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In this contribution, we propose a two-stage method for Accurate Fuzzy Modeling in
High-Dimensional Regression Problems using Approximate Takagi-Sugeno-Kang Fuzzy
Rule-Based Systems. In the first stage, an evolutionary data base learning is performed
(involving variables, granularities and slight fuzzy partition displacements) together
with an inductive rule base learning within the same process. The second stage is a
post-processing process to perform a rule selection and a scatter-based tuning of the mem-
bership functions for further refinement of the learned solutions. Moreover, the second
stage incorporates an efficient Kalman filter to learn the coefficients of the consequent
polynomial function in the Takagi-Sugeno-Kang rules. Both stages include mechanisms
that significantly improve the accuracy of the model and ensure a fast convergence in
high-dimensional and large-scale regression datasets.

We tested our approach on 28 real-world datasets with different numbers of variables
and instances. Five well-known methods have been executed as references. We compared
the different approaches by applying non-parametric statistical tests for pair-wise and
multiple comparisons. The results confirm the effectiveness of the proposed method,
showing better results in accuracy within a reasonable computing time.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In Takagi-Sugeno-Kang (TSK) Fuzzy Rule-Based Systems (FRBSs) [42,43], the rule structure is formed by linguistic vari-

ables in the antecedent and a polynomial function of the input variables in the consequent. This rule structure involves the
loss of interpretability [22] to some degree with respect to linguistic (Mamdani) FRBSs [36,35], although it allows the model
to be much more accurate. For this reason, TSK FRBSs have been successfully applied to regression and control problems
[30,28] with the main aim of obtaining highly accurate approximators [41,7]. The learning of premises and consequents
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of TSK FRBSs is usually carried out in different stages, or alternately, due to the high complexity of the search space involved.
However, both parts should be obtained together within the same process, since they are dependent on each other. Evolu-
tionary Algorithms (EAs) are able to learn the antecedents and consequents of the TSK rules together. This widely recognized
hybridization of fuzzy systems and EAs is known as Evolutionary or Genetic Fuzzy Systems (GFSs) [26]. However, they usu-
ally have scalability problems in terms of computational time and convergence in datasets with a high number of variables
and/or with a large amount of data.

In recent years, having to deal with large or high-dimensional datasets has become more common, and remains an open
topic in the GFSs framework [26,17], which has led to some emergent approaches such as data pre-processing [14], data
information granulation [38], etc. Large datasets include many instances, while high-dimensional datasets refer to datasets
with a high number of variables [31]. These kinds of datasets represent a challenge for GFSs: the size of large datasets affects
the fitness function computation, thus increasing the computational time, whereas high-dimensional datasets increase the
search space. Moreover, in most cases, the wider the search space the greater the number of rules generated. Resulting mod-
els can be very complex, including hundreds of rules [44], which increases their evaluation computational time still further
and usually leads to overfitting (especially when dealing with potentially highly accurate systems such as TSK-type FRBSs).

Therefore, even if accuracy is the main single objective, tackling large or high-dimensional datasets not only involves
dealing with many variables and/or instances but also controlling the complexity of the obtained models. Since it is difficult
to find this optimal trade-off (the simplest structure presenting near optimal accuracy), Multi-Objective Evolutionary Algo-
rithms (MOEAs) [12,10] is an interesting tool with which to find the best compromise by focussing on the most accurate
solutions while avoiding those that are too complex [20]. This combination of fuzzy systems and MOEAs is an important
branch of GFSs known as Multi-Objective Evolutionary Fuzzy Systems (MOEFSs) [17]. Even though some MOEFSs have been
applied to the learning of TSK FRBSs [24,25], most of these cases were related to improving their interpretability in regard to
synthetic or very simple problems with a small number of variables and instances (see [17] for a complete review of these
kinds of systems).

Only a few MOEFSs have been specifically proposed to tackle high and/or large datasets. The first two approaches [3,6] are
devoted to a fast derivation of Mamdani linguistic rules including some mechanisms to control dimensionality and the
appropriate use of a reduced set of examples or instance selection (training set selection) respectively. However, the search
space for learning TSK rules is more complicated than in the case of Mamdani rules due to the complexity involved in obtain-
ing the consequent linear parameters. In fact, one of the few approaches devoted to tackling scalability in the derivation of
TSK FRBSs [9] is devoted to a speed-up of the Kalman filter [33], which obtains the consequent coefficients, in order to inte-
grate it in an MOEA. This is based on decoupling the rules in order to only re-estimate the coefficients of the added or mod-
ified rules when they apply mutation operators. While this is not applicable to global learning (a global modification of the
rules carried out by a tuning of the antecedents, etc.) this is an interesting approach that was applied to several synthetic
problems with up to 10 variables and 70,000 examples, using user predefinition of the fuzzy partitions (uniform partitions
with a given number of fuzzy sets per variable fixed by hand for each particular dataset). Finally, another recent trend is the
use of parallel computation [32,18] in order to share the computing load among different CPUs. However, we will focus on
the design of improved sequential algorithms as these kinds of mechanisms could easily be integrated to any evolutionary
approach to parallel fitness computation, improving to an even greater extent those sequential algorithms that were specif-
ically designed for big datasets.

In this contribution, we present a scalable two-stage MOEFS for accurate fuzzy modeling through learning the global
structure of TSK FRBSs, namely METSK-HD® (Multiobjective Evolutionary learning of TSK systems for High Dimensional prob-
lems with estimated error). The first stage is based on the adaptation of some components from [3] (devoted to learning
Mamdani-type rules) in order to perform a fast identification of the most accurate TSK zero-order candidate structure, by
automatic learning of the appropriate fuzzy partitions and candidate rules. This includes a new objective to control overfit-
ting and a new rule generation method to obtain zero-order TSK consequents. However, the second stage includes the main
novelties considering a completely different coding scheme (which involves a much larger search space) and a new way of
efficiently integrating the Kalman filter while performing a global scatter-based tuning of the whole TSK FRBSs (evolving
antecedents and consequents together). In both stages, we will also consider the use of MOEAs as a tool to control the com-
plexity of the models and system overfitting, but with the main global objective of obtaining accurate models. In this way,
even though our first and main objective is minimizing the system error, two additional objectives have been considered in
both stages: minimizing the number of rules and maximizing the medium coverage degree of the examples.

In order to do this, in the first stage we present an effective Multi-Objective Evolutionary Algorithm (MOEA) [12,10],
based on an embedded genetic Data Base (DB) learning [26] (involving variables, granularities and a slight lateral displace-
ment [2] of fuzzy partitions). The Rule Base (RB) is obtained within the same process using a new efficient ad hoc algorithm
that also estimates the coefficients of the TSK zero-order consequents. The proposed MOEA includes some specific
mechanisms to ensure a fast learning of TSK FRBSs in order to obtain and fix a candidate model structure but preventing
a premature convergence in problems with a high number of variables and examples. The second stage represents a new
post-processing process based on a second MOEA that performs a rule selection and a fine scatter-based tuning of the
Membership Functions (MFs). Furthermore, it incorporates a new efficient hybridization of a Kalman filter [33] and the pro-
posed MOEA to estimate the coefficients of the consequent polynomial functions together with the antecedent parameters of
the TSK rules, which helps to significantly improve the accuracy of the model.
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We tested our approach on 28 real-world regression datasets with a number of variables ranging from 2 to 40 and a num-
ber of samples ranging from 337 to 40,768. Where possible, depending on the dimensionality, we executed four well-known
accuracy-driven single-objective methods in order to obtain some good performance references. Further, as some compo-
nents of the proposed approach are based on certain ideas from [3], we have also performed an internal comparison in order
to show the differences between the new scalable method for precise scatter-based modeling and the previous scalable
MOEEFS for linguistic fuzzy modeling [3]. To assess the results obtained by the different algorithms, we have applied non-
parametric statistical tests for pair-wise and multiple comparisons, considering for the MOEAs the average of the most accu-
rate solution from each Pareto front. The results obtained demonstrate the effectiveness of the proposed method, particularly
in terms of accuracy when dealing with high-dimensional and large-scale datasets. The method proposed obtained the most
accurate results with significant statistical differences within a reasonable computing time.

This article is organized as follows. The next section describes the general TSK fuzzy model structure considered in this
work. Section 3 presents the proposed method describing its main characteristics and the genetic operators considered.
Section 4 shows the experimental study and the results obtained. Finally, in Section 5 we draw some conclusions.

2. Takagi-Sugeno-Kang fuzzy rule-based systems

In [42,43], Takagi and Sugeno proposed a fuzzy model based on rules in which the antecedents are comprised of linguistic
variables as in the case of Mamdani FRBSs [36,35]. The principal distinguishing feature of this kind of model is that it is based
on rules in which the consequent is not a linguistic variable but a function of the input variables. These kinds of rules present
the following structure:

If X1 is Ay and ... and X, is A, then
Y=p; X1+ +Py-Xn+ Do,

where X; are the system input variables, Y is the system output variable, p; are real-values coefficients and A; are fuzzy sets.
Such rules are called TSK fuzzy rules, in reference to their creators [43].

The output of a TSK FRBS considering a Knowledge Base (KB) composed of m TSK rules is computed as the weighted aver-
age of the individual rule output Y;,i=1...m:

St hi-Yi
E:‘zl hi 7

with h; = T(A1(x1), . ..,An(xn)) being the matching degree between the antecedent part of the ith rule and the current system
inputs x = (x1,...,X,), and with T being a t-norm.

TSK FRBSs have been applied successfully to a large quantity of problems. The main advantage of these kinds of systems is
the fact that they present a compact system equation for estimating the parameters p; using classical methods, and obtaining
an accurate system, which can be very useful for accurate fuzzy modeling.

On the other hand, instead of considering linguistic partitions, scatter partitions could be considered. The scatter ap-
proach is based on rules presenting the following structure:

Ri:If Xy is Ay and ... and X, is A;, then Y is B;

where A; and B; are fuzzy sets specific to each fuzzy rule. Approaches based on scatter partitions present interesting advan-
tages that make them very suitable for precise modeling purposes:

o The expressive power of the rules that present their own specificity in terms of the fuzzy sets involved in them, thus intro-
ducing additional degrees of freedom in the system.

e The number of rules is adapted to the complexity of the problem, requiring fewer rules in simple problems, and being able
to use more rules if necessary. This is likely to be of benefit in tackling the curse of dimensionality when scaling to mul-
tidimensional systems.

In this article we focus on developing accurate TSK fuzzy models based on scatter partitions, which can provide more
accurate solutions to different problems, especially real-world high-dimensional and large-scale regression problems which
have accuracy as the main requirement of their solution.

3. A method for evolutionary learning of scatter-based TSK FRBSs in high dimensional and large-scale problems

This section presents the proposed two stage method for regression problems with a high number of variables and/or
examples. In the first stage, an effective MOEA is applied in order to learn an initial DB, based on a fuzzy grid in order to
obtain zero-order TSK candidate rules, while the second stage applies an advanced post-processing MOEA for fine scatter-
based evolutionary tuning of MFs combined with a rule selection (see Fig. 1). These algorithms incorporate some of the ideas
of the fast and scalable multi-objective genetic fuzzy system, FSmocrs® [3], for linguistic fuzzy modeling in complex
regression problems.
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Fig. 1. Learning scheme of the proposed two stage algorithm.

In the following, we include a preliminary section describing a mechanism for error estimation in large-scale problems [3]
and an adaptation of the Wang and Mendel [45] method (WM) for obtaining zero-order TSK rules. Then, Sections 3.2 and 3.3
present both stages of the proposed method.

3.1. Preliminaries: mechanisms integrated in the MOEAs

In this section, we present two mechanisms used in the proposed algorithm. The first one is an error estimation mech-
anism used in both stages of the algorithm. This mechanism avoids using a high percentage of the examples for error com-
putation, estimating it from a reduced subset of the examples. The second one is used only in the first stage to derive a set of
TSK zero-order rules as the RB generation process.

3.1.1. Mechanism for error estimation: partial error computation on large-scale datasets

In order to handle the scalability problem in datasets with a large amount of data, we propose the use of a new mecha-
nism presented in [3] for fast error computation in large-scale datasets. This procedure is based on taking a small percentage
of the training examples to estimate the error of the newly generated solutions. Once these errors are estimated, only those
solutions in the elite set (non-dominated solutions) are evaluated, considering the whole set of examples E.

The subset of examples E° for error estimation is obtained by a random selection of |r¢ «+ m| examples in each generation.
Where r¢ is the percentage of samples used to estimate the error and m is the dataset size. If [r®«m] > 1000 then
r¢ = 1000/m, i.e.,, no more than 1000 examples will be considered as this was shown to be good enough when compared
to the use of all the examples (see [3] on the use or not of the error estimation mechanism). E° is fixed for a generation. After
each generation the examples are replaced by a random selection from those examples that were not used in the previous
generation. In this way, we promote a rotation of the selected examples.

For each new solution to be evaluated we compute its error in E° (error estimation). If by taking into account the esti-
mated error and the current non-dominated solutions the new individual represents a new non-dominated solution, we per-
form a complete evaluation by considering the estimated error and the examples in E — E°. In this way, the Pareto set will
always contain solutions evaluated considering 100% of the examples. See Fig. 2 for a scheme of this mechanism.

3.1.2. Method for an effective generation of TSK candidate rules
We apply an adaptation of the WM method [45] in order to obtain a whole KB from a given DB (a given set of linguistic
terms and their associated MFs definitions). In contrast to WM, the consequents of TSK rules are obtained, with all the
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Fig. 2. Flowchart scheme of the error estimation mechanism for a new individual generated by the genetic algorithm.
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coefficients with value 0 and the independent terms computed as the average of the examples covered by the rule weighted
by their matching.

However, in problems with a high number of variables and/or examples this method can take a long time to derive thou-
sands of rules. To avoid this situation, once it is integrated within the MOEA of our first stage a cropping criterion has been
added to the method. In this way, the method stops the process if the RB reaches a limit of 100 rules and marks the RB as
incomplete. We propose a maximum number of 100 rules for the rule cropping mechanism based on some empirical trials,
which showed no significant differences in models obtained with more rules. Higher values or even those that do not use
cropping do not obtain significantly more accurate solutions. In fact, the final number of rules obtained by the proposed algo-
rithm in 28 real-world problems is always under 70. To penalize incomplete solutions (which should disappear during the
evolution of the first stage MOEA), we estimate the number of rules as the product of the number of labels of the input vari-
ables and in the case of the Mean Squared Error it is penalized with a fixed large error.

3.2. First stage: an effective MOEA for the initial KB learning

The proposed MOEA is based on embedded genetic DB learning [26] (using variables, granularities and lateral displace-
ments of fuzzy partitions [2]) which enables the structure of the initial TSK FRBSs to be learned fast, reducing its
dimensionality and making use of some effective mechanisms in order to ensure a fast convergence in high-dimensional
and large-scale regression datasets. Embedded genetic DB learning is based on an evolutionary process that codes and
evolves different DBs which are evaluated by applying a fast inductive RB generation method and computing the error of
the thus obtained FRBS (see Fig. 1a for a scheme of this kind of approach).

The following subsections describe the main features of the proposed algorithm: coding scheme, objectives, initial pop-
ulation, crossover and mutation operators, incest prevention mechanism and stopping condition.

3.2.1. DB codification

In order to improve the performance and to decrease the complexity of the classic tuning approaches in complex search
spaces, an effective tuning model has recently been proposed for FRBSs in [2] considering the linguistic 2-tuples represen-
tation scheme [37]. The linguistic 2-tuples representation allows the lateral displacement of the MFs by considering only one
parameter (slight displacements to the left/right of the original MFs). Since the three parameters usually considered per label
are reduced to only one symbolic translation parameter, this proposal decreases the learning problem complexity, helping to
decrease the model error and facilitating a significant decrease in the model complexity. It was extended in [3] in order to
use only one parameter per variable so that the same displacement is applied for all the corresponding MFs. See Fig. 3 for an
example of this kind of representation. We will use this latter approach as a way of allowing a slight efficient tuning while
learning the DB.

In this way, a double coding scheme (C = C¢ + C;) to represent both parts, granularity and translation parameters, is
considered:

e Number of labels (Cg): This part is a vector of integer numbers of size N (with N representing the number of input vari-
ables) in which the granularities of the different variables are coded,

Co=(L',...,IY).

Each gene L' represents the number of labels used by the ith variable and takes values in the set {2,...,7}. Additionally, it
may take a value equal to 1 to determine that the corresponding variable is not used.
e Lateral displacements (C,): This part is a vector of real numbers of size N in which the displacements of the different vari-
ables are coded [2]. In this way, the C; part has the following structure (in which each gene is the displacement value of
the fuzzy partition of the corresponding linguistic variable and takes values from [-0.1,0.1]),

-0.1 0.1 -0.1 0.1 -0.1 0.1
fe—>t k—>t
0.1 0.1 0.1 0.1
—>t k—t
< < < < « (*=-0.07
Sop »  Sq . Sy X 33\ S4

Fig. 3. Slight lateral displacement in [-0.1,0.1].
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3.2.2. Objectives
In order to evaluate a given individual, the adaptation of the WM method (see Section 3.1.2) is applied to the associated
DB in order to obtain the corresponding RB. Once a complete KB is obtained the following objectives are calculated:

1. Minimize the Mean Squared Error (MSE), which is our main objective:

with |E| being the dataset size, F(x') being the output obtained from the FRBS decoded from a given chromosome when the
Ith example is considered and y' being the known desired output.

2. Minimize the Number of Rules (NR), to control the complexity and overfitting.

3. Maximize the medium coverage degree of the examples, to help control overfitting.

3.2.3. Initial gene pool
The initial population will be comprised of two different subsets of individuals:

o In the first subset, each chromosome has the same number of labels for all the system input variables. In order to provide
diversity in the C; part, these solutions have been generated by considering all the possible combinations of the input
variables, i.e., from 2 labels to 7 labels. Additionally, for each of these combinations two copies are included with different
values in the C; part. The first one with random values in [-0.1,0.0] and the second one with random values in [0.0, 0.1]. If
there is no space for these solutions, they are included from the smallest granularities (the most interesting combinations
in principle) to the highest possible ones.

o In the second subset, we generate random solutions in order to completely fill the population (values in {2,...,7} for C¢
and values in [-0.1,0.1] for C;).

Finally, except in the cases of problems with less than three input variables, an input variable v is removed at random,
L” = 1. This action is repeated until no more than 5 variables remain in all the individuals. This process is applied to all
the individuals in the population in order to avoid the generation of solutions that make no sense (because of the exorbitant
number of rules).

3.2.4. Crossover and mutation operators

The crossover operator depends on the part of the chromosome to which it is applied. A crossover point is randomly gen-
erated and the classical crossover operator is applied to this point for the C¢ part. The Parent Centric BLX (PCBLX) operator
[34], which is based on BLX-¢, is applied to the C; part.

In this way, four new individuals are obtained by combining the two offspring generated from C¢ with the two offspring
generated from C;. For each of them, the mutation operator is applied with probability P,,. The mutation operator decreases
by 1 the granularity in a gene g selected at random (L® =L® — 1) or randomly determines a higher granularity in
{L® +1,...,7} with the same probability. No decreasing is performed when it provokes DBs with only one input variable.
The same gene is also changed at random in C;. Finally, after considering mutation, only the two most accurate individuals
are taken as descendants.

3.2.5. Incest prevention and stopping condition

An incest prevention mechanism has been included in the C; parts by following the concepts of CHC [15], to maintain the
population diversity and avoid premature convergence. Only parents whose hamming distance divided by 4 is greater than a
threshold is crossed. Because it uses a real encoding scheme in C;, each gene is transformed into gray code with a fixed num-
ber of bits per gene (BGenes). This threshold value is initialized as follows: L = (#GenesC, « BGene) /4, where #GenesC/ is the
number of genes in the C; part. The algorithm ends when a maximum number of evaluations are reached or when L is below
zero.

3.3. Second stage: an advanced post-processing MOEA to perform rule selection, fine tuning of MFs and efficient least-squares-based
consequent coefficients adjustment

Once a complete zero-order TSK KB is obtained in the first stage, a post-processing MOEA is applied to perform a tuning of
MFs and a rule selection, which will help to significantly improve the accuracy. To this end, we present a new MOEA for
accurate TSK FRBSs tuning and rule selection based on a previous MOEA, namely SPEA2g/; [21]. The new proposed MOEA
includes the error estimation procedure, described in Section 3.1.1. Further, a least-squares-based iterative mechanism
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has been integrated to allow consequent parameters adaptation according to the system evolution (see Fig. 1b for a scheme
of this kind of approach).
The following subsections describe the main components of the post-processing MOEA.

3.3.1. Coding scheme, objectives and initial default rule generation
A triple coding scheme for classical tuning (Cr), rule selection (Cs) and coefficients of the consequents (C¢) is used:
C=Cr+GCs+Cc

e Tuning of MFs (Cr): Since this stage performs a scatter-based fine tuning, in this part a real coding is used where we con-
sider the parameters of all the MFs per rule individually,

o S )
Ci=(...,d},by,c},....ay, by, cy,...), i=1,...,m,

with aj’?,b} and c]’i being the definition points of the jth MF of the ith rule, with N’ being the number of input variables
determined in the first stage and with m being the number of initial rules.

e Rule selection (Cs): consists of binary-coded strings with size m. Depending on whether a rule is selected or not, values ‘1’
or ‘0’ are respectively assigned to the corresponding gene.

o Coefficients of the consequents (C¢): This is a vector of real numbers of size (N’ 4- 1) x m in which the coefficients of the
consequent polynomial function for each TSK rule are encoded,

CC:('"7pi17"’7pj\]’7p07"')7i:]s"'7m'

This stage of the algorithm considers the same three objectives presented in Section 3.2.2. However, since this time we
are performing a rule selection, in order to ensure a complete covering of the training examples, we apply a penalization of
the MSE value if any training example is not covered by any rule. In this case, once we compute the MSE associated with this
undesired solution we add to it the MSE of the initial solution as a penalization. This ensures that the most accurate solution
through evolution always covers all the training examples.

In any case, based on the initial zero-order TSK KB obtained in the first stage, a default general rule (to be used in case of
uncovered data) is initially generated by applying the standard Kalman filter (10 iterations) and by taking into account
examples whose coverage by the initial KB is under 0.2 (which are close to uncovered regions). In any event, at least two
examples, those with the least degree of covering, are taken into account. Since this is a default rule, its activation degree
(matching) is fixed to 1.0 for all the examples selected in order to apply the filter. The rule obtained will be applied each
time a given input is not covered by any of the rules when we are evaluating a new individual (MSE computation). Since
we ensure the covering of all the training examples, the real aim of this rule is to provide a reasonable output for new uncov-
ered data from real systems or test data applications.

3.3.2. Initial gene pool

The initial population is obtained with all individuals having all genes with value ‘1’ in Cs. In the Cr part, the initial DB is
included as an initial solution and the remaining individuals are randomly generated, maintaining their values within their
respective variation intervals. The variation intervals for each of the three definition points of each MF are fixed in the
following way from the initial corresponding MF (see Fig. 4):

g Ig) = 16 — (b — @)/2,0; + (b; — @))/2],
[, 1h,) = [bj — (b — @) /2, b + (¢; — by) /2], (1)
[l 1) = 16 = (¢ = by)/2.¢; + (c; = by) /2],

T T
a a bbb ¢ ¢ I. a I . ¢ It
Parameters tuning Variation intervals

Fig. 4. Tuning by changing the basic MF parameters and corresponding variation intervals.
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Finally, the C¢ part of the first individual includes the consequents obtained in the first stage. Then, we apply the standard
Kalman filter to the initial individual (1 iteration) in order to obtain estimated initial coefficients. The remaining individuals
are initialized with these same coefficients. We do not use the Kalman filter to obtain the coefficients for all individuals, be-
cause it would significantly increase the computational time of the algorithm. In the next subsections, we will present an
efficient way of integrating the Kalman filter in order to also apply it through evolution.

3.3.3. Crossover and mutation operators

An incest prevention mechanism has been included by following the concepts of CHC [15] and by only taking into account
the Cr parts. Following the original CHC scheme (for binary coding), two parents are crossed if their hamming distance di-
vided by 4 is over a predetermined threshold, L (see formulation in Section 3.2.5).

The BLX-0.5 [16] crossover is applied to obtain the C; part of the offspring. The binary part Cs is obtained based on the Cy
parts (MF parameters) of the corresponding parents and offspring [20,21]. For each gene in the Cs part which represents a
concrete rule:

1. The displacement parameters of the MFs involved in such rules are extracted from the corresponding Cr parts for each
individual involved in the crossover (offspring and parents 1 and 2). These displacements represent the specific differ-
ences between these three individuals for such rules.

2. Euclidean normalized distances are computed between the offspring rule and each parent rule by considering the center
points (vertex) of the MFs comprising such rules. The differences between each pair of centers are normalized by the
amplitudes of their respective variation intervals.

3. The parent with the closest distance to the offspring is the one that determines whether this rule is selected or not for the
offspring by directly copying its value in Cs for the corresponding gene.

The Cc part is obtained by directly copying its values from the parent with the closest distance in Cs to the offspring. In
this way, the coefficients are only inherited from the closest parent as they will in fact be mainly learned through the inte-
grated efficient Kalman filter proposed in the following section.

The mutation operator is only applied in the Cs part and this favors rule extraction since mutation is only engaged to re-
move rules.

3.3.4. Efficient application of the Kalman filter

The Kalman filter [33] is a classic technique to estimate the coefficients of the consequent polynomial function in the TSK
rules. This technique obtains good results in training, but usually presents overfitting in test. To avoid this undesired situ-
ation, only a small percentage of samples (the same examples used to estimate errors, see Section 3.1.1) is used to obtain
the coefficients of the TSK rules.

Once a new solution is generated by crossover and mutation, and evaluated using the small percentage of examples, if the
estimated error is the best known error, which would make it non-dominated and therefore a candidate to be evaluated in
the whole set of examples, the Kalman filter is applied to the same subset of examples, E°, to obtain the corresponding con-
sequent parameters before the evaluation as a whole is undertaken. This way of working provides a validation mechanism
for the obtained coefficients since they should also work when using the examples that were not used by the Kalman filter.

We do not apply the Kalman filter to obtain the coefficients for all individuals, since this would significantly increase the
computational time of the algorithm. Further, in order to save more time and in order to make the coefficients converge with
the MFs and the selected rules, only one iteration of the Kalman filter is run each time. Thus, the Kalman filter is only ini-
tialized at the beginning of the algorithm and each time restarting is applied, so that the coefficients are progressively im-
proved for those combinations of MFs and rules that continuously promote new, more accurate solutions. This is possibly
due to the kind of process used (post-processing), which does not change the system structure (the same Kalman parameters
can be maintained from one solution to another), and the fact that not selected rules are not activated by examples (match-
ing 0) to apply the filter. As the subset of examples E° changes randomly at each new generation, we would like to point out
that all the examples are finally seen by the Kalman filter, but the strong overfitting that sometimes appears when they are
considered together is avoided.

See Fig. 5 for a flowchart scheme of the Kalman filter application integrated with the error estimation mechanism once a
new individual has been generated by the evolutionary algorithm. Dashed lines represent the additional steps for this effi-
cient application of the Kalman filter.

3.3.5. Restarting

This mechanism is applied when the threshold value L is below zero. Once restarting is applied, L is set to its initial value
(see Section 3.3.3). The restarting operator is applied by only copying the best individual for each of the three objectives as
the first three individuals of a new initial population. The external population is then set to empty. The remaining individuals
of this initial population copy the values of the most accurate individual for the Cs part and take values generated at random
in the Cr part. In order to assign good candidate values to the Cc¢ part of these new individuals and to avoid an unnecessary
particular computation for each of them, the Standard Kalman filter is only applied to the most accurate individual and the
obtained parameters are copied in the Cc part for all these new individuals. Additionally, it regenerates the default rule as
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Fig. 5. Flowchart scheme of the Kalman filter integration together with the error estimation once a new individual has been generated by the evolutionary
algorithm. Dashed lines represent the part related to the filter application while dotted lines represent the use of the example subsets.

explained in Section 3.3.1, but taking into account examples whose coverage by the current most accurate individual is un-
der 0.2 (which are close to current uncovered regions).

In each stage of the algorithm (between restarting points), the number of solutions in the external population considered
to form the mating pool is progressively reduced, by focusing only on those with the best accuracy. To do that, the solutions
are sorted from the best to the worst (considering accuracy as criterion) and the number of solutions considered for selection
is reduced progressively from 100% at the beginning to 50% at the end of each stage. This helps to focus the search on the
desired Pareto zone (see [20]), highly accurate solutions with the least possible number of rules, giving more selective pres-
sure to those solutions that have a high accuracy (crossing dissimilar solutions in principle and similar ones at the end). It is
done by taking into account the value of L. In the last evaluations when restart is disabled, this mechanism for focusing on
the most accurate solutions (the most difficult objective), is also disabled in order to obtain a wide, well-formed Pareto front,
from the most accurate solutions to the most interpretable ones.

4. Experiments and analysis of results

In order to evaluate the usefulness of the proposed approach, namely METSK-HD® (Multiobjective Evolutionary learning
of TSK systems for High Dimensional problems with estimated error), in high-dimensional and large-scale regression data-
sets, we have used 28 real-world problems with different numbers of variables and cases. Table 1 sums up the main char-
acteristics of the different problems considered in this study and shows the link to the KEEL project webpage [5,4]| from
which they can be downloaded. These problems have been selected from minor to major complexity, covering a range from
2 to 40 input variables and from 337 to 40,768 examples (even though each is a complicated problem in itself in terms of the
modeling task). The most complex problems are MV, HOU, ELV, CA, POLE, PUM and AIL because of the large number of vari-
ables and data. These problems represent an important challenge for this algorithm. This is due to the long time needed to
evaluate an individual and to the minimum number of evaluations needed to reach convergence.

This section is organized as follows:

o First, we describe the experimental set-up, datasets and methods considered in this article (Section 4.1).
e Second, we perform an internal comparison in order to show the differences between the new scalable method for precise
scatter-based modeling and the previous scalable method for linguistic modeling [3] (Section 4.2).
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Table 1
Datasets considered for the experimental study.

Problem Abbr. Variables Cases

Electrical Length ELE1 2 495
Plastic Strength PLA 2 1650
Quake QUA 3 2178
Electrical Maintenance ELE2 4 1056
Friedman FRIE 5 1200
Auto MPG6 MPG6 5 398
Delta Ailerons DELAIL 5 7129
Daily Electricity Energy DEE 6 365
Delta Elevators DELELV 6 9517
Analcat ANA 7 4052
Auto MPG8 MPG8 7 398
Abalone ABA 8 4177
California Housing CAL 8 20,640
Concrete Compressive Strength CON 8 1030
Stock prices STP 9 950
Weather Ankara WAN 9 1609
Weather Izmir WIZ 9 1461
MV Artificial Domain MV 10 40,768
Forest Fires FOR 12 517
Mortgage MOR 15 1049
Treasury TRE 15 1049
Baseball BAS 16 337
House-16H HOU 16 22,784
Elevators ELV 18 16,559
Computer Activity CA 21 8192
Pole Telecommunications POLE 26 14,998
Pumadyn PUM 32 8192
Ailerons AIL 40 13,750

Available at: http://www.keel.es/.

e Third, we compare the solutions of our proposed method with respect to four well-known accuracy-driven methods in
Section 4.3.

e Finally, we show the computational costs of the different algorithms and we discuss the scalability of the proposed
approach in Section 4.4.

4.1. Experimental set-up

To evaluate the effectiveness of the proposed method designed for high dimensional and large-scale regression problems,
several well-known accuracy-driven methods have been included for comparison. Four different methods for precise mod-
eling have been considered: The classical method (ANFIS), one statistical regression method and two related evolutionary
methods.

The first one, ANFIS [30] is a neural FRBS to obtain global semantics-based TSK FRBSs. This classical method obtains very
accurate FRBSs, thanks to gradient descent and least squares estimation mechanisms. However, it was only possible to run
its classical version (based on grid partitioning) on the first eight datasets, obtaining in all cases worse results than those
obtained by the proposed algorithm. A better alternative is provided by using ANFIS with the technique of subtractive clus-
tering [8] found in the Fuzzy Logic Toolbox of Matlab instead of grid-partitioning, which is known to be preferred to grid
partitioning in high dimensional datasets. We will call this approach ANFIS-SUB. ANFIS-SUB applies the subtractive cluster-
ing method to obtain an initial TSK-based FRBS that is tuned by ANFIS. We have considered this version for comparison. The
second one, LiNearR-LMS [39] is a classical statistical regression method based on gradient techniques, which obtains a regres-
sion model as a result of a linear combination of its features. The weights of such combinations are fitted as a linear discrim-
inant using Least Mean Squares. In a broad sense, it can be considered as an effective LMS-based approach for precise
modeling with local linear models. The third one, TSK-IRL [11] is an evolutionary method based on MOGUL (a methodology
to obtain Genetic FRBSs under the Iterative Rule Learning approach) which combines an inductive algorithm and a (, 1) evo-
lution-strategy. This enables the automatic generation of a preliminary TSK-type KB for a concrete problem which is tuned in
a second evolutionary stage. The fourth one, LEL-TSK [1] obtains accurate local semantics-based TSK rules. This two-stage
evolutionary algorithm, also based on MOGUL, has been developed to consider the interaction between input and output
variables.

Additionally, the FSmocrs® + Tun® [3] method is used for internal comparison. This method is a Fast and Scalable Multi-
Objective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems and is only consid-
ered in order to show the higher accuracy of the proposed approach and the differences between both algorithms (since they
have some common operators) and between both types of modeling.
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Table 2
Methods considered for the experimental study.
Ref. Method Type of learning
[30,8] ANFIS-SUB Adaptive Neuro-Fuzzy Inference System using Subtractive Clustering
[39] LiNEAR-LMS Least Mean Squares Linear Regression
[11] TSK-IRL Genetic learning of TSK Rules under Iterative Rule Learning
[1] LEL-TSK Local Evolutionary Learning of TSK Rules
[3] FSmocrs® + TuN®  FMOGFS for internal comparison. This learns: (Gr. and lateral partition params. and RB by WM) + (tuning of MF parameters
and rule selection) by SPEA2g: including error estimation
- METSK-HD® Proposed here to learn: (Gr. and lateral partition params and zero-order TSK RB) + (tuning of MF parameters, rule selection

and Kalman-based consequents) by SPEA2g including error estimation

Gr.: Granularities.

A brief description of the studied methods is presented in Table 2, which summarizes their main characteristics. The val-
ues of the parameters considered by LiNear-LMS [39], TSK-IRL [11] and LEL-TSK [1] are those proposed by the authors of the
methods. These methods are available at: http://www.keel.es/ and are accuracy oriented single-objective-based algorithms
whose main objective is to obtain FRBSs as accurately as possible. In the case of the ANFIS-SUB method [8,30] the parameters
considered are: Range of Influence, 0.5, Squash Factor, 1.25, Accept Ratio, 0.5 and Reject Ratio, 0.15 (the standard values com-
monly used in the literature). However, since the method crashed in a few datasets with these values, we changed them spe-
cifically in order to allow an appropriate application in these cases. In the case of the MOEA-based methods (FSmocrs® + Tun®
and METSK-HD?) based on the well-known SPEA2 [47], we have considered an external population size of 61 and a propor-
tion of 1/3 rounded to 200 as the standard population size. The remaining parameters for them are: a maximum of 100,000
evaluations, 0.2 as mutation probability (crossover is always applied in SPEA2), 30 bits per gene for the Gray codification,
r¢ = 0.2 for the fast error computation technique (with a upper bound of 1000 instances), and the set {2,...,7} as possible
numbers of labels in all the system variables for the learning approaches. Table 3 resumes the parameters used by the pro-
posed method. They are general fixed parameters for all the 28 datasets, so that it is not necessary to find particular param-
eter values for a given dataset.

In all the experiments, we adopted a 5-fold cross-validation model, i.e., we randomly split the dataset into 5 folds, each
containing 20% of the patterns of the dataset, and used four folds for training and one for testing.! For each of the five par-
titions, we executed six trials of the algorithms (6 different seeds). For each dataset, we therefore consider the average results of
30 runs. In the case of the MOEA-based algorithms (FSmocrs® + Tun® and METSK-HD®), the average values are calculated consid-
ering the most accurate solution from each obtained Pareto front. Our main aim following this approach is to have the possi-
bility of statistically comparing the single objective approaches (only accuracy) with the most accurate solution found by the
proposed MOEA.

In order to assess whether significant differences exist among the results, we adopt statistical analysis [13,23] and in
particular non-parametric tests, according to the recommendations made in [13,23], where a set of simple, safe and robust
non-parametric tests for statistical comparisons of classifiers has been analyzed. We will employ different approaches for
multiple comparison, including Friedman’s test [19], Iman and Davenport’s test [29] and Holm’s method [27]. For a detailed
description of these tests and for detailed explanations of the use of non-parametric tests for data mining and Computational
Intelligence see the Website at: http://sci2s.ugr.es/sicidm/. To perform the tests, we use a level of confidence o = 0.1.

4.2. Internal comparison: linguistic vs. precise modeling

In this section, we present a brief comparison of the proposed method for precise modeling with respect to a recent evo-
lutionary method for linguistic modeling called FSmocrs® + Tun® [3], which was developed for application on high dimensional
and large-scale datasets. Even though linguistic and precise models are not comparable (they are developed with different
purposes), as some of the ideas and philosophy of the proposed method are based on this previous one, we want to show that
it clearly outperforms the previous method in terms of accuracy, thus giving an interesting alternative when this is the prin-
cipal requirement. This previous method is also based on a multi-objective embedded genetic DB learning, which allows a
slight uniform displacement of linguistic fuzzy partitions and includes the fast error estimation.

The results obtained by the studied methods are shown in Table 4. This table is grouped in columns by algorithms and it
shows the average of the results obtained by each algorithm in all the studied datasets. For each one, the first column shows
the average number of rules and variables used (R/V). The second and third columns show the average MSE in training and
test data (Tra./Tst.). Moreover, Table 4 also includes the results obtained in the first stage of the proposed method (interme-
diate results of the METSK-HD® method).

In this case (with only two algorithms to compare), we adopt statistical analysis for pair-wise comparison, in particular
we use Wilcoxon’s Signed-Ranks test [40,46]. Wilcoxon’s test is based on computing the differences between two sample
means (typically, mean test errors obtained by a pair of different algorithms on different datasets). In the classification

! The corresponding data partitions (5-fold) for these datasets are available at the KEEL project webpage [5]: http://sci2s.ugr.es/keel/datasets.php.
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Table 3

METSK-HD® fixed parameters.
Population size 200
External population size 61
Evaluations 100,000
Mutation probability 0.2
Number of labels {2,....,7}
Bits per gene for the gray codification 30
Rate of examples used to estimate the error 0.2
Maximum of examples used to estimate the error 1000
Maximum number of rules for the rule cropping (first stage) 100

Table 4

Average results of the proposed accurate method (METSK-HD®) vs. linguistic method (FSmocrs® + Tun®). Results in this table (Tra. and Tst.) should be multiplied
by 10%°,107%,107°,10%°,10"®,107°,10™ or 107® in the case of ELE1, DELAIL, DELELV, CAL, HOU, ELV, PUM or AIL respectively. The test values of the algorithm
with the best result on each dataset are shown in boldface.

DATASET FSmocrs® + Tun® METSK-HD®
(FIRST STAGE) (FINAL RESULT)

RIV Tra. Tst. RIV Tra. Tst. RV Tra. Tst.
ELE1 (2/495) 8.1/2 1.516 1.954 15/2 1.691 1.925 11.4/2 1.350 2.022
PLA (2/1650) 18.6/2 1.106 1.194 23/2 1.192 1.218 19.2/2 1.057 1.136
QUA (3/2178) 3.2/13 0.0175 0.0178 35.9/2.9 0.0181 0.0185 18.3/2.9 0.0171 0.0181
ELE2 (4/1056) 8/2 9665 10,548 59/4 19,452 20,095 36.9/4 2270 3192
FRIE (5/1200) 22/3.1 271 3.138 95.1/4.1 2.868 3.084 66/4.1 1.075 1.888
MPG6 (5/398) 20/3 2.86 4.562 99.6/4.9 2.904 4.469 53.6/4.9 1.082 4.478
DELAIL (5/7129) 6.2/2.6 1.498 1.528 98.3/5 1.547 1.621 36.8/5 1.190 1.402
DEE (6/365) 18.3/3.8 0.059 0.093 96.4/4.2 0.064 0.095 50.6/4.2 0.030 0.103
DELELV (6/9517) 7.9/2.6 1.072 1.086 91/4.2 1.102 1.119 39.1/4.2 0.9725 1.031
ANA (7/4052) 10/3 0.003 0.003 48.9/4.3 0.005 0.006 33.3/4.3 0.002 0.004
MPG8 (7/398) 23/3 2.757 4.747 98.7/4.7 2.692 5.610 64.2/4.7 1.154 5.391
ABA (8/4177) 8/3 2.445 2.509 42.4/4.2 2.523 2.581 23.1/4.2 2.205 2.392
CAL (8/20,640) 8.4/2.9 2.94 2.95 99.8/4.9 2.617 2.638 55.8/4.9 1.64 1.71
CON (8/1030) 15.4/3.5 29.901 32.977 96.5/4.2 34.089 38.394 53.7/4.2 15.054 23.885
STP (9/950) 23/3 0.764 0.912 100/5.3 0.696 0.780 66.4/5.3 0.167 0.387
WAN (9/1609) 8/2 1.441 1.635 91.1/4.7 1.428 1.773 48/4.7 0.701 1.189
WIZ (9/1461) 10/2 0.929 1.011 55.4/4 1.185 1.296 29.1/4 0.729 0.944
FOR (12/517) 10/3 1418 2628 93.7/5.2 1643 4633 40.6/5.2 551 5587
MOR (15/1049) 7/2 0.016 0.019 40.9/4.3 0.026 0.028 27.2/4.3 0.005 0.013
TRE (15/1049) 9/3 0.034 0.044 42.8/4.6 0.045 0.052 28.1/4.6 0.017 0.038
BAS (16/337) 17/6 141,320 261,322 95.7/7 112,347 320,133 59.8/7 47,900 368,820
MV (10/40,768) 14/3 0.158 0.158 76.4/4 0.244 0.244 56.5/4 0.06 0.061
HOU (16/22,784) 11.7/44 9.35 9.4 68.9/5 10.224 10.368 30.5/5 8.29 8.64
ELV (18/16,559) 8/3 9 9 76.4/5.5 8.79 8.90 34.9/5.5 6.75 7.02
CA (21/8192) 14/5 5.021 5216 71.3/6.1 5.760 5.880 32.9/6.1 4376 4.949
POLE (26/14,998) 13.1/45 100.845 102.816 100/6.3. 149.641 150.673 46.3/6.3 57.964 61.018
PUM (32/8192) 17.6/2 0.29 0.292 87.5/4 0.587 0.594 63.3/4 0.2669 0.2871
AIL (40/13,750) 15/4 1.95 2 99.1/6 1.788 1.822 48.4/6 1.39 1.51

framework these differences are well defined since these errors are in the same domain. In our case, to have well defined
differences in MSE, we propose the adoption of a normalized difference DIFF, defined as:

Mean(Other) — Mean(ReferenceAlgorithm) 2
Mean(Other) ’

DIFF =

where Mean(x) represents the MSE means obtained by the x algorithm. This difference expresses the improvement percent-
age of the reference algorithm.

Table 5 shows the results of the Wilcoxon test on the test error for the proposed method and linguistic-based one. The
results show that METSK-HD® outperforms FSmocrs® + Tun® on the test error. The null hypothesis associated with Wilcoxon’s
test is rejected (p < o), in favor of METSK-HD® due to the differences between R and R™. This is due to the use of TSK FRBS
and the new ideas included in the algorithm such as the efficient Kalman filter and the use of a new objective which prevents
overfitting.

4.3. Comparison to other related well-known methods for precise modeling

This section analyzes the results of the proposed method, METSK-HD?, with respect to the previous accuracy oriented
contributions as explained in Section 4.1. The results obtained by the studied methods are shown in Table 6. This table is
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Table 5

Wilcoxon's test: METSK-HD® (R") vs FSmocrs® + Tun® (R™) on MSE in tst.
Comparison R* R Hypothesis (¢« = 0.1) p-Value
METSK-HD® vs. FSmocrs® + Tun® 321 85 Rejected 0.007

grouped in columns by algorithms and it shows the average of the results obtained by each algorithm in all the studied data-
sets. For each one, the first column shows the average number of rules (R), except in the case of the Linear-LMS method since
this method is not a rule-based approach. The second and third columns show the average MSE in training and test data (Tra./
Tst.). We also show the number of labels (NL) used for some algorithms. Further, since the proposed algorithm is able to re-
duce the number of variables used, we also show the average number of variables together with the rules (R/V).

No values are shown for TSK-IRL and LEL-TSK in several datasets since the large number of variables and cases provoked
memory overflow errors after several hours running without finishing the evaluation of the initial population (some memory
issues were improved in these methods to solve this problem, which helped to show results in at least some of the datasets
with more than 8 variables, but it was impossible to run them with more complex problems). For this reason, as TSK-IRL is
only applicable to a small number of datasets, we will compare it first by only considering the results obtained in the cor-
responding datasets. In this case, we again have two algorithms to compare, so that we adopt the same statistical analysis for
pair-wise comparison as was presented in the previous subsection.

Additionally, since this time we will also compare more than two algorithms together, we also use non-parametric tests
for multiple comparison. In order to perform a multiple comparison, it is necessary to check whether any of the results ob-
tained by the algorithms present any inequality. In the case of finding some we can find out, by using a post hoc test, which
algorithms’ partners’ average results are dissimilar. Of course, since accuracy is our main objective we will use the results
obtained in Tst., defining the control algorithm as the best performing one (which obtains the lowest value of ranking, com-
puted through a Friedman test [19]). In order to test whether significant differences exist among all the mean values we use
Iman and Davenport’s test [29]. Finally, we use Holm’s [27] post hoc test to compare the control algorithm with the
remainder.

In the following subsections, we present the corresponding statistical analysis depending on the group of datasets to
which each method is applicable. As noted above, the first subsection compares METSK-HD® to the method that can only

Table 6
Average results of the different algorithms. Results in this table (Tra. and Tst.) should be multiplied by 10**,107%,107°,10"°,10"%, 107,107 or 10°® in the case
of ELE1, DELAIL, DELELV, CAL, HOU, ELV, PUM or AIL respectively. The test values of the algorithm with the best result on each dataset are shown in boldface.

DATASET ANFIS-SUB TSK-IRL LiNeAR-LMS LEL-TSK METSK-HD®

R Tra. Tst. NL R Tra. Tst. Tra. Tst. R Tra. Tst. RIV Tra. Tst.
ELE1 (2/495) 27.8 1.513 2.150 5 192 1414 2.074 1.993 2.093 27 1.190 2.402 11.4/2 1350 2.022
PLA (2/1650) 114 1.011 1.504 5 21 1.090 1.146 1.166 1172 66 1.032 1.188 19.2/2 1.057 1.136
QUA (3/2178) 404 0.015 0.155 5 102 0.0164 0.0230 0.0178 0.0179 127 0.0151 0.0308 18.3/2.9 0.0171 0.0181
ELE2 (4/1056) 2 8208 8525 5 262 17,024 19,786 13,361 13,541 44.8 2928 3752 36.9/4 2270 3192
FRIE (5/1200) 53.8 0,085 3.158 3 3055 0433 1.419 3.612 3.653 435 0322 1.070 66/4.1 1.075 1.888
MPG6 (5/398) 299.6 0.002 8.079 3 7858 1.338 5.029 5.780 6.084 79 1473 6.357 53.6/4.9 1.082 4.478
DELAIL (5/7129) 57.2 0.973 1.484 3 2332 1321 1419 1.478 1.480 105.2 1.193 1.760 36.8/5 1.190 1.402
DEE (6/365) 290.6 3087 2083 3 3054.2 0.545 882.016 0.081 0.085 57.8 0.662 0.682 50.6/4.2 0.030 0.103
DELELV (6/9517) 2 1.010 1.020 3 7274 1.005 1.345 1.048 1.049 219.9 0.9642 2.788 39.1/4.2 0972 1.031
ANA (7/4052) 104 0.027 0.029 3 111 0.028 460,488 0.085 0.085 301 0.009 0.014 33.3/4.3 0.002 0.004
MPG8 (7/398) 13.8 1.191 26.136 3 819 1.784 4.338 5.397 5.678 129 1574 7.111 64.2/4.7 1.154 5.391
ABA (8/4177) 9 2.008 2.733 3 2077 2581 2.642 2.413 2.472 107 2.040 2.412 23.1/4.2 2.205 2.392
CAL (8/20,640) 5.2 1.742 1.783 2.42 243 542 2.37 2.54 55.8/4.9 1.64 1.71
CON (8/1030) 20.6 12.286 188.290 3 2754 13.167 19.151 53475 54.735 325 10.692 31.430 53.7/4.2 15.054 23.885
STP (9/950) 132 0.134 0.307 2.686 2.761 78.9 0.606 0.849 66.4/5.3 0.167 0.387
WAN (9/1609) 6 0.639 0.845 1.213 1.241 123 0.709 1.632 48/4.7 0.701 1.189
WIZ (9/1461) 6.2 0.544 0.701 0.782 0.800 116 0.699 2.227 29.1/4 0.729 0944
FOR (12/517) 422 0.176 204,755 1968.57 2013.89 418 160.35 14074.50 40.6/5.2 551.38 5587.44
MOR (15/1049) 9.4 0.001 0.003 0.009 0.010 64.3 0.259 0472 27.2/4.3 0.005 0.013
TRE (15/1049) 10 0.009 0.019 0.030 0.032 63.7 0.267 0.504 28.1/4.6 0.017 0.038
BAS (16/337) 6.4 119,561 1,089,824 224,684 269,122 374 9607 461,402 59.8/7 47,900 368,820
MV (10/40,768) 2 0.051 0.052 10.076 10.085 56.5/4 0.060 0.061
HOU (16/22,784) 3 7.254 7.598 10.34 10.40 30.5/5 8.29 8.64
ELV (18/16,559) 3 61.417 61.350 4.254 4.288 34.9/5.5 6.75 7.02
CA (21/8192) 3 7.14E+11 6.09E+11 45.809 46.820 32.9/6.1 4376 4.949
POLE (26/14,998) 3 127.40 131.69 463.44 465.01 46.3/6.3 57.96 61.02
PUM (32/8192) 4 4.482 4.852 3.55 3.59 63.3/4 0.2669 0.2871
AIL (40/13,750) 2.2 133 1.37 1.55 1.62 48.4/6 1.39 1.51
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be run on a small number of datasets (i.e., small datasets). The second subsection compares METSK-HD® to those methods
that are also able to be applied to medium and even highly complex datasets. The final subsection draws some conclusions
regarding the results obtained.

4.3.1. Analysis of the method that can only be executed in small datasets

First, we compare the proposed algorithm with the method that can only be executed with the simplest datasets. The test
error of the proposed method (METSK-HD?) is compared to that of TSK-IRL [11] in the first 13 datasets.

We use Wilcoxon’s Signed-Ranks test [40,46] to compare the proposed method and TSK-IRL. Table 7 shows the results of
the Wilcoxon test on the test error. The results show that METSK-HD® outperforms TSK-IRL on the test error for the datasets
considered. The null hypothesis associated with Wilcoxon’s test is rejected (p < o), in favor of METSK-HD® due to the differ-
ences between R* and R™.

4.3.2. Analysis of methods that can be executed in all or almost all datasets

In this subsection, we compare the proposed algorithm with the methods that can be executed with almost every dataset.
The test error of the proposed method (METSK-HD®) is compared to that of LEL-TSK [1], ANFIS-SUB [8,30] and Linear-LMS
[39] for the first 21 datasets.

Table 8 shows the rankings of the different methods considered in this study. Iman and Davenport’s test [29] tells us that
significant differences exist among the observed results in all datasets. The best rankings are obtained by the proposed meth-
od (METSK-HD®). We now apply Holm’s method [27] to compare the best ranking method with the remaining methods. Ta-
ble 9 presents these results. Holm'’s test rejects the hypothesis of equality with the remaining methods in Tst (p < «/i). From
this analysis we can state that METSK-HD® outperforms the other methods.

Furthermore, we compare the proposed algorithm with the methods that can be executed with all the datasets. The test
error of the proposed method (METSK-HD?) is compared to that of ANFIS-SUB [8,30] and Linear-LMS [39].

Table 10 shows the rankings of the different methods considered in this study. Iman and Davenport’s test [29] tells us that
significant differences exist among the observed results in all datasets. The best ranking is obtained by the proposed method
(METSK-HD?). We now apply Holm’s method [27] to compare the best ranking method to the remaining methods. Table 11
presents these results. In this table, the algorithms are ordered with respect to the z-value obtained. Holm'’s test rejects the
hypothesis of equality with the rest of the methods in Tst (p < o/i). From this analysis we can state that METSK-HD® outper-
forms the other two methods in accuracy.

4.3.3. Global analysis of the results
Analyzing the results shown in Table 6 and taking into account the results of the statistical tests, we can draw the follow-
ing conclusions:

e The TSK-IRL [11] and LEL-TSK [ 1] methods obtain very accurate results on training, which usually causes them to present
overfitting and very bad test errors.

Table 7
Wilcoxon’s test: METSK-HD® (R") vs TSK-IRL (R™) on MSE in tst.
Comparison R* R Hypothesis (« = 0.1) p-Value
METSK-HD® vs. TSK-IRL 84 21 Rejected 0.048
Table 8
Rankings obtained through Friedman’s test on MSE in tst (first 21 datasets).
Algorithm Ranking on MSE in tst
METSK-HD® 1.714
Linear-LMS 2476
ANFIS-SUB 2.667
LEL-TSK 3.143

Table 9
Holm’s post hoc test with oo = 0.1 on MSE in tst (first 21 datasets).
i Algorithm z p o/i Hypothesis
3 LEL-TSK 3.586 3.362E-4 0.03 Rejected
2 ANFIS-SUB 2.390 0.017 0.05 Rejected
1 Linear-LMS 1.912 0.056 0.1 Rejected
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Table 10
Rankings obtained through Friedman’s test on MSE in tst.
Algorithm Ranking on MSE in tst
METSK-HD® 1.607
ANFIS-SUB 2.143
LiNearR-LMS 2.250

e The ANFIS-SUB [8,30] and Linear-LMS [39] methods present very competitive results in both training and test with
respect to the previous approaches. Moreover, both methods (apart from the one proposed) can be applied to the most
complex datasets.

e The proposed method presents simple solutions (a lower number of variables and rules) without significant overfitting.
This method obtains the best results in test error in general as shown by the statistical tests in the previous subsections.

4.4. Computational times and scalability of the proposed algorithm

With respect to scalability it is very important to analyze the running times of the different methods (these times were
obtained in an Intel Core 2 Quad Q9550 2.83 GHz, 8 GB RAM by using only one of the four cores). Table 12 shows the running
times of the different algorithms. Moreover, Table 12 also includes the times obtained in the first stage of the proposed
method.

In this case, except for the most complex datasets, the proposed method is able to obtain solutions taking only several
minutes (less than one hour). Further, the times for the most complex ones are also very good, taking into account the kinds
of problems they represent.

Table 11

Holm’s post hoc test with o = 0.1 on MSE in tst.
i Algorithm z p a/i Hypothesis
2 Linear-LMS 2.405 0.016 0.05 Rejected
1 ANFIS-SUB 2.004 0.045 0.1 Rejected

Table 12
Average time of a run of the different methods - hours, minutes and seconds (h:m:s).
DATASET ANFIS-SUB TSK-IRL LINEAR-LMS LEL-TSK METSK-HD®
(FIRST STAGE) (FINAL)

ELE1 (2/495) 0:00:30 0:02:16 0:00:02 0:02:01 0:00:02 0:01:01
PLA (2/1650) 0:17:53 0:07:18 0:00:02 0:18:12 0:00:05 0:03:09
QUA (3/2178) 0:05:55 0:32:35 0:00:02 0:50:02 0:00:17 0:08:38
ELE2 (4/1056) 0:00:49 0:27:25 0:00:02 0:09:39 0:00:11 0:12:58
FRIE (5/1200) 0:25:50 11:12:23 0:00:06 1:33:33 0:00:27 0:39:57
MPG6 (5/398) 4:09:47 0:55:30 0:00:00 0:12:47 0:00:12 0:27:42
DELAIL (5/7129) 1:45:13 4:05:31 0:00:02 2:48:41 0:02:41 2:30:39
DEE (6/365) 6:55:34 3:24:38 0:00:03 0:06:20 0:00:11 0:20:15
DELELV (6/9517) 0:00:52 23:01:40 0:06:36 10:33:35 0:02:41 1:29:30
ANA (7/4052) 0:03:29 1:20:18 0:00:01 5:22:26 0:00:48 0:40:23
MPGS8 (7/398) 0:00:34 1:46:18 0:00:01 0:26:19 0:00:12 0:25:41
ABA (8/4177) 0:03:28 20:54:04 0:00:01 2:41:04 0:00:58 0:28:55
CAL (8/20,640) 0:08:56 0:00:06 63:17:03 0:05:07 5:13:28
CON (8/1030) 0:03:26 13:26:42 0:00:02 1:52:33 0:00:24 0:35:02
STP (9/950) 0:01:47 0:00:02 0:34:39 0:00:26 0:43:45
WAN (9/1609) 0:00:54 0:00:02 1:41:19 0:00:30 0:47:12
WIZ (9/1461) 0:00:51 0:00:02 1:29:14 0:00:37 0:19:33
FOR (12/517) 0:17:31 0:00:02 6:20:35 0:00:27 0:27:55
MOR (15/1049) 0:02:31 0:00:02 0:33:14 0:00:31 0:07:55
TRE (15/1049) 0:02:45 0:00:02 0:43:16 0:00:30 0:10:59
BAS (16/337) 0:00:28 0:00:02 2:02:47 0:00:26 0:51:58
MV (10/40,768) 0:08:57 0:00:01 0:07:51 3:17:54
HOU (16/22,784) 0:14:18 0:00:02 0:08:14 5:07:58
ELV (18/16,559) 0:11:25 0:00:02 0:04:59 3:06:58
CA (21/8192) 0:00:45 0:00:01 0:04:06 3:37:49
POLE (26/14,998) 0:15:04 0:00:01 0:07:56 4:40:22
PUM (32/8192) 0:16:28 0:00:02 0:07:36 2:22:25

AIL (40/13,750) 0:16:45 0:00:02 0:11:21 5:26:30
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TSK-IRL [11] and LEL-TSK [1] can take a significant amount of time in problems when the number of variables and/or in-
stances becomes high. These algorithms cannot run in high-dimensional datasets, because the large number of variables and
cases provokes memory overflow errors after several hours running without finishing the evaluation of the initial
population.

Even though ANFIS-SUB [8,30] and Linear-LMS [39] are very fast methods, the results in Table 6 and the statistical tests in
Tables 9-11 show how the additional time used by the proposed algorithm enables it to obtain the best results within a rea-
sonable time (which is not highly affected by complex problems).

5. Conclusions

This paper presents a scalable two-stage multi-objective genetic algorithm for precise fuzzy modeling of scatter-based
TSK FRBSs in high-dimensional and large-scale regression problems. In the first stage, an evolutionary DB learning is per-
formed (involving variables, granularities and slight fuzzy partition displacements). The RB is obtained within the same pro-
cess using an efficient ad hoc algorithm to estimate the coefficients of the TSK consequents. The MOEA includes some specific
mechanisms to ensure a fast learning of TSK FRBSs, allowing us to obtain the model structure and to prevent premature con-
vergence in problems with a high number of variables and examples. The second post-processing stage performs a rule selec-
tion and a fine scatter-based tuning of the MFs. Moreover, it incorporates an efficient Kalman filter [33] to estimate the
coefficients of the consequent polynomial functions of the TSK rules, which helps to significantly improve the performance
of the model. We propose the use of MOEAs as a tool, mainly focusing on obtaining accurate models.

The results obtained in 28 datasets of different complexities confirm the effectiveness of the proposed method.
METSK-HD® has shown that it is able to obtain very accurate models avoiding overfitting in test error. Moreover, the
proposed method has been compared to other well recognized methods, showing the best results on MSE in test. The
scalability of the proposed method is also a key characteristic, which is able to solve problems with 40 variables or
more than 40,000 cases in a fast way (which is reasonable for an evolutionary-based approach).
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