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Abstract. In the Machine Learning field when the multi-class classifica-
tion problem is addressed, one possibility is to transform the data set in
binary data sets using techniques such as One-Versus-All. One classifier
must be trained for each binary data set and their outputs combined in
order to obtain the final predicted class. The determination of the strat-
egy used to combine the output of the binary classifiers is an interesting
research area.

In this paper different OVA strategies are developed and tested us-
ing as base classifier a cooperative-competitive RBFN design algorithm,
CO2RBFN. One advantage of the obtained models is that they obtain
as output for a given class a continuous value proportional to its level of
confidence. Concretely three OVA strategies have been tested: the clas-
sical one, one based on the difference among outputs and another one
based in a voting scheme, that has obtained the best results.
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1 Introduction

A general approach to tackle several kind of classification problems is data trans-
formation. For example, in multi-class classification, One-Versus-All (OVA) [1]
is one of the most well-known.

The OVA strategy obtains a data set for each class included in the original
data set. Thereby, each obtained data set contains two classes: the positive class
or the class to predict, and the negative class that comprise the rest of classes.
A classifier is trained for each binary data set and finally the outputs of these
classifiers are combined in order to obtain the resulting class. In most of cases,
this class correspond to the classifier with higher output for the positive class.

Radial Basis Function Networks (RBFNs) are one of the most important
Artificial Neural Network (ANN) paradigms in the machine learning field. An
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RBFN is a feed-forward ANN with a single layer of hidden units, called radial
basis functions (RBFs) [2]. The overall efficiency of RBFNs has been proved in
many areas [3] such as pattern classification, function approximation and time
series prediction.

An important paradigm for RBFN design is Evolutionary Computation [4].
There are different proposals in this area with different scheme representa-
tions: Pittsburgh [5], where each individual is a whole RBFN, and cooperative-
competitive [6], where an individual represents a single RBF.

Authors have developed an algorithm for the cooperative-competitive design
of Radial Basis Functions Networks, CO2RBFN [7], that has been successfully
used in multi-class classification.

As demonstrated in [1] the use of OVA strategies can improve the results
of a multi-class classifier. Thus, the aim of this paper is testing different OVA
techniques with the RBFN design algorithm, CO2RBFN. Concretely three OVA
approaches have been implemented: the classical one, one based on the difference
among outputs and another one based in a voting scheme.

The text is organized as follows. In Section 2, OVA methodology to multi-
class classification is described as well as the concrete three methods to obtain
the output class. The cooperative-competitive evolutionary model for the design
of RBFNs applied to classification problems, CO2RBFN, is described in Section
3. The analysis of the experiments and the conclusions are shown in Sections 4
and 5, respectively.

2 The OVA Approach to Multi-class Classification

There are many situations in which the class associated to a set of input at-
tributes is not binary, but one of a set of outputs with more than two options.
When it is necessary to work with a data set of this kind, a multi-class data
set, there are two main methods to follow: design a classifier able to work with
several classes, or split the original problem, applying the divide-and-conquer
technique, by transforming the data set so that it can be processed with binary
classifiers.

The decomposition of a multi-class data set in binary ones can be done using
different approaches, being One-vs-All (OVA) one of the best known. The basic
idea is to produce as many data sets as classes exist in the original multi-class
data set, taking in each one of them a certain class as positive (P) and the rest as
negative (N). Each of these data sets will be used to train a binary-independent
classifier, therefore obtaining several predictions as output: one for each class.

The final predicted class could change depending on how the binary outputs
obtained are combined. The kind of output generated by the binary classifiers will
also influence this result; a rule based system will only indicate if the output is P
or N without any additional information, on the other hand a neural network will
give a weight associated to each of the two possible outputs, not a simple P or N.
In the following subsections the traditional OVA approach will be exposed, along
with the specific variations used within the experimentation of this proposal.
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2.1 How Is Predicted the Output in Traditional OVA

Assuming that the underlying binary classifier B produces as output a value
expressing a weight or likelihood associated to the positive class, and being X
an instance and C the total number of classes, equation 1 will give as result the
index of the class to predict following the traditional OVA method. This method
is denoted as Classic OVA in the experimentation section.

I(X) = argmax(Bi(X)) i = 1 . . . C; (1)

It is as simple as taking the class associated to the binary classifier which has
generated the maximum output. For this method to work it is necessary that
the values given by the binary classifiers are comparable, applying previously a
normalization process if is it required. Usually it is accepted a range between 0
and 1.

2.2 Global and Local Normalization of Outputs from Binary
Classifiers

In order to normalize the values obtained from CO2RBFN, as they are not
normalized internally, two different methods has been used. The influence of the
normalization method in the final results is important enough to warrant special
attention.

The first method explores the outputs obtained for all the instances, gets the
maximum and the minimum values, and uses this information to adjust these
outputs before entering the final OVA prediction process. Therefore, it is a global
normalization. In contrast, the second method does a local normalization using
only the values associated to each sample. In both cases the final values will be
in the range 0 to 1, as has been said above.

In the experimentation the traditional OVA approach explained before has
been used in two variations, global and local, which only differ in the normal-
ization method used.

2.3 Alternative Methods to OVA Prediction

Aiming to improve the prediction made by the Classic OVA approach, always
working with the same set of output values obtained from the binary classifica-
tion, we have defined and tested two alternative interpretations of these values
once they have been normalized.

In the first alternative, Difference OVA, each classified instance has two val-
ues incoming from each binary classifier: the weight associated to the positive
class and the one which belongs to the negative class. Instead of looking for the
maximum positive value, as it is done in the traditional OVA, it is possible to
calculate the difference between these two weights in order to obtain a unique
value. The class predicted will be that which has the maximum difference, dis-
carding those cases in which the positive and negative weights are very near,
even though the positive could be the absolute maximum.
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The second alternative method proposed to do the OVA prediction, Voting
OVA, is based in the idea of a majority-voting system. Given that there are
several individual predictions for each instance, coming from the use of two
normalization techniques and the repetitions made in the execution over the
partitioned data sets, we have taken each of those predictions as a vote for a
class. The votes are summarized and the class with the higher count is the final
prediction.

In the experimentation, Difference OVA are used in combination with the two
normalization methods described above, giving as result two final predictions.
Voting OVA approach incorporates one more prediction in the set of results to
analyze.

3 CO2RBFN: An Evolutionary Cooperative-Competitive
Hybrid Algorithm for RBFN Design

CO2RBFN [7] is an evolutionary cooperative-competitive hybrid algorithm for
the design of RBFNs. In this algorithm each individual of the population repre-
sents, with a real representation, an RBF and the entire population is responsible
for the final solution.

The individuals cooperate towards a definitive solution, but they must also
compete for survival. In this environment, in which the solution depends on the
behavior of many components, the fitness of each individual is known as credit
assignment. In order to measure the credit assignment of an individual, three
factors have been proposed: the RBF contribution to the network output, the
error in the basis function radius, and the degree of overlapping among RBFs.

The application of the operators is determined by a Fuzzy Rule-Based System.
The inputs of this system are the three parameters used for credit assignment
and the outputs are the operators’ application probability.

The main steps of CO2RBFN, explained in the following subsections, are
shown in the pseudocode, in Algorithm 1. For a wider explanation of the algo-
rithm see reference [7].

Algorithm 1. Main steps of CO2RBFN
1. Initialize RBFN

2. Train RBFN

3. Evaluate RBFs

4. Apply operators to RBFs

5. Substitute the eliminated RBFs

6. Select the best RBFs

7. If the stop condition is not verified go to step 2

RBFN Initialization. To define the initial network a specified number m of
neurons (i.e. the size of population) is considered. The center of each RBF is
randomly allocated to a different pattern of the training set. The RBF widths,
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di, will be set to half the average distance between the centres. Finally, the RBF
weights, wij , are set to zero.

RBFN Training. The Least Mean Square algorithm [8] is used to calculate the
RBF weights.

RBF Evaluation.A credit assignment mechanism is required in order to eval-
uate the role of each RBF φi in the cooperative-competitive environment. For
an RBF, three parameters, ai ,ei ,oi are defined:

– The contribution, ai, of the RBF φi, is determined by considering the weight,
wi, and the number of patterns of the training set inside its width, pii:

ai =

{ |wi| if pii > q
|wi| ∗ (pii/q) otherwise

(2)

where q is the average of the pii values minus the standard deviation of the
pii values.

– The error measure, ei, for each RBF φi, is obtained by counting the wrongly
classified patterns inside its radius:

ei =
pibci
pii

(3)

where pibci and pii are the number of wrongly classified patterns and the
number of all patterns inside the RBF width respectively.

– The overlapping of the RBF φi and the other RBFs is quantified by using
the parameter oi. This parameter is computed by taking into account the
fitness sharing methodology [4], whose aim is to maintain the diversity in
the population.

Applying Operators to RBFs. In CO2RBFN four operators have been de-
fined in order to be applied to the RBFs:

– Operator Remove: eliminates an RBF.

– Operator Random Mutation: modifies the centre and width of an RBF in a
random quantity.

– Operator Biased Mutation: modifies, using local information, the RBF trying
to locate it in the centre of the cluster of the represented class.

– Operator Null: in this case all the parameters of the RBF are maintained.

The operators are applied to the whole population of RBFs. The probability
for choosing an operator is determined by means of a Mandani-type fuzzy rule
based system [9]. The inputs of this system are parameters ai, ei and oi used
for defining the credit assignment of the RBF φi. These inputs are considered
as linguistic variables vai, vei and voi. The outputs, premove, prm, pbm and
pnull, represent the probability of applying Remove, Random Mutation, Biased
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Table 1. Fuzzy rule base representing expert knowledge in the design of RBFNs

Antecedents Consequents Antecedents Consequents
va ve vo premove prm pbm pnull va ve vo premove prm pbm pnull

R1 L M-H M-H L L R6 H M-H M-H L L
R2 M M-L M-H M-L M-L R7 L L M-H M-H M-H
R3 H L M-H M-H M-H R8 M M-L M-H M-L M-L
R4 L L M-H M-H M-H R9 H M-H M-H L L
R5 M M-L M-H M-L M-L

Mutation and Null operators, respectively. Table 1 shows the rule base used to
relate the antecedents and consequents described.

Introduction of New RBFs. In this step, the eliminated RBFs are substituted
by new RBFs. The new RBF is located in the centre of the area with maximum
error or in a randomly chosen pattern with a probability of 0.5 respectively.

Replacement Strategy. The role of the mutated RBF in the network is com-
pared with the original one to determine the RBF with the best behavior in
order to include it in the population.

4 Experimentation

In order to test in a multi-class classification scenario the different OVA ap-
proaches developed and using as classifier our cooperative-competitive algorithm
for RBFN design, CO2RBFN, ten different data sets have been chosen from
KEEL data set repository [10]. The properties of these data sets are shown in
table 2. With these data sets, a typical experimental framework has been estab-
lished with ten-fold cross validation (90% for training data set, 10% for test data
set) and three repetitions for obtaining the results.

Table 2. Data set properties

Data-set Instances Attributes Classes

Balance 625 4 3
Cleveland 467 13 5
Dermatology 358 33 6
Ecoli 336 7 8
Glass 214 9 6
Hayes-Roth 160 4 3
New-thyroid 215 5 3
Lymphography 148 18 4
Wine 178 13 3
Yeast 1484 8 10
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The same configuration parameters are set up for all the CO2RBFN versions:
200 iterations are established for the main loop and the number of individuals
or RBFs are set to the twice of the number of classes existing in the processed
data set.

In table 3 the average correct classification rate for test data sets of the differ-
ent proposals are shown. Specifically the Base column shows the results obtained
for the multi-class version of CO2RBFN, without preprocessing the data set. In
the following columns the results of different OVA strategies (Classic, Difference
and Voting) are shown. For the Classic and Difference techniques two normal-
ization alternatives are exhibited. All the OVA strategies are described in the
section 2. For a given data set the best result is in bold.

Table 3. Average correct classification rate of different OVA strategies against the
base version

Datasets
Base Classic OVA Difference OVA Voting OVA

Global Local Global Local

Balance 0.8907 0.6525 0.8810 0.9018 0.8864 0.9071
Cleveland 0.5766 0.5701 0.4940 0.5095 0.5547 0.5546
Dermatology 0.9524 0.6428 0.6401 0.9265 0.9247 0.9443
Ecoli 0.8167 0.5724 0.7930 0.7703 0.7781 0.8200
Glass 0.6669 0.4549 0.5703 0.5594 0.6244 0.6399
Hayes-Roth 0.6688 0.5396 0.6625 0.6938 0.7375 0.7750
New-thyroid 0.9511 0.8206 0.9584 0.9509 0.9556 0.9677
Lymphography 0.7298 0.3235 0.3374 0.6910 0.7173 0.8165
Wine 0.9616 0.6671 0.9328 0.9366 0.9385 0.9556
Yeast 0.5780 0.1787 0.4230 0.4569 0.5095 0.5377

From the results obtained we can conclude that OVA strategies as Classic
OVA or Difference OVA do not achieve any best result with respect to the base
version of CO2RBFN (without OVA preprocessing). This fact underpins the
good behavior of the base CO2RBFN algorithm, correctly designing RBFNs for
multi-class data sets.

Nevertheless, this trend changes when the more innovative OVA strategy,
Voting, is applied. In fact, Voting outperforms the base version of the CO2RBFN
in five of the ten data sets. It must be also highlighted that for certain data sets,
such as Hayes-Roth or Lymphography, Voting OVA has obtained significantly
better results than CO2RBFN with differences around ten points. Besides this,
Voting OVA can outperforms in data sets with interesting properties, such as a
moderate number of instances (Balance), attributes (Lymphography) or classes
(Ecoli).

Thus, although there is tie between base CO2RBFN and Voting OVA, the
results obtained leads to carry out a more deep research about the OVA Voting
strategy.
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5 Conclusions

With the aim of improving the performance obtained in the classification of
multi-class data sets OVA transformations can be used. The resulting binary
data sets are processed by binary classifiers and the output of these ones must
be combined in order to obtain the final predicted class.

In this paper different combination OVA strategies are tested using CO2RBFN,
a cooperative-competitive evolutionary algorithm for the design of RBFNs, as
base classifier.

The results show that while most classic OVA strategies do not improve the
performance of the base version of CO2RBFN, the developed voting strategy
outperforms this base version in certain data sets. These results encourage us to
carry out a more in-deep research over the last strategy.
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