFS to improve the
subgroups obtained by any SD algorithm is presented in
this paper. The aim is the detection of exceptions with two
objectives: on the one hand, to describe new small spaces
in the data with unusual behaviour within subgroups; and on
the other hand, to increase the accuracy of the subgroups by
detecting and describing samples within the unusual subgroups
which can be interesting for the experts.
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TABLE IV
INITIAL SUBGROUPS STUDIED (OBTAINED BY NMEEF-SD), EXCEPTIONS AND SUBGROUPS WITH EXCEPTIONS OBTAINED FOR THE CPV DATA SET

Initial Subgroup Exceptions (Exci = Exc1Ri
_ . . . _ Exc

ni
Ri

) Modified Subgroup

R1:IF DNI=Low THEN Pm=I1 Exc1R1
: G=High ^ Ws=Very Low ^ Tamb=Low R0

1:IF DNI=Low ^ ExcR1 THEN Pm=I1

R2:IF DNI=Med THEN Pm=I2
Exc1R2

: APE=Very Low ^ G=Low
R0

2:IF DNI=Med ^ ExcR2 THEN Pm=I2Exc2R2
: APE=Low ^ Tamb=High

Exc3R2
: APE=Very Low

R3:IF G=High THEN Pm=I3

Exc1R3
: Ws=Extremely Low ^ DNI=Med

R0
3:IF G=High ^ ExcR3 THEN Pm=I3

Exc2R3
: DNI=Med

Exc3R3
: Tamb=High ^ DNI=Med

Exc4R3
: Ws=Very Low ^ Tamb=High ^ DNI=Med

Exc5R3
: APE=Very High ^ DNI=Med

An experimental study, supported by statistical tests, shows
that the algorithm improves the results obtained by a previous
SD algorithm (confidence and sensitivity). Furthermore, not
only the quality measures used in the evolutionary process are
improved but also other quality measures considered in the
SD task. Moreover, the algorithm can be applied to real-world
problems where experts need to obtain information to improve
the analysis and description. For the CPV module problem,
SD fuzzy rules with exceptions obtained give new knowledge
related to relationships among atmospherical conditions when
the CPV provides a certain Pm. Both SD rules and exceptions
improve the knowledge about the behaviour of CPV modules.
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