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Abstract. Learning from imbalanced multilabel data is a challenging
task that has attracted considerable attention lately. Some resampling
algorithms used in traditional classification, such as random undersam-
pling and random oversampling, have been already adapted in order to
work with multilabel datasets.

In this paper MLeNN (MultiLabel edited Nearest Neighbor), a heuris-
tic multilabel undersampling algorithm based on the well-known Wil-
son’s Edited Nearest Neighbor Rule, is proposed. The samples to be re-
moved are heuristically selected, instead of randomly picked. The ability
of MLeNN to improve classification results is experimentally tested, and
its performance against multilabel random undersampling is analyzed.
As will be shown, MLeNN is a competitive multilabel undersampling
alternative, able to enhance significantly classification results.

Keywords: MultilabelClassification, ImbalancedLearning,Resampling,
ENN.

1 Introduction

Multilabel classification (MLC) [1] has many real-world applications, being a
subject which has drawn significant research attention. That most multilabel
datasets (MLDs) are imbalanced is something taken for granted. Many existent
methods deal with this problem through MLC algorithms adaptations [2], aiming
to perform some kind of adjustment in the training phase to take into account
the imbalanced nature of MLDs. There are also some proposals relying on data
resampling [3], generating new instances in which minority labels appear or
deleting instances associated to the majority ones.

Until now, most of the published multilabel resampling algorithms are ran-
dom based, including random undersampling (RUS). The aim of this paper is
to propose a multilabel undersampling method which heuristically, rather than
randomly, selects the instances for removing. The heuristic is founded on the
Edited Nearest Neighbor (ENN) rule [4] and relies on two measures to assess
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the imbalance level in MLDs, as well as on a distance metric between the sets
of labels (labelsets) appearing in each pair of instances.

The behavior of the proposed algorithm, called MLeNN, will be experimen-
tally proved by applying it to six MLDs, and analyzing the results produced
by three MLC methods. The significance of these results will be statistically
evaluated, and the benefits produced by MLeNN will be demonstrated.

This paper is structured as follows. In Section 2 a brief introduction to multi-
label classification and imbalanced learning is provided. Section 3 describes the
proposed method, while all the experimentation details can be found in Section
4. Finally, Section 5 offers the final conclusions.

2 Preliminaries

The main characteristic of multilabeled data, when compared with data used
in traditional classification, consists of associating a group of relevant labels to
each instance, instead of only one class. This group is a subset of the whole set
of labels present in the MLD. Therefore, the goal on any MLC algorithm is to
predict the subset of labels which should be associated to the instances in an
MLD. A general introduction to MLC can be found in [5]. Additionally, a recent
review of MLC methods is offered in [1].

Imbalanced learning is a problem thoroughly studied in traditional classifica-
tion, and many solutions, based on different approaches, have been proposed to
face it. This problem emerges when there are many instances belonging to some
classes (majority), but only a few representing others (minority). Usually, classi-
fiers tend to be biased to the majority classes, in detriment of the minority ones.
A comprehensive review of traditional imbalanced learning solutions is provided
in [6].

Most studies assume that all MLDs are imbalanced. A triad of measures
directed to assess the imbalance level in MLDs are proposed in [3], along with two
random resampling algorithms, one for oversampling (LP-ROS) and anoher for
undersampling (LP-RUS). Two of the measures will be detailed in the following
section, since the heuristic used by MLeNN rely on them. Several methods aimed
to face the learning frommultilabel imbalanced data, based on ensembles of MLC
classifiers [7] and non-parametric probabilistic models [2], are also available.

In general, the imbalance level in MLDs is noticeably higher than in traditional
datasets. Moreover, algorithms aiming to cope with this problem have to take
into account that each sample belongs to multiple labels. Thus, procedures such
as the creation of new instances or deletion of existing ones will influence several
labels, rather than only one class.

3 Heuristic Multilabel Undersampling with MLeNN

Undersampling algorithms usually perform worse than oversampling ones [8],
since they cause a loss of information by removing instances. The information
loss is even greater when undersampling is applied to MLDs, as each removed
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sample is representing not only one class but several labels. As a result, choosing
the right instances to delete is of critical importance. Adapting ENN to work
with MLDs needs to resolve two key points, how the candidates are selected
and how the class differences among them and their neighbors are considered.
MLeNN settles these points by firstly limiting the samples which can act as
candidates to those in which none minority label appears, and secondly defining
a metric distance to know what is the difference between any pair of labelsets.

Unlike LP-RUS [3], which has a random behavior, the MLeNN algorithm takes
the samples to remove using a heuristic based on the two following bases:

– None of the minority labels can appear in the instance taken as reference to
candidate for deletion.

– The labelset of the reference instance has to be different to that of its neigh-
bors.

The second condition is based on the ENN rule [4], and adapted to the mul-
tilabel scenario as explained below. Algorithm 1 shows the MLeNN algorithm
pseudo-code. The measures used and implementation details are discussed in the
following subsections.

3.1 Candidate Selection

In order to choose which samples will act as candidates for removing, a method
to know what labels are in minority is needed. Those instances in which any
minority label appears will never be candidates, avoiding that some of the few
samples representing a minority label are lost.

To complete this task, MLeNN relies on the measures proposed in [3]. Let D
be an MLD, Y the full set of labels in it, and Yi the labelset of the i-th instance.
IRLbl (Equation 1) is a measure calculated individually to assess the imbalance
level for each label. The higher is the IRLbl the larger would be the imbalance,
allowing to know what labels are in minority or majority. MeanIR (Equation 2)
is the average IRLbl for an MLD, useful to estimate the global imbalance level.

IRLbl(y) =

Y|Y |

argmax

y′=Y1

(

|D|∑

i=1

h(y′, Yi))

|D|∑

i=1

h(y, Yi)

, h(y, Yi) =

{
1 y ∈ Yi

0 y /∈ Yi

. (1)

MeanIR =
1

|Y |
Y|Y |∑

y=Y1

(IRLbl(y)). (2)

MLeNN will iterate through all the MLD samples, taking as candidates those
whose labelset does not contain any label with IRLbl > MeanIR. This way, all
the instances containing a minority label will be preserved.
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Algorithm 1. MLeNN algorithm pseudo-code.

Inputs: <Dataset> D, <Threshold> HT, <NumNeighbors> NN
Outputs: Preprocessed dataset

1: for each sample in D do
2: for each label in getLabelset(D) do
3: if IRLbl(label) > MeanIR then
4: Jump to next sample � Preserve instance with minority labels
5: end if
6: end for
7: numDifferences ← 0
8: for each neighbor in nearestNeighbors(sample, NN ) do
9: if adjustedHammingDist(sample, neighbor) > HT then
10: numDifferences ← numDifferences+1
11: end if
12: end for
13: if numDifferences≥NN /2 then
14: markForRemoving(sample)
15: end if
16: end for

17: deleteAllMarkedSamples(D)

3.2 Labelset difference Evaluation

Wilson’s ENN rule has been extensively used in traditional classification. The
basic idea behind it is the following:

– Select a sample C as candidate.
– Look for C′s NN nearest neighbors. Usually NN= 3.
– If C class differs from the class of at least half of their neighbors (that is 2

when NN= 3), mark C for removing.

Since there is exclusively one class to compare with, the difference between
the candidate class and that of any of its neighbors is either 0% (same class) or
100% (different classes). Therefore, the candidate will be removed when there is
a 100% difference between its class and the class of half or more of its neighbors.

Table 1. Difference between the labelsets of two instances

label index 1 2 3 4 5 6 ... 375 376

labelset1 0 1 1 0 0 1 0 0 0

labelset2 1 0 1 0 0 1 0 1 0

Dif. count 1 1 0 0 0 0 0 1 0

Multilabel instances have multiple labels associated, thus the difference be-
tween two samples labelsets could be 100%, but also any value below that and
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above 0%. Let us consider the two labelsets shown in Table 1 and how their dif-
ferences could be evaluated. They belong to an MLD with 376 different labels,
but each instance is associated only to 3 or 4 of them. This is the case of the
corel5k dataset.

Using the Hamming distance, it could be concluded that a difference of 3
exists between the two labelsets. As the total length (number of labels) is 376,
this would give a 0.798% difference. However, if only the active labels (those
which are relevant) in either labelset are considered the result would be totally
different, since there are only 7 active labels in total. The percentage of difference
would be 42.857%, far higher than the previous one. There are many MLDs with
hundreds of distinct labels, but a low number of active labels in each sample.
Calculating differences using the usual Hamming distance will always produce
extremely low values. Thus, considering only active labels makes sense when it
comes to evaluate differences among labelsets.

MLeNN calculates an adjusted Hamming distance between the candidate and
their neighbors labelsets, counting the number of differences and dividing it
by the number of active labels. As a result, a value in the range of [0,1] is
obtained. Applying a configurable threshold (HT in Algorithm 1), the algorithm
determines which of its neighbors will be considered as distinct.

4 Experimentation and Analysis

This section describes the experimental framework used to test the performance
of the proposed algorithm. Afterwards, obtained results and their analysis are
provided.

4.1 Experimental Framework

The paper experimentation has been structured in two phases. The first goal is
to determine if MLeNN is able to improve classification results. It compares the
output of classifiers before and after preprocessing the same set of datasets. The
second phase aims to compare MLeNN performance against that of multilabel
random undersampling, preprocessing the original datasets with LP-RUS [3].

The six datasets whose characteristics are shown in Table 2 were used to
experimentally assess MLeNN1. All of them are from the MULAN repository
[9], and have been repeatedly used in the literature. They have been partitioned
following a 2x5 strategy. As can be inferred from the MeanIR values, five of these
datasets are truly imbalanced, with values ranging from 7.20 to 256.40. On the
contrary, the emotions dataset could not be actually considered as imbalanced.
It has been included in the experimentation to test the behavior of MLeNN
when used with non-imbalanced MLDs. MLeNN was applied to all of them with
NN= 3 (3 neighbors) and HT= 0.75 (75% labelset difference threshold).

1 This paper has an associated website at http://simidat.ujaen.es/mlenn. Both
dataset partitions and the MLeNN program can be downloaded from it. This website
also offers full tables of results.

http://simidat.ujaen.es/mlenn
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Regarding the MLC algorithms used, a basic Binary Relevance (BR [10])
transformation method and two more advanced classifiers, Calibrated Label
Ranking (CLR [11]) and Random k-labelsets (RAkEL [12]), were selected. The
well-known C4.5 tree-based classification algorithm was used as underlying clas-
sifier where needed.

Table 2. Characteristics of the datasets used in experimentation

Dataset Instances Attributes Labels MaxIR MeanIR

1 corel5k 5000 499 374 1120.00 189.57
2 corel16k 13766 500 161 126.80 34.16
3 emotions 593 72 6 1.78 1.48
4 enron 1702 753 53 913.00 73.95
5 mediamill 43907 120 101 1092.55 256.40
6 yeast 2417 198 14 53.41 7.20

4.2 Results and Analysis

The outputs produced by the MLC algorithms, learning from the base MLDs and
those obtained after preprocessing with MLeNN and ML-RUS, have been eval-
uated with three measures: Accuracy, Macro-FMeasure and Micro-FMeasure.
The former is a sample-based evaluation measure, thus all labels are given equal
weight, whereas the other two are label-based. Macro-averaging measures tend
to emphasize the results of rare labels, while micro-averaging does the oppo-
site. How these measures assess prediction performance can be found in [5]. An
intuitive visual representation of those results is offered in Figure 1.

First, it can be seen that the undersampling performed by MLeNN has im-
proved base results in many cases. However, there are some exceptions. The
most remarkable is that of the emotions dataset, whose results tend to be worse
after MLeNN has been applied. This led to the conclusion that undersampling,
whether random or heuristic, should not be applied to MLDs which are not truly
imbalanced. Another fact that can be visually confirmed in Fig. 1 is that the
performance of MLeNN is almost always better than that of ML-RUS.

Aiming to formally endorse these results, a Wilcoxon non-parametric sta-
tistical test was used to compare MLeNN with base results, firstly, and with
ML-RUS, secondly. The results of these tests are shown in Table 3 and Table
4. A star at the right of a value denotes that it is the best ranking for a given
measure. The symbol � indicates that there is no statistical difference between
this ranking and the best one, whereas the symbol � states that a significant
difference exists.

From the analysis of these results, that MLeNN is a competitive multilabel
undersampling algorithm can be concluded, since it always achieves better per-
formance than ML-RUS from an statistical point of view. Moreover, the un-
dersampling conducted by MLeNN is able to improve classification results when
compared with those obtained without preprocessing. MLeNN produced a statis-
tically significant improvement in two of the three measures, despite the inclusion
of an MLD such as emotions, which is not imbalanced, into the statistical study.
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Fig. 1. Each plot shows classification results corresponding to a measure/algorithm
combination

Table 3. First phase - Average Rankings

Algorithm Accuracy Macro-FM Micro-FM

Base 1.778 � 1.5556 � 1.778 �
MLeNN 1.222 � 1.4444 � 1.222 �

Table 4. Second phase - Average Rankings

Algorithm Accuracy Macro-FM Micro-FM

LP-RUS 2.000 � 1.6667 � 2.000 �
MLeNN 1.000 � 1.3333 � 1.000 �
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5 Conclusions

The learning from imbalanced MLDs presents some serious difficulties. Several
approaches have been proposed to overcome them, including random undersam-
pling algorithms. This kind of methods does not usually work well, since they
cause a significant loss of information potentially useful in the training process.

In this paper MLeNN, a novel multilabel heuristic undersampling algorithm,
has been presented. The deleted instances are thoughtfully selected, instead of be-
ing randomly chosen. As the obtained results show, it is a technique able to im-
prove classification results when applied to truly imbalanced MLDs. Moreover,
it performs significant better than the random undersampling implemented by
LP-RUS.

Acknowledgments. F. Charte is supported by the Spanish Ministry of Edu-
cation under the FPU National Program (Ref. AP2010-0068). This work was
partially supported by the Spanish Ministry of Science and Technology under
projects TIN2011-28488 and TIN2012-33856 (FEDER Founds), and the Andalu-
sian regional projects P10-TIC-06858 and P11-TIC-9704.

References

1. Zhang, M.-L., Zhou, Z.-H.: A review on multi-label learning algorithms. IEEE
Trans. Knowl. Data Eng. (2013)

2. He, J., Gu, H., Liu, W.: Imbalanced multi-modal multi-label learning for subcellular
localization prediction of human proteins with both single and multiple sites. PloS
One 7(6), 7155 (2012)

3. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: A first approach to deal with
imbalance in multi-label datasets. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M.,
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