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This paper proposes a novel algorithm for subgroup discovery task based on genetic pro-
gramming and fuzzy logic called Fuzzy Genetic Programming-based for Subgroup Discov-
ery (FuGePSD). The genetic programming allows to learn compact expressions with the
main objective to obtain rules for describing simple, interesting and interpretable sub-
groups. This algorithm incorporates specific operators in the search process to promote
the diversity between the individuals. The evolutionary scheme of FuGePSD is codified
through the genetic cooperative-competitive approach promoting the competition and
cooperation between the individuals of the population in order to find out the optimal
solutions for the SD task.

FuGePSD displays its potential with high-quality results in a wide experimental study
performed with respect to others evolutionary algorithms for subgroup discovery.
Moreover, the quality of this proposal is applied to a case study related to acute sore throat
problems.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Subgroup discovery (SD) is a descriptive data mining technique for describing unusual features with monitored proper-
ties of interest [40,66]. This task contributes interesting knowledge to the scientific community from two view-points, spe-
cifically both features those including the provision of interest and precision. SD has been included within the concept of
Supervised Descriptive Rule Discovery [42], together with further descriptive techniques such as emerging patterns [18]
and contrast set mining [5].

Differing SD algorithms have been implemented throughout the literature in order to solve SD tasks based on beam
search such as CN2-SD [45] or SD [27], exhaustive such as SD-Map [3], or genetic algorithms such as SDIGA [15] and
NMEEF-SD [8], amongst others.
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Genetic programming [41] is a methodology based on evolutionary algorithms (EAs) and it has been used for classifica-
tion purposes [20], rule learning [43,44] and genetic-based machine learning [21]. Amongst its advantages can be high-
lighted the following:

� flexibility in the learning process due to the use of populations with dynamic size and individuals with structure and size
variable. This property facilitates the obtaining of descriptive rules for the search space,
� simplicity, since it allows to learn rules in a flexible way without the necessity to include all variables in the individuals,
� diversity amongst the rules, which is acquired through specific operators promoting the diversity at phenotype or geno-

type level.

This paper presents a new approach named Fuzzy Genetic Programming-based for Subgroup Discovery: FuGePSD. This
algorithm represents an evolutionary fuzzy system (EFS) [34] based on genetic programming [41] which employs a tree
structure with a variable-length to represent the individuals of the population. FuGePSD employs several genetic operators
in order to obtain rules to which are as general and precise as possible describing new information of the search space. In this
way, FuGePSD includes an operator to promote the diversity at genotype level where rules describing the same examples are
penalised. Moreover, drop and the insertion of genetic operators enhances the increase in precision and generality of the
rules.

Benefits offered by the FuGePSD technique are delivered in a complete experimental study supported by appropriate sta-
tistical tests. The study is focused on datasets with continuous variables and the validity of FuGePSD is analysed with respect
to alternative EAs for SD. Statistical tests confirm the highly effective performance and suitability for this new approach.
Moreover, the behaviour of FuGePSD in real problems is applied to a study related to sore throat. This problem is an acute
upper respiratory tract infection that impinges on the throat’s respiratory mucosa, and can be linked with fever, headache
and general malaise. The dataset analysed distinguishes for the high dimensionality with a wide number of features. Results
acquired show the quality of the new proposal presented in this paper which are highlighted by experts in this field.

The paper is organised as follows. Firstly, preliminary concepts are described in Section 2. Next, Section 3 presents the
new approach in which a description of the algorithm, operation scheme, fitness functions and genetic operators required
in order to facilitate its analysis can be observed. Sections 4 and 5 present all information related to the experimental frame-
work and the study, respectively. In Section 6, a case study is presented, and results arising there from are discussed by
researchers with expertise in this field. Finally, the major salient conclusions are outlined.
2. Preliminaries

This section introduces the main concepts used for the algorithm presented. Firstly, a brief introduction to EFSs, and a
short review of the SD proposals based on EAs in the specialised literature are presented in Section 2.1. Secondly, the def-
inition, main properties and elements of the SD technique are outlined in Section 2.2. Thirdly, major properties and quality
measures for fuzzy rules in SD are summarised in 2.3. Finally, the use of EFSs in SD throughout the literature is presented in
Section 2.4.

2.1. Evolutionary fuzzy systems

An EFS [34] can be described as a fuzzy system [68] augmented with a learning process based on evolutionary compu-
tation [19], such as those involving genetic algorithms [30,36], genetic programming [41], evolutionary programming [23]
or evolution strategies [55], amongst others.

Fuzzy systems are usually considered in the form of fuzzy-rule based systems (FRBSs), which are composed of ‘‘IF–THEN’’
rules where both the antecedent and consequent can contain fuzzy logic statements. This simple and interpretable represen-
tation facilitates their application in a wide range of real-world problems such as the pioneering problems in control [52],
modelling [53], classification [39]. On the other hand, the EAs are well known and widely used global search technique with
the ability to explore a large search space such as regression [26], association rule mining [50] or instance selection [17], for
example. Therefore, EAs can be used in the development of FRBSs offering much potential as a search tool, allowing the inclu-
sion of domain knowledge and the obtaining of better rules.

Different schemes of representation for the EAs are considered within EFS:

1. ‘‘Chromosome = rule’’ approach, in which each individual codifies a single rule, and the whole rule set is provided
by combining several individuals within the population. Three categories are considered: the Michigan approach
usually known as the as learning classifier system [37], the Iterative Rule-Learning approach [60] and the genetic
cooperative-competitive learning approach [31].

2. ‘‘Chromosome = set of rules’’ approach, also known as the Pittsburgh approach, in which each individual represents a
set of rules [59]. In this case, a chromosome evolves a complete set of rules that compete amongst them along the
evolutionary process.
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The redundancy in the evolutionary process for learning rules has been widely studied throughout the literature. There are
proposals able to reduce the redundancy through specific operators as fusion of subsumptive rules for instance [61,62].
Another approach, for example, is represented through the token competition [48] which is used and explained in our method.

2.2. Subgroup discovery

SD task extracts knowledge in a descriptive manner from data concerning a property of interest. The concept of SD was
initially introduced by Kloesgen [40] and Wrobel [66], and more formally defined by Siebes [57], but with use of the term
Data Surveying for the discovery of interesting subgroups. It can be defined as in [67]:

‘‘In subgroup discovery, we assume we are given a so-called population of individuals (objects, customers, . . .) and a property of
those individuals we are interested in. The task of subgroup discovery is then to discover the subgroups of the population that
are statistically ‘‘most interesting’’, i.e., are as large as possible and have the most unusual statistical (distributional) character-
istics with respect to the property of interest.’’

The main purpose of SD is to seek and explore relationships between different properties or variables with respect to a
target variable, and representations of the knowledge is performed through rules which consist of induced subgroup descrip-
tions [27,45]. Each rule R can be formally defined as:
R : Cond! Targetvalue
where Targetvalue is a value for the variable of interest (target variable) for the SD task (which also appears as Class in the
literature), and Cond is commonly a conjunction of features (attribute–value pairs) which is able to describe an unusual sta-
tistical distribution with respect to the Targetvalue. SD is a descriptive induction using supervised learning while classification
is framed in predictive category. Main differences between SD and classification can be observed in [35].

Differing elements can be considered as the most important when an SD approach is applied. These elements are the type
of the target variable, the search strategy that has an exponential relation to the number of features and the values consid-
ered, together with the descriptive language of the subgroups and the quality measures [4]. A review about major properties,
features, algorithms and real-world problems solved through the application of SD algorithms can be founded in [35].

2.3. Fuzzy rules and quality measures for subgroup discovery

Fuzzy rules, based on fuzzy logic [68], allow already to consider uncertainty, and also to represent the continuous vari-
ables in a manner which is close to human reasoning. In this way, interpretable fuzzy rules consider continuous variables as
linguistic where values are represented through fuzzy linguistic labels (LLs).

Eq. (1) represents a canonical fuzzy rule:
R : IF X1 ¼ ðLL2
1Þ AND X3 ¼ ðLL1

3Þ THEN Targetvalue ð1Þ
where:

� X ¼ fXm=m ¼ 1; . . . ;nvg is a set of features used to describe the subgroups, and nv is the number of descriptive
features.

� T ¼ fTargetvalue=j ¼ 1; . . . ;ntvg is a set of values for the target variable, and ntv is the number of values for the target
variable.

� LLlnv
nv

is the LL number lnv of the variable nv .

It is important to note that this type of rules are highly suitable for SD task. The fuzzy set corresponding to each LL can be
specified by the user or defined by means of uniform partitions (if expert knowledge is not available).

The analysis of the quality of this type of rules is performed through different measures [35]. These quality measures pre-
sented in the following describe the ones used by:

� Unusualness: The weighted relative accuracy of a rule [46] measures interest and a trade-off between generality and
precision. It can be computed as:
UnusðRiÞ ¼
nðCondÞ

ns

nðTargetvalue � CondÞ
nðCondÞ � nðTargetvalueÞ

ns

� �
ð2Þ

It can be described as the balance between the coverage of the rule pðCondiÞ and its accuracy gain
pðTargetvalue � CondÞ � pðTargetvalueÞ, where nðCondÞ is the number of examples which satisfy the conditions deter-
mined by the antecedent part of the rule, ns is the number of total examples, nðTargetvalue � CondÞ is the number
of examples which satisfy the conditions and also belong to the value for the target variable within the rule, and
nðTargetvalueÞ are all the examples of the target variable. The domain of this quality measure is specified for each
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problem because there is a direct dependence with respect to the target variable as can be observed in the equation.
Specifically, the domain is related to the percentage of instances of the majority target value (%majorityTargetv

)
directly. In this way, bounds of unusualness are calculated as follows:

– Lower bound: ð1�%majorityTargetv
Þ � ð0�%majorityTargetv

Þ
– Upper bound: %majorityTargetv

� ð1�%majorityTargetv
Þ

� Sensitivity: This measure is the proportion of actual matches that have been classified correctly [40] and it has a com-
ponent based on generality. It is computed as:
SensðRiÞ ¼
nðTargetvalue � CondÞ

nðTargetvalueÞ
ð3Þ

This quality measures can be found in the literature as the Support based on the examples of the class, Recall or
TPrate, and its domain is ½0;1�.

� Fuzzy confidence: This measures the relative frequency of examples satisfying the complete rule amongst those sat-
isfying only the antecedent for fuzzy rules [15]. This is an adaptation of the standard confidence measure [1]. It is
computed as:
FCnf ðRiÞ ¼
P

Ek2E=Ek2TargetValuek
APCðEk;RiÞP

Ek2EAPCðEk;RiÞ
ð4Þ

An example Ek verifies the APC of a rule if

APCðEk;RiÞ ¼ TðlLL1
1
ðek

1Þ; . . . ;l
LL

lnv
nv
ðek

nv
ÞÞ > 0 ð5Þ

Confidence measures precision within the domain ½0;1�, where APC (Antecedent Part Compatibility) is the degree of com-
patibility between an example and the antecedent component of a fuzzy rule, i.e., the degree of membership for the
example to the fuzzy subspace delimited by the antecedent part of the rule, where:
– l
LL

lnv
nv
ðek

nv
Þ is the degree of membership for the value of the feature nv for the example Ek to the fuzzy set corresponding to

the LL;
– T is the t � norm selected to represent the meaning of the AND operator (the fuzzy intersection), in our case the minimum

t � norm.

2.4. Evolutionary algorithms in subgroup discovery

Throughout the literature different EAs for SD have been presented [9]. All of them use EAs for the search process, and are
able to obtain models which are both simple and precise. Subsequently, most relevant proposals within the literature are
summarised.

� SDIGA [15] uses fuzzy rules as knowledge representations and a mono-objective EA as a learning process. SDIGA fol-
lows the IRL approach, where the solution of each iteration is the best individual obtained, and the global solution is
formed via the best individuals obtained by the differing runs. SDIGA is executed for each value of the target vari-
able, and it is interesting to remark that it always obtains rules for all classes of the dataset.
The fitness function of the EA serves as an aggregation function where the selection of the quality measures such as
significance, unusualness, sensitivity, support or confidence, amongst others, is determined by the user, where the
number of objectives within the weighted aggregation function are between 1 and 3. The final rules obtained for
each run are improved in a post-processing phase throughout a hill-climbing process, which modifies the rule in
order to increase the degree of support.

� NMEEFSD [8] is a multi-objective EA for extracting fuzzy rules. This algorithm is based on the NSGA-II algorithm
[14], and it allows researchers to choose between two or three quality measures as objectives of the evolutionary
process in order to obtain relevant subgroups, i.e. those between coverage, significance, unusualness, accuracy, sen-
sitivity, support and/or confidence. In NMEEF-SD, each candidate solution is coded according to the genetic cooper-
ative competitive learning approach [31] which is within the ‘‘chromosome = rule’’ approach.
In NMEEFSD, only the antecedent is represented in the chromosome, and the consequent is prefixed to one of the
possible values of the target feature in the evolution. Therefore, the algorithm must be executed as many times
as the number of different values that the target variable contains. In the final phase of the evolutionary process,
NMEEFSD obtains only rules which reach a determined threshold of confidence.

� CGBA-SD [49] is called comprehensible grammar-based algorithm for subgroup discovery and combines the require-
ments of discovering comprehensible rules with the ability to mine expressive and flexible solutions owing to the
use of a context free grammar. In this way, the algorithm employs the genetic programming paradigm [41] and
genotype is defined by means of a tree structure with different shapes and sizes, i.e. CGBA-SD is within the
‘‘chromosome = rule’’ approach. This algorithm obtains crisp rules with intervals for continuous variables.
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The initialisation of the population always generates individuals with fitness over 0 and these individuals are eval-
uated with a lineal fitness function calculated through sensitivity and confidence. This algorithm employs intervals
generated in a random way for real domains and concrete values for the remainin type of variables. In addition, it is
able to change the probability values used by the genetic operators. Finally, individuals of the final population are
deleted with respect to a minimum confidence threshold and equivalence between individuals.

The ability of EAs have been demonstrated in several real-world problems with respect to SD in differing fields. Below, we
outline a summary regarding the recent successes of types of systems in SD:

� Bioinformatics [7]. SD was applied in order to search for similarities and differences between different subtypes of
Influenza A virus, and in this study proteins were extracted from signal processing techniques. The results acquired
can serve to facilitate our understanding of these proteins in the pharmacological industry, and the fuzzy rules
obtained were able to describe all viruses with high quality results, and using only a subset of the variables out
of total available.

� Concentrating photovoltaics [11]. SD was applied in a problem related to the descriptive behaviour of a type of solar
cell in concentrating photovoltaics. This technology serves as a cheaper alternative than conventional photovoltaics
for electric generation processes. The main objective was to obtain subgroups able to provide new information to
experts involved the maximum module power. Specifically, the results obtained have shown the necessity to analyse
the influence of the APE in performance of the modules involved.

� Web usage mining [12]. An SD algorithm was applied to a real-world dataset extracted from the website related to
the extra virgin olive oil www.orolivesur.com. The major objective was to analyse and extract valuable information
from the website with data acquired using Google Analytics. The knowledge extracted offered different recommen-
dations to the webmaster team related to the design and references website.

� Medicine [10]. This paper involved an analysis of the type of patients who tend to visit a psychiatric emergency
department in a given period of time of the day was analysed. The main objective was to obtain subgroups in order
to describe patients according to their time of arrival at the emergency department. Fuzzy subgroups extracted
offered much useful knowledge to the experts regarding the distribution and allocation of medical resources at
the hospital.

� Marketing [15]. In this paper the main objective was to arrive at conclusions from information available on previous
trade fairs in order to determine relationships between the trade fair planning variables and the success of the
stands involved. Knowledge extracted therefore has allowed the experts to obtain novel conclusions concerning data
available in order to improve the organisation of new fairs of this nature.

3. FuGePSD: Fuzzy Genetic Programming-based learning for Subgroup Discovery

This section presents the approach for SD called Fuzzy Genetic Programming-based learning for Subgroup Discovery,
FuGePSD. It involves an EFS based on a genetic programming algorithm [41] with the ability to extract descriptive fuzzy rules
for the SD task.

The following subsections present the main concepts of FuGePSD. A complete description of the algorithm, its compo-
nents and scheme are delineated in Section 3.1. Secondly, a representation of the fuzzy individuals through the context-free
grammar definition route is outlined in Section 3.2. Thirdly, Section 3.3 presents the fitness functions employed in this
approach. In Section 3.4 the most important operator of the algorithm is observable (the token competition). Finally, Sec-
tion 3.5 describes the genetic operators used by the algorithm.

3.1. General scheme of operation for FuGePSD

The algorithm commences from an initial population generated in a random manner where individuals are represented
through the ‘‘chromosome = individual’’ approach including both the antecedent and the consequent of the rule. Specifically,
FuGePSD employs the genetic cooperative-competition approach where rules of the population cooperate and compete
between them in order to obtain the optimal solution. The inclusion of the target variable in the representation is often
an advantage with respect to alternative EAs available for SD, since while FuGePSD is executed only once obtaining rules
for the different values of the target variable. However, the remaining proposals based on EAs are required to be executed
once for each value of the target variable. It is also important to remark that individuals have variable length just like pop-
ulation with a variable number of individuals throughout the evolutionary process. In this way, FuGePSD is able to obtain
rules with different number of variables in the antecedent part of the rule associated to the complexity of the subgroup
to describe. On the other hand, the initial number of rules generated for the problem is adapted throughout the evolutionary
process with respect to the problem to solve through different operators.

FuGePSD evolves with the generation of offspring populations through the application of several genetic operators. This
population is generated with the same size than the parent population with respect to the number of individuals. Both pop-
ulations are joined in a new population, in which the token competition operator is applied. This operator is crucial to the
functioning of the algorithm in order to obtain diverse subgroups.

http://www.orolivesur.com
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As can be observed in pseudo code of the Algorithm 1, this evolutionary process is controlled through the number of gen-
erations. It is important to note that for each generation, both individuals and population are evaluated in a separate manner,
since in view of the use of the cooperative-competitive approach it is necessary to evaluate the individuals and populations
through two independent fitness functions. Hence, individuals compete between themselves with respect to a local fitness,
and cooperate in order to obtain a population which is more adapted to the problem. Once the evolutionary process has fin-
ished, the algorithm performs a screening function to obtain rules only with values greater than a threshold of sensitivity and
confidence. These thresholds can be modified through external parameters providing to the experts an algorithm more
adaptable to complex problems. In general, these thresholds should be configured upper than 60% level because subgroups
obtained must be precise and general and both quality measures are ideal to meet these objectives. With these values, we
may secure the extraction of interesting and effective rules for the SD task presented. The screening function is applied in the
best population (BestPop) obtained throughout the complete evolutionary process.

Algorithm 1. Operation pseudo code for the FuGePSD algorithm

Output
RuleSet
Begin
Generate MainPop
Evaluate MainPop
BestPop  � MainPop
repeat

Generate OffspringPop through GeneticOperators
Evaluate OffspringPop
Join MainPop and OffspringPop in JoinPop
MainPop  � TokenCompetitionðJoinPopÞ
if MainPop:Fitness > BestPop:Fitness then

BestPop  � MainPop
end if

until Number of generations is reached
RuleSet ¼ ScreeningFunctionðBestPopÞ
End
3.2. Representation of individuals through the free grammar definition context

FuGePSD utilises a context-free grammar which allows the learning of fuzzy rules and the absence of some input features,
a process giving rise to compact and simple rules. Table 1 represents grammar example for a SD task with two features
(X1;X2), five LLs per feature (LL1

1; LL2
1; . . . ; LL5

1; LL1
2; . . . ; LL5

2) and two values for the target variable (Tv1; Tv2) where the symbol
?a in some of the production rules of the grammar represents one, and only one, of the values separated by commas in the
square brackets. The rules of this grammar are considered in order to generate the initial population of the FuGePSD algo-
rithm. This population is completely generated in a random way where individuals contain a number of descriptors between
1 and the 50% of the variables of the problem.

With respect to the use of fuzzy logic, as previously mentioned, the fuzzy sets corresponding to the LLs can be specified by
the user, or alternatively, defined by means of an uniform partition (if the expert knowledge is not available). Even though
FuGePSD can use both representations, in this paper uniform partitions with triangular membership functions are employed
as shown in Fig. 1.

3.3. Fitness functions

As we have mentioned previously, FuGePSD follows a genetic cooperative-competitive learning approach [31], i.e. FuGe-
PSD encodes a single rule per individual and they compete and cooperate simultaneously. This makes it necessary to con-
sider not only the characteristics of individual rules but also the cooperation amongst rules. To do so, FuGePSD requires
the use of two different fitness functions in order to optimise the individuals of the population via a localised one, and also
optimise the whole population through a global fitness function which evaluates the accuracy of the set of rules as a means
for classification. Both functions will be referred to as fitness function and global fitness, respectively.

� Fitness function: This is calculated through a specific quality measure for SD task chosen by the experts. Specifically, the
algorithm is able to work with one of the different quality measures presented in this paper: Unusualness (Eq. (2)), Sen-
sitivity (Eq. (3)) and and Fuzzy Confidence (Eq. (4)). The use of one quality measure as objective in the evolutionary process



Table 1
Grammar example.

Start �! [If], antec, [then], target_variable, [�]
antec �! descriptor1, [and], descriptor2
descriptor1 �! [any]
descriptor1 �! [X1] is label
descriptor2 �! [any]
descriptor2 �! [X2] is label

label �! member(?a,[LL1; LL2; LL3; LL4; LL5]), [?a]
target_variable �! [Target_value is] descriptor
descriptor �! member(?a,[Tv1; Tv2]), [?a]

Fig. 1. Example of fuzzy partition for a continuous variable with five linguistic labels.
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usually allows to the algorithm that the individuals with the best values in this quality measure for SD will be chosen and
selected for evolution of the process. In general, a good behaviour for SD is achieved through the use of unusualness as
objective which contributes with novelty and interest [45]. If the experts decide to use sensitivity in the evolutionary pro-
cess, the subgroups obtained are more general with a low number of variables, whereas with the use of confidence it is
possible to obtain the obtaining of very precise but less compact subgroups. The choice of the fitness function provides a
major enhancement of the versatility to the algorithm, since experts could adapt the knowledge extraction process with
respect to the nature of the problem. The fitness function is chosen through an external parameter of the algorithm.
� Global fitness: This is estimated through an adaptation score in order to obtain the best population during the whole evo-

lutionary process. In this way, it is necessary to calculate the accuracy of the set of rules using the normalised sum of the
predictions for each rule. The global fitness is defined as follows:
GlobalFitness ¼ w1 � Average Accuracy Rateþw2 � ð1� nvÞ þw3 � ð1� nRÞ
w1 þw2 þw3

ð6Þ

where nR is the average number of rules for the population, nv the number of descriptive variables, and Average Accuracy
Rate [22] the mean value for the accuracy of each single value of the target variable (calculated as):

Average Accuracy Rate ¼ 1
ntv
�
Xntv

i¼1

T Pratei ð7Þ

Different weights (w1;w2 and w3) are used in order to give a major ‘trade-off’ between accuracy and interpretability in
order to satisfy all requirements of SD (general, precise and interest). These weights can be also modified through
external parameters in order to facilitate the experts adaptability to real and complex problems. In this manner, it
is recommendable to use values upper than 0.7 out of 1 for w1, and the remaining 0.3 out of 1 for w2 and w3, because
the main idea is to obtain a precise model with a low number of rules and a low number of variables for the set of
rules. The use of 1nv and 1nR gives rise to an excessive number of rules and variables being penalised in the popula-
tion score. With regard to the accuracy measure, the use of standard accuracy rate could lead to wrong conclusions
since it does not consider the rate between classes. Therefore, the average accuracy rate is used since an equitable
weight for all classes of the problem are independent of the number of examples for which each one is applied.
The result of this accuracy rate is more suitable for obtaining an homogeneous accuracy for all values of the target
variable.
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3.4. Token competition

FuGePSD employs the token competition operator [48,63] in order to improve the diversity amongst the individuals at
phenotipic level emulate the behaviour in a natural environment. Individuals with good niches will attempt to exploit that
one alone and prevent further individuals to share its resources, unless a newer one is stronger that that initially developed.
Therefore, the other individuals are required to seek their own niches. These properties provide to the algorithm diversity in
the population. Moreover, this operator reduces the number of rules because all individuals without tokens will be deleted.

In our proposal, an example is considered as a token and all individuals in the population will compete for this example.
When an individual matches one example provided, a flag will indicate that example is seized and hence other individuals
cannot capture it. In this way, the diversity is improved with respect to the phenotype, i.e. individuals that overcome the
token competition describe information about examples of the dataset which are not covered for others rules. The objective
of this operator is to increment the description of the rules base about the dataset reducing, as far as possible, the
redundancy.

The operation of this mechanism starts with the order (from high to lows) of the population with respect to the individual
fitness. Subsequently, an individual with the highest fitness will exploit its niches by seizing as many tokens as it can. The
other individuals entering the same niches will have their strength decreased, since they cannot compete with the stronger
ones. This is achieved by introducing a penalisation to the fitness score of each individual, a limit which is based on the num-
ber of tokens which each individual has seized:
PenalizedFitnessðRiÞ ¼ unusualnessðRiÞ �
countðRiÞ
idealðRiÞ

ð8Þ
where, countðRiÞ is the number of tokens of the rule actually seized, and idealðRiÞ is the total number of tokens that it can
seize which is equivalent to the number of examples that the rule matches. If one rule seizes zero tokens, its fitness is mod-
ified to zero directly. On termination of the application of this mechanism, the size of the population is reduced with the
individuals, where PenalizedFitness is greater than zero.

It should also be noted, that:

� this mechanism allows us to obtain a series of rules, all of which cover at least one example of the dataset not yet
covered by other stronger rules, and

� the number of rules obtained is reduced, since individuals that describe information about examples described by
other rules are eliminated.

3.5. Genetic operators

These operators are used in order to generate an offspring population from the main population. All individuals generated
in the new population are a modification of one individual of the main population applying crossover, mutation, insertion or
dropping. Each child is created by applying only one of the genetic operators through a probabilistic way. It is important to
highlight that all new individuals must meet with the rules of the context-free grammar defined in Table 1.

Genetic operators are applied on one individual selected through a binary tournament selection process [51] from the
main population. The operation of these operators, together with graphical descriptions, are developed in order to facilitate
an understanding of the algorithm.

3.5.1. Crossover
Crossover is a genetic operator that combines two individuals within the main focus that the new individual may be bet-

ter than both of the parents if it heritages part of the properties from each of them. It is necessary to select a second indi-
vidual in order to apply this operator. In this paper, a component of the first parent is randomly selected and exchanged by
another part, in the second one (also randomly selected), but under the constraint that the offspring produced must be valid
according to our grammar.

It should must be noted that the crossover operator in fact produces two children, but only one of them (randomly cho-
sen) is returned as a descendant if this child is valid. If both children are invalid, the crossover operator is performed again.

Fig. 2(a) shows the initial individuals selected to cross. The results obtained of the application of this operator can be
observed in Fig. 2(b) where the combination of both individuals are presented. As we have mentioned previously, a random
process selects one children to include it in the offspring population.

3.5.2. Mutation
This operator is used to improve the diversity from the initial to the offspring population. This operator alters one variable

(selected in a random manner) from the individual with a value different to the original one considering the rules of the
grammar.

In Fig. 2(c) the mutation of the individual can be observed with a modification of the value for the variable X. FuGePSD
only performs mutation with respect to the values of the variable.



(a) Initial individuals for applying the crossover operator

(b) Individuals obtained after the crossover

(c) Individual mutated (d) Individual with an inserted node

(e) Individual with a dropped node

Fig. 2. Genetic operators of the algorithm FuGePSd.
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3.5.3. Insertion
The insertion of variables in an individual purposes to include more precise rules in the model, with the objective of

improving the precision and confidence of set of rules of the algorithm. This operator inserts a new variable in the individual
with an associated value to the variable generated in a random manner. It is not applied if the individual already has all vari-
ables initialised according to the grammar. Fig. 2(d) represents the insertion operator for the FuGePSD algorithm in which
variable W is included in the individual selected.

3.5.4. Dropping
This operator attempts to generate more generalised individuals which improve their support and sensitivity measures.

In addition, in view of the probabilistic nature of genetic programming, redundant constraints may be generated in the indi-
vidual. Thus, it is necessary to generalise the rules, in order to represent the knowledge in a more concise form.
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The algorithm randomly selects one variable in the individual and it removes. This variable is no longer considered in the
rule, and so it selects can be generalised. This operator is not applied if the individual hence has only one variable following
with the grammar of the algorithm. Fig. 2(e) shows the dropping operator for the algorithm, where the variable X is removed
from the initial individual.

3.5.5. Screening function
For the final extraction of the best rules, a screening function is applied. This function can be observed in Alg. 2. The

screening is performed for the complete (best) population BestPop where the algorithm obtains the best rules for the dataset
which must reach a determined values in confidence and sensitivity.

Next, function contains an external parameter (AllTargetValues) to indicate the type of rules extracted. There are two
options for this parameter, first one, the TRUE value indicates the necessity of obtain rules for all values of the target variable.
With this value, a check for each target value is analysed to include rules for all target values in the final rule set. On the other
hand, for the FALSE value, the function includes the best rule of the full population if the final rule set is empty. In this way,
the algorithm always obtains rules.

Algorithm 2. Screening function for the FuGePSD algorithm

Input
Population BestPop
Output
RuleSet RS
Begin
for i ¼ 1 to i ¼ BestPop:Size do

R �getRuleðBestPop; iÞ
if R:getConf PConfidence AND R:getSens PSensitivity then

RS [ R
end if

end for
if AllTargetValues ¼ TRUE then

for i ¼ 1 to i ¼ tnv do
if NumberRulesðRS; iÞ ¼ / then

R  � BestPop:BestRuleðtiÞ
RS [ R

end if
end for

else
if NumberRulesðRSÞ ¼ / then

R  � BestPop:BestRuleðÞ
RS [ R

end if
end if
End

The function BestRuleðtiÞ and BestRuleðÞ obtain the rule with the highest confidence value for a target variable and the full
population, respectively. It is important to highlight that the screening function is applied on the best population, which is
the population obtained with the best global fitness throughout the entire execution, i.e. best population has the best global
fitness throughout the evolutionary process.
4. Experimental framework

This section outlines the main details of the experimental study performed. Specifically, Section 4.1 summarises the data-
sets analysed in the study for the SD algorithms presented (Section 4.2). Finally, Section 4.3 presents the statistical tests
applied in order to analise the results obtained with respect to different EAs for SD task.
4.1. Datasets

The experimental study of this paper has been performed with 17 datasets obtained from the UCI Repository of machine
learning databases [2]. The main characteristics of these datasets are summarised in Table 2 where ]Vars are the number of



Table 2
Dataset characteristics.

Name ]Vars ]Disc ]Cont ]Cl ]Inst Name ]Vars ]Disc ]Cont ]Tv ]Inst

Appendicitis 7 0 7 2 106 Haberman 3 0 3 2 306
Australian 14 8 6 2 690 Heart 13 6 7 2 270
Balance 4 0 4 3 625 Hepatitis 19 13 6 2 155
Bridges 7 4 3 2 102 Ionosphere 34 0 34 2 351
Cleveland 13 0 13 5 303 Iris 4 0 4 3 150
Diabetes 8 0 8 2 768 Led 7 0 7 10 500
Echo 6 1 5 2 131 Vehicle 18 0 18 4 846
German 20 13 7 2 1000 Wine 13 0 13 3 178
Glass 9 0 9 6 214
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total variables, ]Disc and ]Cont are the number of total discrete and continuous variables, respectively, ]Cl are the number of
values for the target variable and ]Inst the number of instances of the dataset.

All datasets analysed in this experimental study have at least one continuous variable as can be observed in their main
characteristics, i.e. an analysis in continuous environments is performed in this study since the major objective of this new
proposal is focused on obtaining descriptive rules for these types of problems.

4.2. Algorithms

The validity of the proposal presented in this paper is shown with respect to different algorithms. Specifically, FuGePSD is
compared with the most general EAs for SD available in the literature, SDIGA, NMEEF-SD and CGBA-SD. It is important to
highlight that all datasets contain continuous variables and it is necessary to use algorithms able to work with this type
of variables where a previous discretisation which could lead to a loss of precision in the results obtained. In addition,
NMEEF-SD, SDIGA and CGBA-SD have confirmed the quality of results achievable with respect to those from other algorithms
in [8,15,49], respectively. In fact, in these contributions these algorithms obtained better results than other ones of the lit-
erature between datasets used in this experimental study.

The parameters used for the algorithms in this experimental study are summarised in Table 3. These parameters have
been selected with respect to the recommendations performed by the authors. On the other hand, FuGePSD employs the
value false for the AllTargetValue parameter and rules are filtered with respect to sensitivity and fuzzy confidence.
Estimation about quality measures are obtained through a 10-fold cross-validation. In addition, in view of the fact that all
algorithms are stochastic, three executions are performed, and an average result from 30 values is shown for each dataset.
It is important to highlight that values of a set of rules in unusualness, sensitivity and confidence are computed as the aver-
age for all rules.

4.3. Statistical tests for performance comparison

The use of statistical tests facilitates the analysis of experimental studies, since significant differences can be found amongst
the differing algorithms employed for obtaining the superior behaviour of the one that achieves the highest average result. In
view of the fact that the initial conditions that guarantee the reliability of parametric tests may not be satisfied (causing the
statistical analysis to lose credibility with these type of tests) [16], non-parametric tests are employed in this paper.

The Friedman test [25] is used to compare the results obtained and to be able to precisely analyse whether there are sig-
nificant differences amongst the four algorithms. This test first ranks the jth of k algorithms on the ith of N datasets, and then
calculates the average rank according to the F-distribution (Distribution value) throughout all the datasets, and calculates
the Friedman statistics. If the Friedman test rejects the null-hypothesis, indicating that there are significant differences. In
this way, Holm test [38] is applied where the algorithm with the best result in this ranking is considered the control
Table 3
Parameters of the algorithms.

Algorithm Parameters

SDIGA Fitness = (0.7�sensitivity + 0.3�unusualness); linguistic labels = (3 and 5); minimum confidence = (0.6, 0.7, 0.8 and 0.9); population
size = 100; maximum evaluations = 10,000; crossover probability = 0.60; mutation probability = 0.01

NMEEFSD Objective1 = sensitivity; objective2 = unusualness; linguistic labels = (3 and 5); minimum confidence = (0.6, 0.7, 0.8 and 0.9); population
size = 50; maximum evaluations = 10,000; crossover probability = 0.60; mutation probability = 0.10

CGBA-SD Minimum confidence = (0.6, 0.7, 0.8 and 0.9); population size = 50; number of generations = 100

FuGePSD Fitness = unusualness; linguistic labels = (3 and 5); minimum confidence = (0.6, 0.7, 0.8 and 0.9); minimum sensitivity = 0.6; population
size = 200; maximum generations = 20,000; crossover probability = 0.50; mutation probability = 0.20; insertion probability = 0.15;
dropping probability = 0.15; w1 = 0.7; w2 = 0.15; w3 = 0.15; AllTargetValues = false
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algorithm (AlgCont), which controls the Holm test. In the result tables for the Holm test the algorithms are shown in descend-
ing order of z. Thus, by using the normal distribution we can obtain the corresponding p� Value associated with each com-
parison and this can be compared with the associated a=i in the same row of the table to show whether the associated
hypothesis of equal behaviour is rejected in favour of the best ranking algorithm or not.

In addition, in this study is employed the Wilcoxon signed-rank test [56] which is analogous to the paired t-test. This test
is a non-parametric statistical procedure for the comparing of two algorithms, which allows the detection of significant dif-
ferences between them. The operation of this test is based on the computation of the difference between the results arising
from the application of both algorithms. With these differences, a ranking is generated with respect to their absolute values,
(i.e. from smallest to largest), and average ranks are assigned in the case of ties. However, it is important to note that there
are two values, Rþ which is the sum of ranks for the datasets on which the second algorithm outperformed the first, and R�

the sum of ranks for the opposite. Let T be the smallest of the sums, T ¼ minðRþ;R�Þ. If T is less than or equivalent to the value
of the distribution of Wilcoxon for Ndatasets degrees of freedom, the null hypothesis of equality of means is rejected. A hypoth-
esis of comparison is rejected with respect to a specified level of significance. This level represents the lowest level of sig-
nificance of a hypothesis that gives rise to a rejection. The significance of the p-value is determined as in [56].

Different studies in the literature suggest the use of non-parametrical tests in the field of machine learning [16,28,29], and
additional information can be found on the Website http://sci2s.ugr.es/sicidm/.

5. Experimental study

This section presents results for each quality measures with respect to the algorithms considered in the study. NMEEFSD
is abbreviated to NMEEF, CGBA-SD to CGBA and FuGePSD to FuGeP. An analysis of the best parameters (minimum confidence
and number of linguistic labels) has previously been carried out. Results shown in Table 4 are the average results obtained
with them.

FuGePSD obtains the highest values in the AVERAGE of the three quality measures analysed in this paper. However, the
results are analysed for each quality measure below:

� Unusualness. This quality measure indicates the novelty or interest of the subgroups. The algorithm FuGePSD gets the
best average result, and it attains the best results in 10 out of 17 datasets. Moreover, it is interesting to note that values
obtained in datasets such as Ionosphere, Iris or Wine are very close to the maximal level.
� Sensitivity measures generality and precision in rules. Instead of FuGePSD does not obtain the best results in any datasets.

However, it is interesting to note that the average value is the greatest with a value greater than 81%. In this way, FuGe-
PSD obtains a good level of sensitivity in a homogeneous manner throughout the experimental study in opposite to the
remaining algorithms.
� Confidence. This quality measure indicates the precision of the subgroups. As noted above, FuGePSD provides the best

results with high quality with average values close to 90%. This algorithm obtains the best results in 10 out of 17 datasets.

In summary, the FuGePSD algorithm obtains the best average in this experimental study. However, despite this analysis it
is necessary to compare results arising from the non-parametric Friedman and Holm tests in order to search for significant
differences. In Table 5 results obtained in the Friedman test can be observed where distribution values are greater than the
Table 4
Detailed average results for each quality measure for the different algorithms analysed. The best case for each quality measure and dataset is highlighted in
bold.

Unusualness Sensitivity Confidence

Dataset NMEEF SDIGA CGBA FuGeP NMEEF SDIGA CGBA FuGeP NMEEF SDIGA CGBA FuGeP

Appendicitis 0.0945 0.0966 0.0640 0.0445 1.0000 0.9762 0.6670 0.9263 0.9038 0.7104 0.7170 0.9529
Australian 0.1791 0.0525 0.1770 0.1619 0.7989 0.8736 0.8550 0.8004 0.9320 0.6974 0.8580 0.8885
Balance 0.0710 0.0655 0.0720 0.0815 0.5259 0.5839 0.6480 0.6300 0.6981 0.5818 0.6180 0.6728
Bridges 0.0446 0.0322 0.0290 0.0517 0.8787 0.7076 0.6710 0.7231 0.9137 0.7345 0.7230 0.9476
Cleveland 0.1300 0.0155 0.1080 0.1153 0.7763 0.3577 0.7210 0.7701 0.8232 0.7442 0.7540 0.8138
Diabetes 0.0859 0.0651 0.0720 0.0822 0.9180 0.9812 0.5570 0.7038 0.7896 0.6226 0.7930 0.8705
Echo 0.0390 0.0333 0.0320 0.0677 0.8582 0.9834 0.4150 0.8090 0.7614 0.5705 0.6380 0.8366
German 0.0669 0.0020 0.0690 0.0323 0.4845 0.8408 0.4830 0.7911 0.8767 0.5677 0.8800 0.7434
Glass 0.0824 0.0176 0.0700 0.0995 0.8083 0.9186 0.5890 0.8931 0.8646 0.5501 0.6130 0.9723
Haberman 0.0499 0.0423 0.0230 0.0394 0.9334 0.8370 0.6610 0.9190 0.8030 0.6291 0.6420 0.7974
Heart 0.1072 0.0586 0.0820 0.1318 0.7175 0.9706 0.5410 0.7441 0.7650 0.5778 0.7560 0.8729
Hepatitis 0.0651 0.0352 0.0560 0.0767 0.8059 0.5845 0.6900 0.7425 0.8798 0.8269 0.6590 0.9498
Ionosphere 0.1413 0.0287 0.0310 0.1888 0.9701 0.8108 0.8480 0.9524 0.8663 0.5562 0.9050 0.9679
Iris 0.2067 0.1693 0.1050 0.2098 1.0000 0.9896 0.6720 0.9867 0.9914 0.8990 0.8510 0.9825
Led 0.0658 0.0593 0.2040 0.0769 0.8006 0.8172 0.9530 0.8548 0.6494 0.4948 0.9430 0.8255
Vehicle 0.0000 0.0240 0.0670 0.0930 0.0000 0.5962 0.8400 0.7079 0.0000 0.3070 0.6530 0.7903
Wine 0.1448 0.0862 0.0640 0.1830 0.9190 0.9071 0.4220 0.8819 0.8874 0.8927 0.6390 0.9823

Average 0.0926 0.0520 0.0858 0.1021 0.7762 0.8080 0.6573 0.8139 0.7885 0.6449 0.7451 0.8745

http://sci2s.ugr.es/sicidm/


Table 5
Results of Friedman test in the quality measures analysed for the comparison of the algorithms.

Quality measure Test value Distribution value

Unusualness 6.25 21.00
Sensitivity 6.25 11.67
Confidence 6.25 33.20

Table 6
Results of Holm test to detail the results obtained for each quality measures for the comparison of the algorithms.

Quality measures AlgControl i Algorithm z p a=i Hypothesis

Unusualness FuGePSD 3 SDIGA 4.2602 2.0E�5 0.033 Rejected
2 CGBA-SD 2.1946 0.0281 0.050 Rejected
1 NMEEFSD 0.7745 0.4385 0.100 Non-rejected

Sensitivity NMEEFSD 3 CGBA-SD 2.9692 0.0029 0.033 Rejected
2 FuGePSD 0.5163 0.6055 0.050 Non-rejected
1 SDIGA 0.1290 0.8972 0.100 Non-rejected

Confidence FuGePSD 3 SDIGA 5.4221 5.8E�8 0.033 Rejected
2 CGBA-SD 3.0983 0.0019 0.050 Rejected
1 NMEEFSD 1.2909 0.1967 0.100 Non-rejected

Table 7
Results of the Wilcoxon test between NMEEFSD and FuGePSD.

Comparison Quality measure R+ R� p-value Hypothesis

FuGePSD vs. NMEEF-SD Unusualness 118 35 0.049 Rejected by FuGePSD
Sensitivity 97 56 0.332 Non-rejected
Fuzzy confidence 108 28 0.039 Rejected by FuGePSD
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test values. In this way the null-hypothesis that all algorithms perform equally well are rejected for all quality measures.
Therefore, it is necessary to apply the Holm test in order to detail these differences between the algorithms.

Table 6 represents results of the Holm test where the algorithm with the best result in this ranking is considered the con-
trol algorithm (AlgCont) which controls the test. To analyse all hypothesis of the statistical studies we have used a level of
significance of a = 0.10.

The algorithm with the best ranking for unusualness and confidence is the proposal presented in this paper. In addition, in
these quality measures FuGePSD obtains significant differences with respect to SDIGA and CGBA-SD because the null-hypoth-
esis are rejected. However, in the sensitivity measure NMEEFSD obtains the best ranking with significant differences only with
respect to CGBA-SD algorithm. In summary, algorithms with the best behaviour in this experimental study are NMEEFSD and
FuGePSD. However, due to the absence of significance differences between both proposals is necessary to apply the Wilcoxon
test (between both algorithms) in order to establish a ranking between them. Table 7 represents the results of this test where
R+ corresponds to the sum of the ranks for the first algorithm and R� corresponds to the second algorithm.

Significant differences for unusualness and confidence in favour of the new proposal can be observed in Table 7, i.e. sub-
groups obtained for FuGePSD are more precise and with more interest. Moreover, Wilcoxon results for sensitivity quality
measure shows that FuGepSD offers an improved ranking with respect to NMEEFSD, i.e. Wilcoxom confirms the previous
conclusion with respect to sensitivity indicating that FuGePSD obtains the best level of sensitivity in an homogeneous man-
ner throughout the experimental study though without significance differences.

It is clear that the FuGePSD algorithm obtains an improvement with regards those currently presented in SD, specially for
EAs present in datasets with continuous variables. This new approach obtains subgroups which are more precise and with a
higher novelty information.
6. A case study: pathogenesis of acute sore throat conditions in humans

Sore throat (sometimes known as ‘pharyngitis’ or ‘tonsilitis’) is an acute upper respiratory tract infection that impinges on
the throat’s respiratory mucosa, and can be linked with fever, headache and general malaise. Moreover, acute otitis media,
acute sinusitis and peritonsillar abscess represent suppurative complications of this condition, predominantly the first of
these. 85–95% of adult acute sore throat conditions are ascribable to viruses, as are 70% of those in children aged 5–16 years
(and 95% of those in children aged < 5 years) [65]. However, the remainder arise from a bacterial source [predominantly
group A b-hemolytic streptococcus (GABHS)]; clinically, the four most valuable features to identify in the diagnosis of sore
throat diseases which are caused by GABHS are enlarged submandibular glands, the presence of a throat exudate and
rhinorrhea (runny nose), together with the absence of fever and cough [54,65].
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In this case study, we have coupled FuGePSD with high field proton (1H) NMR spectroscopy analysis in order to recognise
salivary biomolecule signatures which are characteristic of viral -(and, if applicable, bacterial)- induced acute sore throat
conditions in humans. Specifically, healthy and clinically-diagnosed patients with acute sore throat conditions patients
are analysed through FuGePSD in a problem with more than 200 variables and 500 instances. The main goal is to describe
and characterise (from the point of view of SD) this problem with respect to the condition of the patients: healthy (control)
and sore throat, i.e. with respect to two values for the target variable.

The applications of high field proton 1H NMR spectroscopy to the detection and quantification of biomolecules present in
complex biological fluids offers many advantages over other alternatives as can be observed in [13,32,33,58].

This case study has been performed in different stages: Firstly, patients were selected and data were collected as
described in Section 6.1. Next, a preprocessing stage was applied to human saliva samples in order to obtain a data matrix
for applying FuGePSD proposal in Section 6.2. Finally, Section 6.3 presents the analysis and results obtained with the
FuGePSD algorithm.

6.1. Collection of human saliva samples

A series of patients with a clinically-diagnosed acute sore throat condition (n = 50) and healthy, non-medically-
compromised age-matched controls (n = 50) were recruited to the study, the latter serving as essential controls. All of them
were required to fully complete a participant questionnaire with both personal and medical information such as age, gender,
body mass index, cough, rhinitis, fever history, etc. All participants were also instructed not to receive any form of medica-
tion during the 5-day trial. This investigation was performed by Professor Grootveld’s research group, and full ethical
approval for it was granted by the University of Bolton’s Research Ethics Committee.

For the 1H NMR data acquired we primarily implemented a rigorous analysis-of-variance (ANOVA)-based experimental
design. This procedure was principally aimed at determining the significance of the ‘Between-Disease Group’ component
of variance (and further ones involved) for the intensities of 1H NMR intelligently-selected bucket signals which remained
in the spectrum following the spectral editing process described below. A bucket is considered as an input variable in the
dataset to analyse through the FuGePSD algorithm.

The experimental design selected was a combination of completely randomised with a randomised block design: mixed
model with the ‘Between-Participants’ component of variance (n = 50 per Group) ‘nested’ within Disease Classification Group
(Table 8). This model was preliminarily employed to probe the prognostic/diagnostic specificity of each ‘Intelligently-
Selected’ Chemical Shift Bucket (ISB). Hence, this design allowed the study of each of these sources of variation simulta-
neously. For this ANOVA model, the complete dataset was log10-transformed prior to analysis in order to satisfy assumptions
of normality, variance homogeneity and additivity, etc. Saliva specimens were collected from each participant immediately
after awakening in the morning as previously described in [58]. These 5 samplings took place throughout an intensive one-
week period (Monday–Friday), and they were instructed to collect all saliva available in order to avoid interferences.

6.2. 1H NMR analysis of human salivary supernatants

The preparation of human saliva samples for 1H NMR analysis was performed as previously described [58]. Single-pulse
1H NMR spectra of human salivary supernatant specimens were acquired on a Bruker Avance AM-600 spectrometer operat-
ing at a frequency of 600.13 MHz as described previously [47,58,64], as were both one- and two-dimensional 1H–1H COSY
and TOCSY spectra.

Main objective in these stages was to obtain a 1H NMR data matrix with a spectra for each saliva specimen with different
input variables. In this way, a matrix with 500 spectra and 209 intelligent chemical shift buckets (ISB input variables) gen-
erated via the application of macro procedures for line-broadening, zero-filling, Fourier-transformation and phase and base-
line corrections, followed by the application of a separate macro for the ‘Intelligent Bucketing’ processing sub-routine is
obtained; all procedures were performed with the ACD/Labs 1D NMR Manager software package (ACD/Labs, Toronto, Canada
M5C 1T4). These buckets are selected through the employment of an algorithm designed to make critical divisional
decisions, i.e. those which define precisely the loci of bucket divisions with regard to an optimised selection of
‘resonance-specific’ ones (B. Lefebvre, Intelligent Bucketing for Metabonomics, ACD/Labs Technical Note, 2004). This strategy
Table 8
Experimental design for the analysis of each dataset of 1H NMR ISB integration intensities, representing a combination of completely randomised with a
randomised block design: mixed model with participants (n = 50 per group) ‘nested’ within each of the two disease classification groups.

Source of variation Levels Degrees of freedom Nature Parameters estimated

Between disease classifications 2 1 Fixed r2 þ 5rPðDÞ2 þ 250KD2

Between participants 100 98 Random r2 þ 5rPðDÞ2

Sampling days-withing-participants 5 per volunteer 4 Sequentially-fixed r2 þ 100KS2

Error (residual) n/a 396 n/a r2

Total n/a 499 n/a n/a



Table 9
Subgroups obtained in the case study through the FuGePSD method.

Sb UNUS SENS FCNF

1 IF ISB (6.31–6.33) = Low AND ISB (0.60–0.62) = Medium AND ISB (1.36–1.40) = Medium AND ISB (3.55–
3.61) = Medium AND ISB (6.83–6.88) = Medium THEN Control

0.0167 0.8917 0.6854

2 IF ISB (2.22–2.27) = Medium AND ISB (2.29–2.31) = Medium AND ISB (2.78–2.83) = Medium AND ISB (5.66–
5.69) = Medium THEN Sore Throat

0.0260 0.6958 0.9772

3 IF ISB (2.22–2.27) = Medium AND ISB (2.78–2.83) = Medium AND ISB (5.66–5.69) = Medium THEN Sore Throat 0.0271 0.7000 0.9259
4 IF ISB (2.22–2.27) = Medium AND ISB (5.66–5.69) = Medium AND ISB (8.37–8.42) = Medium THEN Sore Throat 0.0448 0.6625 0.8859
5 IF ISB (2.22–2.27) = Medium AND ISB (5.66–5.69) = Medium THEN Sore Throat 0.0290 0.7292 0.8154
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generated one global table of ‘intelligently-selected bucket’ (ISB) intensities. Chemical shift buckets containing less than 1%
of the maximum summed intensity were removed from the dataset (since they may contain spectral ‘noise’).

After removal of the intense H2O resonance (d = 4.50–5.10 ppm), together with those arising from ethanol [centred at
d = 1.21 (t) and 3.66 ppm (q)], all ISB variables, or, where indicated were incorporated into the dataset for analysis with
FuGePSD. All chemical shift bucket intensity values were normalised to that of the pre-added TSP internal standard (of fixed
concentration).
6.3. Extraction of subgroup discovery by FuGePSD

Finally, the application of FuGePSD is performed on a dataset with 500 instances and 209 variables, and it is very impor-
tant to note that buckets or input variables have a real domain. In this way, the use of this algorithm is relevant within SD
task because as we have presented in the previous section, FuGePSD obtains the best results for these types of problems
through the correct use of fuzzy logic.

Application of the FuGePSD method to the analysis of the salivary 1H NMR dataset is performed with the same parameters
used in the experimental study of Section 4 but using as local fitness the fuzzy confidence because the main goal of the
experts is to obtain accurate subgroups and using three linguistic labels.

Results acquired served to segregate the total number of saliva specimens into five subgroups: four to describe active sore
throat saliva specimens and one for saliva specimens corresponding to healthy patients can be observed in Table 9, where
the representation of the subgroups and their values for the quality measures are presented. FuGePSD is able to obtain sub-
groups with a low number of variables to describe both values for the target variable highlighting the values in unusualness
and trade-off sensitivity-confidence. Subgroups are precise in general with an average confidence equal to 85.78%. In addi-
tion, with these subgroups the support reached for the algorithm is very close to the total of examples (95%). The metabolic
assignment for each ISB is shown in the foot-table.
Table 10
Sore throat disease subgroups detectable via application of the FuGePSD method.

Sb ISB (ppm) 1H NMR
Resonance Mult.

Metabolic assignment Sign of class. mean
diff. (sore throat � control)

Statistical significance:
ANOVA p value

1 6.31–6.33 m Lipid oxidation producta + 0.030
0.60–0.62 Broad Proteins + ns
1.36–1.40 d Acetoin-CH3 + ns
3.44–3.61 s Glycine-a-CH2 + 0.049
6.83–6.88 Broad/d Protein Tyrosine Residues – Unknown multipleta + 0.012

2 2.22–2.27 t 5-Aminovalerate-a-CH2
b + 0.013

2.29–2.31 Weak m c-Aminobutyrate-a-CH2
a/Propionylglycine-a-CH2

a – 0.015
2.78–2.83 m Aspartate-b-CH2 + ns
5.66–5.69 m Senecioate-a-CH vinylic protona + 0.026

3 2.22–2.27 t 5-Aminovalerate-a-CH2
b + 0.015

2.78–2.83 m Aspartate-b-CH2 + ns
5.66–5.69 m Senecioate-a-CH vinylic protona + 0.017

4 2.22–2.27 t 5-Aminovalerate-a-CH2
b + 0.015

5.66–5.69 m Senecioate-a-CH vinylic protona + 0.017
8.37–8.42 m 1-Methyladeninea/Pterin-pyrazine ring protona + 0.010

5 2.22–2.27 t 5-Aminovalerate-a-CH2
b + 0.015

5.66–5.69 m Senecioate-a-CH vinylic protona + 0.017

Abbreviations: ISB, ‘Intelligently-Selected’ Bucket; s, singlet; d, doublet; t, triplet; m, multiplet; ns, not significant via mixed model ANOVA analysis; Mult,
multiplicity.

a Tentative assignment (the 6.31–6.33 ppm ISB resonance may arise from a conjugated hydroperoxy- or hydroxydiene lipid oxidation product, and the
6.83–6.88 ppm multipet may arise from 3,4-dihydroxymandelate, 4-hydroxyphenylacetate, pyrocatechol or 3-hydroxymandelate);

b For a small number of samples, this ISB also contained an acetone-CH3 group signal (s, d = 2.245 ppm).
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Furthermore, for each subgroup an statistical analysis for each ISB is performed shown the Metabolic Assignment, the Sign
of classification mean difference between both target values, and the ANOVA pValue in Table 10. Valuable biomarker features
identified were proteins, including those with relatively intense tyrosine residue resonances, acetoin and glycine, whereas
those for the four sore throat disease classifications included 5-aminovalerate and the amino acid L-aspartate. The identity
of the 5-aminovalerate signals (i.e., those coupled to the intense d = 2.24 ppm one) were confirmed via the acquisition of
both 1D and 2D COSY 1H/1H–1H NMR profiles of the human salivary supernatant specimens. Indeed, the 2.24 ppm resonance
was found to be clearly linked to those at d = 1.66 (two sets of overlapping tt multiplets) and 3.025 ppm (triplet) of relative
intensities 2.0 and 1.0 respectively to that of the 2.24 ppm signal; these signals are ascribable to 5-aminovalerate’s 3-/4- and
5-position methylene group protons, with the 2.24 ppm one assigned to the 1-position (a-CH2) ones. With the exception of
the 2.29–2.31 ppm spectral bucket, all of the ISBs selected as important disease-determining predictor variables were of a
higher salivary concentration in the active sore throat disease class of patients than those in the healthy age-matched control
group, and this may partially arise from dehydration, which is a common feature associated with this condition.

The clinical and metabolomic significance of the biomolecular features selected via application of the FuGePSD technique
employed here will be reported and discussed in detail elsewhere. However, it should be noted that 5-aminovalerate, one of
the key biomarkers detected, is a microbial metabolite generated by oral microflora via a mechanism involving the bacterial
catabolism of L-lysine [24] (although it may also be formed endogenously [6]). Therefore, its elevated salivary concentration
in patients with an acute sore-throat condition may reflect an enhanced (localised) level of microbial growth and prepon-
derance in those afflicted. Moreover, acetoin was also found to be upregulated in the salivary metabolome of subjects with
an acute sore-throat condition, and this agent is generated via fermentation processes; indeed, it is a catabolite of the
butanediol cycle in microorganisms.

7. Concluding remarks

In this paper, a new proposal based on genetic programming for SD has been presented. The genetic programming
together fuzzy logic bring a range of advantages to the FuGePSD algorithm:

� Flexibility in the generation of the individuals since they are constructed with tree structures and the variables are
included in a dynamic manner. In this way, the use of genetic programming allows to evolve individuals without the
necessity to include all variables in the representation facilitating the obtaining of descriptive rules.

� Compact rules set with a low number of variables are obtained through the use of different parameters in the
algorithm.

� The use of the token competition operator contributes to the algorithm with diversity since it promotes the evolu-
tion of differing individuals, i.e. this operator forces individuals to seek their own niches in the search space extend-
ing the diversity.

� Facility the use with continuous variables due to the incorporation of fuzzy logic which is able to work with this type
of variables without the necessity to make a previous discretisation.

� Finally, it is important to remark the optimisation of precision of the algorithm with the use of an operation scheme
focused on an approach of cooperation and competition between the individuals of the population.

The main advantages of FuGePSD are shown in datasets with continuous variables in a wide experimental study sup-
ported by statistical tests. FuGePSD provides results which represent a marked improvement over those acquired with other
SD algorithms. Specifically, the experimental study presented in this paper shows an improvement in SD task with respect to
the best algorithm presented up to the moment NMEEFSD. Fuzzy subgroups obtained by FuGePSD are more precise and
cover more examples of the problem. Subgroups isolated demonstrate improved relationships between sensitivity and con-
fidence. Moreover, unusualness (which is a key quality measure in SD) is improved, with significant differences between to
the others algorithms analysed. Finally, the contribution provides for this new proposal has been tested in a case study
related with the acute sore throat obtaining very relevant results for researchers with expertise in this field.
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