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Abstract

Evolutionary Fuzzy Systems (EFSs) are fuzzy sys-
tems augmented by a learning process based on evo-
lutionary computation such as evolutionary algo-
rithms (EAs). These systems contribute with sev-
eral advantages in the development of algorithms,
and specifically in the development of subgroup dis-
covery (SD) approaches. SD is a descriptive data
mining technique using supervised learning in or-
der to describe data with respect to a property of
interest.
This paper present the main features of the

FuGePSD algorithm, an EFS based on genetic pro-
gramming and fuzzy logic. An experimental study
with a wide number of datasets shows the quality of
this algorithm with respect to the remaining EFSs
for SD presented throughout the literature.

Keywords: Genetic Programming, Subgroup Dis-
covery, Evolutionary Fuzzy System

1. Introduction

SD is a descriptive data mining technique for de-
scribing unusual features with respect to a vari-
able of interest (or target variable) [1, 2]. This
data mining technique contributes with interest-
ing knowledge to the scientific community from
different points of view: interest, generality and
precision. Throughout the literature, there is a
wide number of SD algorithms based on exhaustive
strategies (such as CN2-SD [3], Apriori-SD [4], SD-
Map [5]), or genetic algorithms (such as SDIGA [6],
MESDIF [7] and NMEEF-SD [8]), amongst others.

This contribution is focused on the use of EFSs
for SD because this type of systems are very suit-
able in order to develop algorithms to solve this
task. An EFS can be described as a fuzzy system
[9] augmented with a learning process based on evo-
lutionary computation [10]. Fuzzy systems are very
suitable for knowledge representation in SD. This is
because they are usually considered in the form of
fuzzy-rule based systems, which is the more com-
mon knowledge representation in SD. In addition,
fuzzy logic allow to consider uncertainty, and repre-
sent the continuous variables in a manner which is
close to human reasoning. In this way, interpretable
fuzzy rules consider continuous variables as linguis-
tic ones where values are represented through fuzzy

linguistic labels (LLs). On the other hand, evo-
lutionary computation is a well known and widely
used global search technique with the ability to ex-
plore a large search space, which is usually the case
in SD tasks, so it is a beneficial strategy to tackle
SD problems.

Specifically, this contribution presents FuGePSD
[11], an algorithm based on genetic programming
[12] that employs a tree with a variable-length struc-
ture to represent the individuals of the population.
This algorithm employs different mechanisms and
specific operators in order to maximise the quality
with respect to the SD algorithms presented up to
the moment. Its benefits are highlighted in an ex-
perimental study using a wide number of datasets
and its validity is analysed with respect to all the
EFSs for SD presented throughout the literature.

To do so, the paper is organised as follows.
Firstly, preliminary concepts are described in Sec-
tion 2. Next, Section 3 presents the FuGePSD algo-
rithm in which a complete description of the algo-
rithm can be observed. Section 4 present all infor-
mation related to the experimental framework and
the study. Finally, Section 5 outlines the main con-
clusions.

2. Related Work

This section introduces main concepts used for the
FuGePSD: SD is presented in Section 2.1 where the
definition, main properties and quality measures for
SD are outlined. Next, an introduction to EFSs
together the main proposals based on EFSs for SD
are presented in Section 2.2.

2.1. Subgroup Discovery

SD is a descriptive data mining technique based on
supervised learning. The concept of SD was ini-
tially introduced by Kloesgen [1] and Wrobel [2].
The main purpose of SD is to seek and explore
relationships between different properties or vari-
ables with respect to a target variable, and repre-
sentations of the knowledge are performed through
rules which consist of induced subgroup descriptions
[13, 3]. Each rule R can be formally defined as:

R : Cond → Targetvalue

where Targetvalue is a value for the variable of in-
terest (target variable) for the SD task (which also
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appears as Class in the literature), and Cond is
commonly a conjunction of features (attribute-value
pairs) which is able to describe an unusual statisti-
cal distribution with respect to the Targetvalue.
Despite the use of a target variable, SD is a de-

scriptive induction task using supervised learning
while classification is a predictive task. Main differ-
ences between SD and classification can be observed
in [14].

The most important elements considered for an
SD approach are [15]: the target variable, the search
strategy, the descriptive language of the subgroups
and the quality measures used. Reviews about ma-
jor properties, features, algorithms and real-world
problems solved through the application of SD al-
gorithms can be found in [14, 16].

The most relevant quality measures used
throughout the literature of SD are presented be-
low:

• Unusualness: The weighted relative accuracy
of a rule [17] measures interest and a trade-
off between generality and precision. It can be
computed as:

Unus(Ri) = n(Cond)
ns

· (1)

(
n(Targetvalue · Cond)

n(Cond) − n(Targetvalue)
ns

)
It can be described as the balance between the
coverage of the rule p(Condi) and its accuracy
gain p(Targetvalue · Cond) − p(Targetvalue),
where n(Cond) is the number of examples
which satisfy the conditions determined by the
antecedent part of the rule, ns is the number
of total examples, n(Targetvalue ·Cond) is the
number of examples which satisfy the condi-
tions and also belong to the value for the target
variable within the rule, and n(Targetvalue) are
all the examples of the target variable.
• Sensitivity: This measure is the proportion of
actual matches that have been classified cor-
rectly [1]. Sensitivity has a component based
on generality. It is computed as:

Sens(Ri) = n(Targetvalue · Cond)
n(Targetvalue) (2)

This quality measure can be found in the liter-
ature as the Support based on the examples of
the class, Recall or TPrate, and its domain is
[0, 1].
• Confidence: This measures the relative fre-
quency of examples satisfying the complete rule
amongst those satisfying only the antecedent
for fuzzy rules [18]. It is computed as:

Conf(Ri) = n(Targetvalue · Cond)
n(Cond) (3)

2.2. Evolutionary Fuzzy Systems

An EFS [19] is basically a fuzzy system augmented
by a learning process based on evolutionary compu-
tation [10]. Specifically, fuzzy systems are usually
considered in the form of fuzzy-rule based systems
(FRBSs), which are composed of “IF-THEN” rules
where both the antecedent and consequent can con-
tain fuzzy logic statements. On the other hand,
EAs are well known and widely used global search
techniques with the ability to explore a large search
space. Therefore, EAs can be used in the develop-
ment of FRBSs offering a great potential as a search
tool, allowing the inclusion of domain knowledge
and the obtaining of better rules.

In summary, the properties of this type of systems
make them highly suitable for the development of
SD approaches. In fact, the use of fuzzy rules, based
on fuzzy logic [9], already allow to consider uncer-
tainty, and also to represent the continuous vari-
ables in a manner which is close to human reason-
ing. In this way, interpretable fuzzy rules consider
continuous variables as linguistic ones, where val-
ues are represented through fuzzy linguistic labels
(LLs).

Eq. 4 represents a canonical fuzzy rule:

R : IF X1 = (LL2
1) AND X3 = (LL1

3) (4)

THEN Targetvalue

where:

• X = {Xm/m = 1, . . . , nv} is a set of features
used to describe the subgroups, and nv is the
number of descriptive features.
• T = {Targetvalue/j = 1, . . . , ntv} is a set of
values for the target variable, and ntv is the
number of values for the target variable.
• LL

lnv
nv is the LL number lnv

of the variable nv.

The fuzzy set corresponding to each LL can be
specified by the user or defined by means of uni-
form partitions if knowledge is not available. On
the other hand, the most used schemes of repre-
sentation for the EAs considered within EFS are
“Chromosome = rule” and “Chromosome = set of
rules” approaches.
Throughout the literature different EFSs for SD

have been presented [16]. All of them use EAs for
the search process, and are able to obtain models
which are both simple and precise. These proposals
are summarised below:

• SDIGA [6] is a mono-objective EFS for SD.
This algorithm follows the IRL approach [20],
a specific type of the “chromosome=rule” rep-
resentation. It searches for rules for each value
of the target variable. SDIGA is able to repre-
sent fuzzy canonical or DNF rules with a prede-
fined set of linguistic labels. Fitness function is
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an aggregation function with different quality
measures such as unusualness, sensitivity and
confidence.
• MESDIF [21] is a multiobjective EFS follow-
ing the SPEA2 approach [22]. It also uses the
“chromosome=rule” representation. It is exe-
cuted for each value of the target variable so
obtaining the Pareto front for each of its val-
ues. Due to its multiobjective approach, the
expert can choose between a wide number of
quality measures in order to maximise the de-
fined objectives.
• NMEEF-SD [8] is a multiobjective EFS follow-
ing the NSGA-II [23] approach. It codifies each
candidate solution according to the “chromo-
some=rule” approach. The consequent is pre-
fixed to one of the possible values of the tar-
get variable and so NMEEF-SD is executed as
many times as the number of different values
of the target variable. It is able to represent
canonical and DNF fuzzy rules and allows to
choose up to three quality measures as objec-
tives of the evolutionary process.

3. Fuzzy Genetic Programming-based
algorithm for Subgroup Discovery

The Fuzzy Genetic Programming-based algorithm
for Subgroup Discovery, FuGePSD [11], is an EFS
based on a genetic programming algorithm [12] with
the ability to extract descriptive fuzzy rules for the
SD task.
Firstly, it is important to note the represen-

tation and the approach used in the algorithm.
FuGePSD represents individuals through the “chro-
mosome=rule” approach including both the an-
tecedent and the consequent of the rule. In this
way, this algorithm is executed only once obtaining
rules for the different values of the target variable
in opposite to the remaining EFSs for SD presented
in the literature.

FuGePSD utilises a context-free grammar which
allows the learning of fuzzy rules and the absence of
some input features, a process giving rise to com-
pact and simple rules. Table 1 represents gram-
mar example for a SD task with two features (X1,
X2), five LLs per feature (LL1

1, LL2
1, . . ., LL5

1, LL1
2,

. . ., LL5
2) and two values for the target variable

(Tv1, Tv2) where the symbol ?a in some of the pro-
duction rules of the grammar represents one, and
only one, of the values separated by commas in the
square brackets. This algorithm employs uniform
partitions with triangular membership functions as
shown in Fig. 1.
The fuzzy sets (LL1,LL2,· · · ,LLn) are defined

by means of an uniform partition. On the other
hand, FuGePSD employs the genetic cooperative-
competition approach [24] where rules of the popu-
lation cooperate and compete between them in or-
der to obtain the optimal solution. It is also im-

Very low 
(LL1)

0.5

1.0

Low 
(LL2)

Medium 
(LL3)

High 
(LL4)

Very high 
(LL5)

Figure 1: Example of fuzzy partition for a continu-
ous variable with five linguistic labels

Table 1: Grammar example
Start −→ [If], antec, [then], target_variable, [·]
antec −→ descriptor1, [and], descriptor2
descriptor1 −→ [any]
descriptor1 −→ [X1] is label
descriptor2 −→ [any]
descriptor2 −→ [X2] is label.
label −→ member(?a,[LL1,LL2,LL3,LL4,LL5]), [?a]
target_variable −→ [Target_value is] descriptor
descriptor −→ member(?a,[Tv1,Tv2]),[?a]

portant to remark that individuals are of variable
length just like population with a variable number
of individuals throughout the evolutionary process.
In this way, FuGePSD is able to obtain rules with
different number of variables in the antecedent part
of the rule associated to the complexity of the sub-
group to describe.

The algorithm starts with the generation of a
main population (MainPop) which is evaluated and
adapted throughout the evolutionary process by
means of different operators through the genera-
tion, and the offspring population (OffSpingPop)
is generated and evaluated. The offspring popula-
tion has the same size as the main one.

Different genetic operators are applied to gener-
ate the offspring population from the main popu-
lation, so that all the individuals generated in the
offspring population are a modification of one in-
dividual of the main population. All the new in-
dividuals obtained must meet with the rules of the
context-free grammar, which is defined in Table 1.
Through a probabilistic way a child individual is
generated with one of the following operators:

• Crossover: It is a genetic operator that com-
bines two individuals. The new individual may
be better than both of the parents if it her-
itages part of the properties from each of them.
It is necessary to select two individuals in or-
der to apply this operator. A component of the
first parent is randomly selected and exchanged
with another part of the second parent (also
randomly selected), but under the constraint
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that the offspring produced must be valid ac-
cording to the defined grammar. Only one of
the two children is returned as a descendant.
• Mutation: This operator is used to improve the
diversity of the offspring population. This op-
erator alters one variable (selected in a random
manner) of the individual by selecting a value,
different of the original one, and considering
the rules of the grammar.
• Insertion: The insertion of variables in an in-
dividual aims to include more precise rules in
the model, so improving the precision and con-
fidence of the set of rules obtained. This op-
erator inserts a new variable in the individual
whose value is generated in a random manner.
It is not applied if the individual already has all
the variables initialised according to the gram-
mar.
• Dropping: The algorithm randomly selects a
variable of the individual to be removed. This
variable is no longer considered in the rule, so
obtaining a more general one. This operator
is not applied if the individual hence has only
one variable following with the grammar of the
algorithm.

Both populations (main and offspring) are joined
in a new population (JoinPop). Due to the use of a
cooperative-competitive approach, both individuals
and population of the main population are evalu-
ated in a separate manner, since it is necessary to
evaluate the individuals and populations through
two independent fitness functions. Hence, individ-
uals compete between themselves with respect to
a local fitness, and cooperate in order to obtain a
population which is more adapted to the problem.
Both functions will be referred to as fitness function
and global fitness, respectively.

• Fitness function: This is calculated through the
unusualness (Eq. 1). The use of a single quality
measure as objective in the evolutionary pro-
cess usually allows the algorithm to choose and
select the individuals with the best values in
this quality measure during the evolutionary
process.
• Global fitness: This is estimated through an
adaptation score in order to obtain the best
population during the whole evolutionary pro-
cess. In this way, it is necessary to calculate
the accuracy of the set of rules using the nor-
malised sum of the predictions for each rule.
The global fitness is defined as follows:

GlobalF itness = (5)

w1 ∗AAR + w2 ∗ (1− nv) + w3 ∗ (1− nR)
w1 + w2 + w3

where nR is the average number of rules of the
population, nv the number of descriptive vari-

ables, and AAR [25] the mean value of the accu-
racy for each single value of the target variable
(calculated as):

AAR = 1
ntv
∗

ntv∑
i=1

TPratei (6)

The global fitness employs different weights
(w1, w2 and w3) in order to give a ’trade-off’ be-
tween accuracy and interpretability. The most
suited values are 0.7 out of 1 for w1, and the
remaining 0.3 out of 1 for w2 and w3, because
the main idea is to obtain a precise model with
a low number of rules and a low number of vari-
ables for the set of rules. The use of 1-nv and
1-nR gives rise to an excessive number of rules
and variables being penalised in the population
score.

Finally, the token competition operator [26, 27]
is applied in order to improve the diversity among
the individuals at phenotype level, emulating the
behaviour of a natural environment. Individuals
with good niches will attempt to exploit it exclu-
sively, and prevent more individuals to share its re-
sources, unless a newer one is stronger than that
initially developed. Therefore, the other individuals
are required to seek their own niches. These proper-
ties provide diversity in the population to the algo-
rithm. Moreover, this operator reduces the number
of rules because all individuals without tokens will
be deleted.

This operator orders the individuals of the popu-
lation from highest to lowest fitness. Next, the indi-
vidual with the highest fitness will exploit its niches
by seizing as many tokens as it can. The other in-
dividuals entering the same niches will have their
strength decreased, since they cannot compete with
the stronger ones. This is achieved by introducing
a penalisation to the fitness score of each individ-
ual, a limit which is based on the number of tokens
which each individual has seized:

PenalizedF itness(Ri) = (7)

unusualness(Ri) ∗
count(Ri)
ideal(Ri)

where, count(Ri) is the number of tokens of the rule
actually seized, and ideal(Ri) is the total number of
tokens that it can seize which is equivalent to the
number of examples that the rule matches. If one
rule seizes zero tokens, its fitness is modified to zero
directly. On termination of the application of this
mechanism, the size of the population is reduced
with the individuals, where PenalizedF itness is
greater than zero.

This evolutionary process is controlled through
the number of generations and at the end of this
process, the algorithm performs a screening func-
tion on the best population (BestPop) of the com-
plete evolutionary process in order to obtain rules
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only with values greater than a threshold of sensi-
tivity and confidence. In general, these thresholds
should be configured above 60% because subgroups
obtained must be precise and general and both qual-
ity measures are ideal to meet these objectives. This
function is able to control, through an external pa-
rameter, the necessity of obtaining rules for all the
values of the target variable, only obtaining the best
rules. If the final rule set is empty, FuGePSD re-
turns the best rule with respect to confidence. In
this way, the algorithm always obtains rules.

Algorithm 1 Operation pseudo code for the
FuGePSD algorithm

Output
RuleSet
Begin
Generate MainPop
Evaluate MainPop
BestPop ←− MainPop
repeat
Generate OffspringPop through
GeneticOperators
Evaluate OffspringPop
Join MainPop and OffspringPop in JoinPop
MainPop ←− TokenCompetition(JoinPop)
if MainPop.F itness > BestPop.F itness
then

BestPop ←− MainPop
end if

until Number of generations is reached
RuleSet = ScreeningFunction(BestPop)
End

4. Experimental Study

The experimental study has been performed with
the following datasets obtained from the UCI
Repository of machine learning databases [28]: Ap-
pendicitis, Australian, Balance, Bridges, Cleveland,
Diabetes, Echo, German, Glass, Haberman, Heart,
Hepatitis, Ionosphere, Iris, Led, Vehicle and Wine1.
It is important to remark that all datasets used in
this experimental study contain at least one contin-
uous variable.
To analyse the interest of the FuGePSD algo-

rithm, the study compares the results with those
of the remaining EFSs algorithms for SD (SDIGA,
MESDIF and NMEEF-SD). The estimation of the
quality measures (unusualness, sensitivity and fuzzy
confidence) are obtained through a 10-fold cross-
validation. In addition, according to the fact that
all algorithms are stochastic, three executions are
performed, and an average result from 30 values is
shown for each dataset. It is important to highlight
that values of a set of rules in unusualness, sen-
sitivity and fuzzy confidence are computed as the

1Complete descriptions of these datasets are outlined in
http://archive.ics.uci.edu/ml/

average for all the rules in the set.
As we have previously mentioned, all the algo-

rithms employ fuzzy confidence. This quality mea-
sure was defined in [6] and it is an adaptation of
the standard confidence which measures precision
within the domain [0, 1] through the antecedent part
compatibility, which is the degree of compatibility
between an example and the antecedent component
of a fuzzy rule, i.e., the degree of membership for
the example to the fuzzy subspace delimited by the
antecedent part of the rule.

Average results of the algorithms are shown in Ta-
ble 2, where name of the algorithms are abbreviated
to NM (NMEEF-SD), SD (SDIGA), ME (MESDIF)
and Fu (FuGePSD).

FuGePSD obtains the best values in average for
all the quality measures analysed. However, in or-
der to to complete the analysis, statistical tests are
needed to check for significant differences between
both proposals. In this way, the Wilcoxon statisical
test [29] is applied to establish a ranking between
FuGePSD and NMEEFSD. Table 4 represents the
results of this test where R+ corresponds to the sum
of the ranks for algorithn FuGePSD and R− corre-
sponds to the ranks of algorithm NMEEFSD.

An analysis for each quality measure is performed
below:

• Unusualness measures the novelty and inter-
est of the subgroups obtained. In this way,
FuGePSD gets the significance differences and
the best results in 11 out of 17 datasets. In
addition, in some datasets such as Iris, Iono-
sphere or Wine, the FuGePSD obtains results
very close to the maximum possible, which is a
good indicator of the quality of this algorithm
in order to obtain interesting and interpretable
rules.
• Sensitivity measures generality and precision
in subgroups. As can be observed in the re-
sults, although FuGePSD obtains the best re-
sults only in 3 out of 17 datasets, it obtains the
best average results in the experimental study.
In this way, FuGePSD obtains a good level of
sensitivity in a homogeneous manner through-
out the experimental study in opposite to the
remaining algorithms. The average result in
this quality measure is higher than 80%, which
show the general character of this algorithm.
• Fuzzy confidence measures the precision of the
subgroups obtained. In this quality measure,
FuGePSD also obtains significance differences
with a value very close to 90% of precision in
the subgroups obtained, also obtaining the best
results in 11 out of 17 datasets.

Considering the properties of the SD task and the
guidelines about SD presented in [16], the key fac-
tors for an SD approach are the obtaining of inter-
esting and simple subgroups, covering the majority
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UNUSUALNESS SENSITIVITY FUZZY CONFIDENCE
Dataset NM SD ME Fu NM SD ME Fu NM SD ME Fu

Appendicitis 0.094 0.097 0.072 0.045 1.000 0.976 0.950 0.926 0.904 0.710 0.541 0.953
Australian 0.179 0.053 0.101 0.162 0.799 0.874 0.867 0.800 0.932 0.697 0.700 0.888
Balance 0.071 0.066 0.045 0.081 0.526 0.584 0.421 0.630 0.698 0.582 0.528 0.673
Bridges 0.045 0.032 0.025 0.052 0.879 0.708 0.736 0.723 0.914 0.735 0.638 0.948
Cleveland 0.130 0.016 0.033 0.115 0.776 0.358 0.738 0.770 0.823 0.744 0.281 0.814
Diabetes 0.086 0.065 0.037 0.082 0.918 0.981 0.877 0.704 0.790 0.623 0.600 0.871
Echo 0.039 0.033 0.028 0.068 0.858 0.983 0.550 0.809 0.761 0.571 0.623 0.837
German 0.067 0.002 0.031 0.032 0.485 0.841 0.758 0.791 0.877 0.568 0.620 0.743
Glass 0.082 0.018 0.019 0.099 0.808 0.919 0.690 0.893 0.865 0.550 0.310 0.972
Haberman 0.050 0.042 0.012 0.039 0.933 0.837 0.854 0.919 0.803 0.629 0.561 0.797
Heart 0.107 0.059 0.075 0.132 0.718 0.971 0.702 0.744 0.765 0.578 0.656 0.873
Hepatitis 0.065 0.035 0.042 0.077 0.806 0.585 0.773 0.743 0.880 0.827 0.587 0.950
Ionosphere 0.141 0.029 0.096 0.189 0.970 0.811 0.848 0.952 0.866 0.556 0.669 0.968
Iris 0.207 0.169 0.191 0.210 1.000 0.990 1.000 0.987 0.991 0.899 0.869 0.983
Led 0.066 0.059 0.050 0.077 0.801 0.817 0.855 0.855 0.649 0.495 0.328 0.826
Vehicle 0.000 0.024 0.090 0.093 0.000 0.596 0.983 0.708 0.000 0.307 0.350 0.790
Wine 0.145 0.086 0.104 0.183 0.919 0.907 0.906 0.882 0.887 0.893 0.664 0.982

AVERAGE 0.093 0.052 0.062 0.102 0.776 0.808 0.795 0.814 0.789 0.645 0.560 0.875

Table 2: Average results for the different quality measure

Comparison Quality measure R+ R− p-value Hypothesis

FuGePSD Vs. NMEEF-SD
UNUSUALNESS 118 35 0.049 Rejected by FuGePSD
SENSITIVITY 97 56 0.332 Non-rejected
FUZZY CONFIDENCE 108 28 0.039 Rejected by FuGePSD

Table 3: Results of the Wilcoxon test between NMEEFSD and FuGePSD

of the examples of the target variable in a precise
way. In this way, FuGePSD obtains:

• novelty subgroups because values obtained in
unusualness are relevant, so it provides the ex-
perts with information to describe unusual and
interesting behaviour within the data; and
• the best relation between sensitivity and confi-
dence, as it obtains results with a good preci-
sion where the majority examples covered be-
long to the target variable. It is important to
remark this factor because it is very difficult to
obtain this compromise due to the frequent loss
in a measure when trying to increase the other.

5. Conclusions

In this work, we have presented an EFS for SD
based on genetic programming. Throughout the lit-
erature, EFSs have shown an excellent behaviour to
cope with SD problems. In fact, such systems have
been successful in several experimental studies pre-
sented in recent times.

FuGePSD algorithm is based on genetic program-
ming, which together with fuzzy logic provides in-
terpretability to the rules extracted. This is because
the use of a knowledge representation close to the
expert. In addition, fuzzy logic also avoids the ne-
cessity to make a previous discretisation. Moreover,
FuGePSD obtains a compact and diverse rule set
through the use of the token competition operator.
This operator promotes the evolution of different

individuals, i.e. this operator forces individuals to
seek their own niches in the search space, so extend-
ing the diversity.

A wide experimental study focused on datasets
with continuous variables shows that FuGePSD ob-
tains a good trade-off between novelty and preci-
sion.

Specifically, this study shows that FuGePSD im-
proves the results of the rest of the EFSs for SD
presented up to the moment. Fuzzy subgroups ob-
tained by FuGePSD are more accurate and cover
more examples. These subgroups considered sepa-
rately demonstrate not only improved relationships
between sensitivity and confidence, but excellent re-
sults in unusualness which is a key quality measure
in SD.
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