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Concentrating photovoltaics is an innovative alternative to flat-plate module to produce cost-competi-
tiveness electricity. It is based on the use of optical system of reduced cost which is able to concentrate
the solar light on a very small surface (high efficiency solar cell). At present, this technology has a mar-
ginal position in photovoltaic market and to take off needs to increase the confidence of the public and
private sector. A better understanding of the concentrating photovoltaics technology electrical perfor-
mance under real meteorological conditions would improve this situation. Because the bankability of a
concentrating photovoltaics plant is addressed through the modelling of its energy production, an accu-
rate estimation of the maximum power of the these modules is crucial to achieve it. Accordingly, the
commercial evolution of concentrating photovoltaic technology demands prediction models for estimat-
ing the maximum power delivered by a concentrating photovoltaic module under real atmospheric con-
ditions. Until now the only established standard method for outdoor power rating of this type of modules
(ASTME-2527-09, defined by the American Society for Testing and Materials) does not consider the
impact of the direct normal irradiance spectral distribution. The solar spectrum has an important influ-
ence on the electric performance of multijunction solar cells which composes concentrating photovoltaic
modules.

In this work, an analysis of the inclusion in the prediction model of the solar spectrum by means of two
indexes (spectral matching ratio and the average photon energy) and different spectral intervals is per-
formed. Then, a differential evolution proposal for the estimation of regression coefficients for the two
multivariable regression models is described. The accurate calculation of the model parameters reveals
relations among the atmospheric conditions very useful for the experts. The multivariable regression
models have been applied to two different concentrating photovoltaic modules, obtaining mean absolute
percentage error values within the range 1.91–3.94%. The use of these accurate models for the estimation
of the maximum power would allow to estimate the electric production of a concentrating photovoltaic
power plant and the analysis of its costs and profitability, with the consequent benefits for the commer-
cial development of this technology.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The main aim of concentrating photovoltaic (CPV) technology is
to generate electricity with a lower associated cost. Regarding this
purpose, the sunlight is concentrated in the solar cell by means of
an optical device, deriving in an increase of the cell efficiency and a
resulting reduction of the required cell area to generate the same
power. These optical devices are commonly made of plastic or glass
material, which are significantly cheaper than the solar cells. CPV
modules are, in most of the cases, based on multijunction (MJ)
solar cells, which moreover tend to be composed of a serial layout
of high efficiency semiconductor materials (Law et al., 2010). These
solar cells are expected to reach values of efficiency above 50% in
the near future (Luque, 2011; Pérez-Higueras, Muñoz, Almonacid,
& Vidal, 2011).

CPV technology has numerous benefits like higher energy den-
sity, higher efficiency, needs of lower surface and lower semicon-
ductor material requirements (Chan, Brindley, & Ekins-Daukes,
2014; Swanson, 2000; Kurtz, 2009). Nevertheless, some technical
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and economic barriers must be removed to reduce the electricity
production costs using this technology and to make it really com-
petitive. In this sense, to CPV technology takes off is necessary to
continue the economical and technical support of pilot projects
which would permit to increase the confidence of the private
and public sector. A better understanding of the electrical perfor-
mance of such technology would improve this situation.

Because the bankability of a CPV Plant is an important topic to
pave the way toward a sustained growth of this technology and
this bankability is based on energy yield prediction under real
atmospheric conditions, an accurate estimate of the maximum
power (PM) of the CPV modules is crucial (Gupta, 2013; Leloux,
Lorenzo, Garca-Domingo, & Gueymard, 2014). The accurate cal-
culation of this PM would allow to estimate the electric production
of a CPV power plant and the analysis of its costs and profitability,
with the consequent benefits for the commercial development of
this CPV technology.

The calculation of the PM delivered by a CPV module under
specific environmental parameters is not a trivial issue. A general-
ised problem which concerns to the lack of an international stan-
dard method for outdoor power rating of CPV modules, is
perceived by investors as a worrying item. In this sense, the Work-
ing Group 7 (WG7) of the International Electrotechnical Commis-
sion (IEC) is currently working in a procedure for this aim, but it
is still in progress (Muller, Kurtz, & Rodríguez, 2013). According
to this, the existence of an accurate and easily reproducible meth-
odology which allows to estimate the electric behaviour of a CPV
module, could increase the investors’ confidence on this technol-
ogy, making it to expand its participation at market level.

The American Society for Testing and Materials (ASTM) E2527-
06 is, until now, the unique standard which allows calculating the
maximum power delivered by a CPV module under specific atmo-
spheric conditions. However, this standard does not consider the
spectral distribution as one of these input environmental condi-
tions. As it has been previously studied by several researchers
the spectral distribution of the direct normal irradiance has an
important effect on the electrical behaviour of CPV modules. Due
to the latter, its inclusion in the modelling has a paramount rele-
vance. Despite the existence of some proposals in the literature
to calculate the maximum power of a CPV module considering dif-
ferent input variables and alternative ways of modelling the spec-
tral distribution, none of them have become definitive or
generalised. In this work, two different variables have been used
to include this spectral influence: the Spectral Machine Radio
(SMR) and the Average Photon Energy (APE). At the same time,
the multiple linear equations proposed are divided into two inter-
vals, considering the SMR and APE values which coincide with the
standard spectral distribution as turning points. This permits the
implementation of the proposed model using the experimental
measures given by two alternative devices: spectro-radiometer
or triband spectro-heliometer.

As has been previously demonstrated (Domínguez, Antón, Sala,
& Askins, 2013), the DNI spectral distribution negatively influences
the PM delivered by CPV modules, as it separates from the AM1.5D
(ASTM G173-03, 2012) standard one, from which the modules
were manufactured. Due to the previous reasoning, this work pro-
poses the use of two different equations for each index, one for
each spectral interval. The first equation must be implemented
when the DNI spectral distribution has a higher red-content than
the standard one; otherwise, the second equation will be used
when the incident direct spectrum has a higher blue-content than
the standard. The optimisation of these equations is performed
through the use of differential evolution (DE) which is a simple
and effective versatile function optimisation based on evolution
strategies. It stands out due to the diversity introduced in the
evolutionary process since the searching is oriented through
differences between individuals of the population. Moreover, it is
important to note that DE is efficient since it has a linear
complexity.

So, in conclusion, this paper proposes a model formed by multi-
ple linear equations to evaluate the PM delivered by different CPV
modules, as a function of the following atmospheric condi-
tions:DNI, TA; WS, and DNI spectral distribution through two alter-
native indexes: SMR and APE. This estimation model is, at the same
time and with the objective of increasing its accuracy, divided into
two different spectrum intervals. To obtain the regression coeffi-
cients which best fit the equations which compose the proposed
model, a data mining algorithm based on DE was implemented.

The contribution is organised as follows: Section 2 describes the
background of the presented work. Section 3 introduces the use of
two indexes to define the influence of DNI spectral distribution on
the CPV modules’ electrical performance. Section 5 outlines the
experimental framework. Section 6 shows the results obtained,
and finally, some concluding remarks and future research direc-
tions are outlined.

2. Background

In this section, basic aspects concerning CPV technology are
exposed in Section 2.1. The main concepts in order to facilitate
the understanding of the electric behaviour of CPV modules under
changing atmospheric conditions and some models introduced by
other authors for PM prediction, are described. Secondly, in Sec-
tion 2.2 principal features of the DE algorithm are summarised
and presented.

2.1. CPV technology

The main aim of the CPV technology is to contribute to the
generation of electricity with a lower cost, by using the least pos-
sible amount of material. Most of CPV modules available in the
market use high efficient MJ solar cells, with an optical device to
focus the solar radiation in the MJ solar cell surface. The required
optical device must include a primary optics, that is in charge of
collecting and concentrating the DNI, and a secondary optics to
uniformly distribute the sunlight from the primary optic, along
the whole surface of the solar cell (Herrero et al., 2012). Due to
the latter, only the direct component of the global radiation is used,
in other words, the diffuse component is not exploited. The assem-
bly of various solar cells, with their respective complementary ele-
ments, constitutes a CPV module. Finally, it is necessary to use a
tracking system to hold the CPV module and to orient it towards
the Sun, in such way that the component solar cells are, at every
moment, perpendicularly disposed to the solar ray (Luque, Sala,
& Luque-Heredia, 2006).

As it has been mentioned in the introduction, the ASTM E-2527-
09 is the unique defined standard to evaluate the PM delivered by
CPV modules. Nevertheless, this standard does not consider the
influence of the solar spectral distribution on the electric perfor-
mance of CPV modules.

In Section 2.1.1, the main atmospheric parameters whose influ-
ence must be taken into account in the evaluation of CPV modules
electric performance, are described. There are different models
proposed by other authors which estimate, through different tech-
niques, the PM of a CPV module. However, none of these models
consider all the atmospheric conditions previously described.

2.1.1. Study of influential atmospheric conditions on the electric
performance of CPV modules

First of all, it is necessary to define and describe the atmo-
spheric conditions whose impact must be considered as influential
when estimating the electric performance of CPV modules.
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The DNI is considered as the main atmospheric parameter
which influences the outdoor electric performance of a CPV mod-
ule. The relation between DNI and PM is almost linear, so its effect
is predominant.

Using the DNI as the integration value along the whole wave-
length range for a specific photovoltaic (PV) device is a common
practice. Nevertheless, we can consider the DNI value for each
wavelength value, obtaining the solar spectrum distribution. As
has been widely demonstrated, the DNI, as well as its spectral dis-
tribution, have an important influence on the electric performance
of MJ solar cells. If the incident solar spectrum differs from the
AM1.5D standard (for which CPV modules are optimised), the MJ
solar cells do not work as expected, offering a lower value of short
circuit current and consequently a lower delivered PM (Meusel,
Adelhelm, Dimroth, Bett, & Warta, 2002; Kinsey & Edmondson,
2009; Philipps et al., 2010). As explained above, CPV modules
are, in most of the cases, composed of MJ solar cells, so they are
also influenced by these described atmospheric parameters. Some
recently works study this influence through the analysis of the per-
formance of CPV modules (Araki, Kemmoku, & Yamaguchi, 2008;
Peharz, Siefer, & Bett, 2009; Fernández, Pérez-Higueras, García
Loureiro, & Vidal, 2013), CPV systems (Strobach et al., 2012;
Ghosal, Burroughs, Heuser, Setz, & Garralaga-Rojas, 2013), or big
CPV plants (Bowman, Jensen, & Melia, 2012).

As can be observed, some of these works include the air tem-
perature and the wind speed as initial significant parameters in
the study and analysis of the electric performance of CPV systems.

It is well known that the MJ solar cells temperature affect to
their electric performance. In this sense, the temperature has an
almost negligible positive effect on the short circuit current deliv-
ered by the MJ solar cell, and a negative predominant effect on
both the open circuit voltage and PM (Nishioka et al., 2006;
Kinsey et al., 2008; Siefer & Bett, in press; Helmers, Schachtner, &
Bett, 2013). The same behaviour is observed when analyzing the
impact of the temperature on the electric performance of CPV
modules equipped with MJ solar cells (Peharz, Ferrer Rodríguez,
Siefer, & Bett, 2011a). However, the own disposition of the MJ solar
cells inside the CPV module makes it very difficult to measure their
temperature. There are some methods to estimate the temperature
of the MJ solar cells (Ju, Vossier, Wang, Dollet, & Flamant, 2013), or
the temperature of the whole CPV module (Peharz, Ferrer
Rodríguez, Siefer, & Bett, 2011b). Nevertheless, these methods
require a previous knowledge about specific electric characteristics
of the MJ solar cells, or coefficients which depend on each module
itself. These parameters could be calculated through a solar sim-
ulator. Instead of this, in this work, and as has been done in several
previous studies (Araki et al., 2008; Muller, Marion, Rodríguez, &
Kurtz, 2011; Fernández et al., 2012, 2013), TA is considered as influ-
ential factor, given a direct relation between cell temperature and
TA (Almonacid, Pérez-Higueras, Fernández, & Rodrigo, 2012; Antón
et al., 2012).

The consideration of the WS as one of the influential factors
whose contribution must be added in the equation proposed by
the ASTM E-2527-09 standard, has led the study and analysis of
the effect of this parameter by other authors (Muller et al., 2011;
Araki et al., 2008). The WS can perform a positive refrigerating
effect on the electric performance of a CPV system, cooling the
MJ solar cells which compose the module down, and obtaining
therefore a better behaviour (Castro et al., 2013). However, high
WS values can also exert a negative effect of misalignment on the
tracker (Lin & Fang, 2013), displacing the MJ solar cells from their
optimum arrangement in the solar beam direct trajectory.

2.1.2. Models for the estimation of CPV modules maximum power
A review of the main models for estimating the PM of CPV mod-

ules has been recently published (Rodrigo, Fernández, Almonacid,
& Pérez-Higueras, 2013). However, it must be taken into account
that, when talking about standard power rating methods, the
ASTM E2527-09 methodology is the unique model in CPV field.

Hereunder some models proposed by other authors, which cal-
culate the PM of CPV modules, are exposed. It must be taken into
account that the error obtained is expressed in a different way in
each of those models, being difficult to compare each other.

ISFOC (Rubio, Martínez, Perea, Sánchez, & Banda, 2009) applied
the multiple linear equation given by ASTM E2527-09, trying to
obtain the regression coefficients: a1; a2; a3, and a4, which form
the following equation:

PM ¼ DNI ða1 þ a2DNI þ a3TA þ a4WSÞ ð1Þ

where:

� PM (W) : maximum power.
� DNI ðW=m2Þ : direct normal irradiance.
� TA (�C) : ambient temperature.
� WS (m/s) : wind speed.

The regression coefficients were obtained through a Matlab
function, with five days of real outdoor data, obtaining an error
of 2.93%. This error is expressed as the difference, in percentage
terms, between the PM of the CPV module under determined stan-
dard conditions, and the nominal value of PM according to the
manufacturer specifications. The used data were previously filtered
so that the DNI must be higher than 700 W/m2.

In the same way, a multiple linear regression method to obtain
the PM delivered by 4 different CPV module models was introduced
in Peharz et al. (2011b). This PM is expressed as a function of DNI,
Spectrum factor (Z) and module temperature (Tmodule), as shown in
the equation:

PM ¼ cDNIDNI þ cZZ þ cT Tmodule þ K ð2Þ

where:

� PM (W): maximum power.
� DNI (W/m2): direct normal irradiance.
� Z (–): spectrum factor.
� Tmodule (�C): module temperature previously calculated through

a model developed by the authors of the work.
� K: constant.

This multi-linear equation was modified by adding a quadratic
term for one of the CPV modules, after observing a turning point in
its efficiency value for Z ¼ 0:015. The updated equation was
expressed as follows:

PM ¼ cDNIDNI þ cZ2Z2 þ cZZ þ cT Tmodule þ K ð3Þ

This regression methodology did not take into account the WS influ-
ence, and as described below, proposed an equation with a quadra-
tic term to predict the PM for one of the implied CPV modules. The
equation defined for the rest of the CPV modules was linear. This
methodology obtained absolute Root Mean Square Error (RMSE)
values of 1.3 W, 1.2 W, 1.6 W and 0.6 W for module 1, module 2,
module 3 and module 4, respectively. The nominal values of PM

for these CPV modules were: 54.0 W, 50.1 W, 44.0 W and 15.7 W,
respectively.

In Fernández, Almonacid, Rodrigo, and Pérez-Higueras (2013)
the authors proposed a model to estimate the PM of CPV modules
from outdoor real atmospheric conditions. In this model, this PM

is expressed as a function of the following climatological
conditions:

PM ¼ f ½DNI; TA;AirMass ðAMÞ� ð4Þ
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The AM was considered as an approximation of the real solar
spectrum, and used to define its influence. Otherwise, the WS influ-
ence was not taken into account. The model proposed two different
equations to predict the electric performance of the CPV modules,
in function of the AM value:

� When AM 6 2, it was confirmed that there was no influence of
the AM on the PM delivered by the module, so the equation was
expressed as follows:
PM ¼
P�

DNI�
DNIð1� dðTA � T�AÞÞ ð5Þ

where P� is the value of the maximum power calibrated by the
authors for DNI ¼ 850 W=m2; TA : 20 �C; AM : 1:5 and wind
speed values lower than 1 m/s. T�A is considered as 20 �C and d
is the coefficient which defines the impact of TA on the PM .
� Otherwise when AM > 2, an AM linear correction was included

to the equation:
PM ¼
P�

DNI�
� DNIð1� dðTA � T�AÞÞ ð6Þ

�ð1� eðAM � AM2ÞÞ

where e is the coefficient which defines the impact of AM on the
PM , being AM2 the air mass value from which this parameter
begins to influence the PM of the modules.

By regression analysis, the values of d and e, for the two studied
CPV modules, were obtained. After the comparison of the predicted
and the measured value of PM , relative RMSE values of 3.38% and
3.48% are respectively obtained for module A and module B.

In addition, artificial neural networks (ANN) can also be applied
to obtain the PM of a CPV module working under realistic atmo-
spheric conditions. In this sense, in Almonacid, Fernández,
Rodrigo, Pérez-Higueras, and Rus-Casas (2013) a multilayer per-
ceptron (MLP) composed of 5 input neurons: DNI; AM, precipitable
water (PW), TA and WS was proposed to estimate the PM of CPV
modules, obtaining a relative RMSE value of 3.29% for the test data-
set. In the same way, in Rivera, García-Domingo, Del Jesús, and
Aguilera (2013), CO2RBFN, an evolutionary cooperative-competi-
tive algorithm for the design of radial basis neural networks was
applied to the calculation of the PM delivered by a CPV module.
The proposed methodology used the DNI; APE; TA and WS as
inputs to the model, obtaining an absolute RMSE value of 3.93 W
for the test dataset.

2.2. Differential evolution

The objective of this paper is to deepen in the characterisation
of CPV modules using the multivariable regression equations. Thus,
new variables are considered in the ASTM standard and their
coefficients must be determined. Throughout the literature, in real
optimisation problems have been used different meta-heuristics
such as immune systems (Yildiz, 2009a, 2009c, 2009b), bee colony
(Yildiz, 2013a, 2013d), cuckoo search (Ismail & Yildiz, 2012; Yildiz,
2013b) or particle swarm optimisation (Yildiz, 2012b; Yildiz &
Solanki, 2012), for example. In this paper, a DE approach is
employed in order to characterise the CPV modules.

The evolutionary algorithms are stochastic algorithms for
optimising and searching based on the natural evolution process.
These algorithms were introduced by Holland (Holland, 1975). Dif-
ferent computational paradigms can be found within EAs: genetic
algorithms (Goldberg, 1989; Holland, 1975), evolution strategies
(Schwefel, 1995), evolutionary programming (Fogel, 1995) and
genetic programming (Koza, 1992). Within the evolution strategies
can be found the DE which was defined by Storn and Price (1995)
as a versatile function optimiser where mutation is emphasised. DE
uses a mutation operator to promote the diversity in the pop-
ulation where a scaled difference between an original individual
and several randomly selected individuals from the same pop-
ulation is performed. Subsequently to the result a recombination
operator is applied in order to lead the search for an optimal solu-
tion. It is important to note the final replacing where only the gen-
erated individual is included in the new population if it
outperforms to the original one. A complete review about DE can
be observed in Das (2011).

According to the original definition of the algorithm, its main
stages are:

1. Initial population (Pop) is generated in a random way.
2. Following population in the evolutionary process is completed

with the following process:
(a) For each original individual Indm, three individuals are ran-

domly extracted (Ind0; Ind1 and Ind2) from the population.
(b) A mutated individual (Indoff ) is generated with the previous

three individuals according to Eq. (7).
(c) Next, a recombination between the initial and mutated

individuals (Indm and Indoff ) is performed in Indoff as can
be observed in Eq. (8).

(d) Finally, the individual with the best adaptation between the
initial (Indm) and recombined (Indoff ) individuals will be
introduce in the population.

3. Process finishes when the number of generations is reached.
4. Best individual of the final population is extracted.

The mutated individual is generated through the following
equation:

Indoff ¼ Ind0 þ FðInd1 � Ind2Þ ð7Þ

where F is scaled factor for the mutation operator. On the other
hand, the recombined individual is obtained in a probabilistic way
where for each gene (j ¼ 1; . . . ;n where n ¼ numberofgenes) of the
individual is performed the following equation:

Indoff ½j� ¼
Indoff ½j� if rand½0;1� 6 0:5
Indm½j� otherwise

�
ð8Þ

Throughout the literature the basic mechanisms of techniques
based on DE provide good results in optimisation problems, spe-
cially for continuous optimisation (Neri & Tirronen, 2010; Yildiz,
2012a; Yildiz, 2013c). They are simple and efficient models which
therefore have often been employed for solving various engineer-
ing problems such as the pioneering works (Storn, 1996; Masters
& Land, 1997; Thomas & Vernon, 1997; Chang & Chang, 1998).
On the other hand, the use of DE in the PV domain has been widely
used for different authors recently.

� In Ishaque, Salam, Taheri, and Shamsudin (2011) and Ishaque,
Salam, Mekhilef, and Shamsudin (2012) authors performed a
complete experimental study in order to determine the best
computational method between a genetic algorithm, a particle
swarm optimisation and two DE algorithms to build an efficient
and accurate photovoltaic system simulator.
� A method based on DE for determining the parameters of

photovoltaic modules with the main objective of obtaining a
valuable design tool for photovoltaic system designers was pre-
sented in Ishaque and Salam (2011).
� In Ramaprabha and Mathur (2011) DE is applied in order to

address the maximum power point for tracking photovoltaic
modules under partial shaded conditions.
� Seme and Stumberger published in Seme and Stumberger

(2011) and Seme, Stumberger, and Vorsic (2011) a predictive
algorithm based on DE in order to know the solar angle in
photovoltaic modules for optimising their power.
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� In Gómez-Lorente, Triguero, Gil, and Espín-Estrella (2012) the
design of photovoltaic plants based on solar tracking with the
minimum electric losses possible with different soft computing
techniques such as DE is optimised.
� The simulation of solar systems is performed through different

parameters. The optimisation of these parameters was per-
formed in Gong and Cai (2013) through an improved DE
algorithm.
� In Ye and Wang (2014) the solar cell model parameters from

current–voltage (I–V) characteristics are determined. It was
demonstrated that the I–V curve derived from the parameters
extracted by the DE approach is in good agreement with the
experimental or simulated I–V data.
� An improvement control method for solar auto-tracking based

on DE is presented in Hu, Wang, He, and Wang (2014). In this
way, results present a full application of the solar energy, and
reducing the energy-loss of drive motor in the dynamic tracking
process.
� A heuristic approach based on a DE algorithm was employed to

perform an efficient optimisation of the conventional radial
staggered heliostat field layout in the contribution (Atif & Al-
Sulaiman, 2014). The model calculates all the required optical
performance parameters at every step of the optimisation pro-
cess for each heliostat and consequently more reliable results
are obtained.
� In Soon-Tye, Mekhilef, Yang, and Chuang (2014) a DE based

optimisation algorithm to provide the globalised search space
to track the global maximum power point is proposed. The
experimental results show that the proposed algorithm is able
to converge to this point in less than 1.2 s with high efficiency.
� An improved adaptive DE with crossover rate repairing tech-

nique and ranking-based mutation is proposed in Lian-Jianga,
Maskella, and Patrab (2013) in order to fast and accurately
extract the solar cell parameters which play an important role
in the simulation and design calculation the photovoltaic sys-
tems. The experimental results indicate the superiority of this
proposal in terms of the quality of final solutions, success rate,
and convergence speed.

As can be observed in this brief summary authors have applied
DE for solving different problems within PV field. The main goals
were the modelling and optimising of PV modules and/or plants.
The proposal presented in this paper considers the use of DE in
order to estimate the PM delivered by a CPV module under deter-
mined influential atmospheric conditions.

3. The use of SMR and APE indexes to characterise the DNI
spectral distribution

As introduced in Section 1, this paper proposes to modify the
equation given by ASTM E-2527-09 methodology to calculate the
PM delivered by CPV modules. This modification consist of includ-
ing the influence of the solar spectrum by means of an additional
addend to the multiple linear equation.

When evaluating the influence of the solar spectrum dis-
tribution on the electric performance of CPV modules, two differ-
ent indexes can be considered: SMR and APE.

On the one hand, SMR is defined as a index which expresses the
ratio between the effective DNI received by two different junctions
(top and middle) of the MJ solar cells which compose the CPV mod-
ule (Domínguez, Askins, & Sala, 2009). When the incident solar
spectrum differs from the AM 1.5D standard, the effective DNI
collected by each of these junctions could be different, so the
photocurrent generated by the whole MJ solar cell is limited by
the junction generating a lower photocurrent at each moment.
The SMR index is calculated as follows:
SMRðAM1:5DÞTOP�junction
MIDDLE�junction ¼

DNITOP�junction

DNIMIDDLE�junction
ð9Þ
where DNITOP�junction and DNIMIDDLE�junction represent the effective DNI
collected by the top and middle junction, respectively. Attending to
the last equation, there are three different possibilities:

� SMR < 1, the incident spectral distribution is red-richer than the
standard one, which means that the middle junction collected
an effective DNI higher than the one collected by the top junc-
tion, being this last the limiting junction.
� SMR > 1, the incident spectral distribution is blue-richer than

the standard one, which means that the top junction collected
an effective DNI higher than the one collected by the middle
junction, being this last the limiting junction.
� SMR ¼ 1, top and middle junctions collected the same effective

DNI, which means that the incident spectrum coincides with the
AM1.5D standard one.

Fig. 1 shows the relation between the SMR and DNI for the
experimental campaign carried out in Jaén, described in Section 5.1.
As appreciated, with low values of DNI, red-richer spectrums are
registered during the first and last hours of the day. Otherwise,
under cloudy conditions, spectral distributions with a higher con-
tent in blue are obtained. Furthermore, under high values of DNI,
which correspond to clear sky conditions, the SMR value is closer
to the unit, so the spectral distribution is therefore nearer to the
AM1.5D standard one.

In Fig. 2, two histograms are shown, which represent the per-
centage of collected data for different DNI and SMR intervals, dur-
ing the experimental campaign.

As can be appreciated, most of the registered data are collected
under high DNI values, and under spectral distributions with a high
blue-content. The SMR influence on the normalised Short Circuit
Current (ISCN)-and therefore on the PM-generated by a CPV module
is demonstrated in Fig. 3. The ISC values were normalised in terms
of DNI, to avoid its predominant effect. As can be appreciated,
under SMR values lower than 1, this factor has a positive influence
on the electric performance of the CPV module. In other words,
increasing values of SMR makes the module to produce a higher
ISCN . Otherwise, when SMR values are close to 1 (which means
spectral distributions close to the AM1.5D standard one), the mod-
ule is working in an optimum way. Under SMR values higher than
1, this parameter has a negative influence, making the module to
deliver a lower value of ISCN .
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On the other hand, APE index is defined as a unique value
which characterises the shape of the DNI spectral distribution
between a determined wavelength range (Minemoto, Nakada,
Takahashi, & Takakura, 2009). As increasing the value of the
APE index, the incident spectrum is expected to have a higher
blue content. The APE index can be obtained by calculating the
following equation:

R b
a EkðkÞdkR b
a /kðkÞdk

ð10Þ

where:

� Ek (W/(m2 nm)): spectral irradiance.
� / (1/(m2 nm s)): spectral photon flux density (ratio between the

spectral irradiance Ek and the energy of the photon of wave-
length lambda).
� a and b are considered as the integration limits and depend on

the spectro-radiometer specifications.

The APE index has been introduced as a remarkable parameter
to describe, in an easy way, the impact of the solar spectrum
change in different PV solar technologies (Moreno Sáez, Sidrach-
De-Cardona, & Mora-López, 2013; Ishii, Otani, Takashima, & Xue,
2013; Piliougine, Elizondo, Mora-López, & Sidrach-de Cardona,
2013; Cornaro & Andreotti, 2013; Nofuentes, García-Domingo,
Muoz, & Chenlo, 2014). There also exists a work, which used the
APE index to define the solar spectrum influence on the electric
performance of a CPV system (Husna, Shibata, Ueno, Ota, &
Minemoto, 2013).

Three different DNI spectral distributions, with their respective
associated values of APE and SMR, were represented in Fig. 4.

Fig. 5 shows the intrinsic relation between both indexes used to
measure the influence of the spectrum: SMR and APE. As can be
appreciated, this relation is almost linear, except when the solar
spectral distribution has high red-content, in which APE values
are lower than expected. In this way, it is possible to obtain a first
degree polynomial expression to define this relation, without
entailing a big error:

f ðxÞ ¼ p1xþ p2 ð11Þ

Coefficients (with 95% of confidence bounds):

� p1 ¼ 0:34 ð0:3385;0:3414Þ
� p2 ¼ 1:487ð1:485;1:488Þ

Goodness of fit (values given by MatlabTM curve fitting toolbox):

� R� square : 0:9601
� RMSE : 0:00644
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From the last obtained equation, it is possible to calculate the
APE value which corresponds to the AM1.5D standard spectral dis-
tribution, or in other words, the APE value which corresponds to
SMR ¼ 1. As can be observed, the maximum of the function was
found for SMR values closer to the unit, under which the CPV mod-
ule should work on its optimum manner. Because of that, SMR ¼ 1,
that according to the linear relation between SMR and APE corre-
sponds to APE ¼ 1:83, is going to be considered as the turning point
to the definition of the model proposed in this paper, dividing it
into two different spectral intervals. This turning point corre-
sponds to the AM 1.5D standard spectral distribution.

4. Differential evolution for the optimisation of CPV regression
model

Based on ASTM E-2527-09 methodology, and modifying it to
include the impact of the solar spectrum, the work presented in
this paper proposes obtaining the regression coefficients through
DE proposal with the best fit the multiple linear equations.

The core of this DE-proposal is based on the equations for the
calculation of the PM which can be observed in Tables 1 and 2. Both
equations contain different regression parameters (aa

1; a
a
2; . . . ; ab

5)
which are associated to each atmospheric condition. The influence
of these conditions is widely described in Section 2 where DNI,
Spectrum (through SMR or APE), TA and WS are inputs to the mod-
elling and the PM delivered by the studied CPV modules under
specific atmospheric conditions, is the output of the model.

Considering the definition of the regression equations for this
evolutionary algorithm, representation of the individuals is based
on the different parameters to optimise the atmospheric condi-
tions, which can be observed in Table 3 where a gene for each
coefficient is used: aa

1; a
a
2; . . . ; aa

5; a
b
1; . . . ; ab

5. The initial value of these
coefficients are generated in a random way within the domain
½�1;1�.

The goal of the DE-proposal is to evolve, throughout the differ-
ent generations, the values of these regression parameters in the
individuals of the population in order to obtain the lowest possible
error between the PM predicted with the regression equations
(using these regression coefficients) and real PM values. Specifi-
cally, this error is the fitness function of the individual and it is cal-
culated through the mean absolute percentage error (MAPE)
between the real and predicted PM values as shown in the follow-
ing equation:

MAPE ¼ 100
N

XN

i¼1

predictedPM � realPM

realPM

����
���� ð12Þ
where N is the number of samples of the dataset.
Evolutionary process is based on the scheme of Algorithm 1.

This algorithm is controlled through the number of generations.
For each generation of the process, a new individual for each initial
one is generated through mutation with others three individuals
(which were selected in a random manner). In this way, one off-
spring is obtained by the algorithm for each initial one. Through
a random process, a recombination between both individuals (ini-
tial and offspring) is generated, and at the end of the process, the
individual included in the population of the next generation is
the best one between the recombined individual and the initial
one.

Algorithm 1. Operation scheme of DE-proposal

BEGIN
Initialises & Evaluates PopðtÞ
Increments the number of generations
repeat

for i = 1 to Size(PopðtÞ) do
Ind0; Ind1; Ind2 = SelectIndividuals(PopðtÞ)
for j = 1 to SizeIndividual() do

if Random(0,1) 6 0.5 then
Indoff ½j� ¼ Ind0½j� þ FðInd1½j� � Ind2½j�Þ

else
Indoff ½j� ¼ Indi½j�

end if
end for
Evaluate Indoff

if Indoff . fitness 6 Indi.fitness then
Indoff in PopðtÞ

else
Indi in PopðtÞ

end if
end for
Increments the number of generations

until Number of generations is not reached
Return the individual with the best fitness
END
5. Experimental framework

In this section the main details of the measurement system are
presented in Section 5.1. Additionally, the main features and
parameters of the experimental framework are described in
Section 5.2.

5.1. Measurement set-up

The proposed experimentation was implemented to two differ-
ent models of CPV modules, whose main characteristics are
resumed in Table 4. To measure and register the data used in the
presented experimentation, an Automatic Test & Measurement
System designed by IDEA research group was used (Rivera et al.,
2013).

The measures were acquired at the rooftop of the Higher Poly-
technical School of Jaén during the period between March 2013
and November 2013, forming a whole dataset composed of 8780
samples in the case of the module M1 and 4710 samples for the
module M2. A less amount of data for module M2 was obtained
because they had to be filtered due to shadowing problems. The
atmospheric measures were registered every 5 min using the out-
door devices specified in Table 5 and described below:



Fig. 6. Outdoor measurement devices: pyrheliometer, spectro-radiometer and
spectro-heliometer.

Fig. 7. Outdoor measurement devices: anemometer and temperature probe.

Table 1
Equation for the calculation of PM using SMR index as additional addend.

SMR as additional addend considering SMRAM1:5 ¼ 1

if SMR < SMRAM1:5

Pm ¼ DNI ðaa
1 þ aa

2DNI þ aa
3TA þ aa

4WS þ aa
5SMRÞ

elseif SMR P SMRAM1:5

Pm ¼ DNI ðab
1 þ ab

2DNI þ ab
3TA þ ab

4WS þ ab
5SMRÞ

Table 2
Equation for the calculation of PM using APE index as additional addend.

APE as additional addend considering APEAM1:5 ¼ 1:83

if APE < APEAM1:5

Pm ¼ DNI ðaa
1 þ aa

2DNI þ aa
3TA þ aa

4WS þ aa
5APEÞ

elseif APE P APEAM1:5

Pm ¼ DNI ðab
1 þ ab

2DNI þ ab
3TA þ ab

4WS þ ab
5APEÞ

Table 3
Representation of an individual for the algorithm.

aa
1 aa

2 . . . aa
5 ab

1 ab
2

. . . ab
5

�0.76 0.24 . . . 0.00 �0.01 �0.05 . . . 0.23

1 http://www.r-project.org/.
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� A Kipp & Zonnen™ CHP 1 pyrheliometer to the measurement of
the direct normal irradiance (DNI).
� An EKO™ MS700 spectro-radiometer with a collimator tube to

the measurement of the direct normal spectral Irradiance dis-
tribution with a wavelength range of 350–1050 nm. From the
measurement of the spectrum distribution the APE value is
calculated.
� A Triband spectro-heliometer composed by three component
cells, with the same structure of the MJ solar cells which com-
pose the analysed CPV modules. In this way it is possible to
independently measure the effective irradiance collected by
each junction, and so calculate the SMR index.
� A meteorological Station formed by a Young™ 41382VC relative

humidity & temperature probe to register the TA and a Young™
05305VM anemometer to measure the WS.

The Automatic Test & Measurement System permits to
simultaneously measure and register the PM of the analysed CPV
modules, together with the atmospheric conditions which influ-
ence their electric performance.

5.2. Experimental set-up

The experimentation process is performed through a separation
between training and test dataset. In this case, we use 80% (train-
ing) of the whole dataset to calculate the regression coefficients
that best fit the equations which compose the proposed model.
Otherway, 20% (test) of the whole dataset was used to validate
the predictive capacity of the proposed model.

Moreover, different aspects must be considered in order to use
the DE-proposal. On the one hand, it must be defined the parame-
ters of the algorithm as number of generations and number of
individuals for the populations which are 10,000 and 100, respec-
tively. On the other hand, due to the nature of this stochastic algo-
rithm, ten executions were performed and the execution with the
best results were selected.

The results obtained for the DE proposal with the test data are
compared with the ones provided by a multiple linear regression
(MLR) method (Flury & Riedwyl, 1988) with the typical equation:

f ð~xÞ ¼ b0 þ
Xn

j¼1

xjbj þ e ð13Þ

where ~x ¼ ðx1; x2; . . . ; xpÞ is a vector of inputs; b’s are unknown
coefficients, the variables input variables xj and e being a random
error.

The most popular estimation method for the coefficients, least
squares, pick them to minimise the residual sum of squares.

RSSðbÞ ¼
Xn

i¼1

ðyi � f ðxiÞÞ2 ¼
Xn

i¼1

yi � b0 �
Xp

j¼1

xijbj

 !2

ð14Þ

Specifically, the fitted values b’s are estimated using the R soft-
ware.1 It is important to highlight that this method is executed only
once because it is a non-stochastic.

6. Experimental analysis

The MAPE between real PM values and PM values predicted by
DE and MLR for the CPV modules under study (M1 and M2), are
shown in Table 6.

As it can be confirmed, the algorithms implemented to calculate
the regression coefficients which best fit the equations shown in
Tables 1 and 2, provide error results very similar between them.

http://www.r-project.org/


Table 4
Main characteristics of the CPV modules under study.

Module
ref.

Solar cells type Number of solar
cells

Concentration
factor

M1 Multijunction – GaInP/
Ga(In)As/Ge

25 550

M2 Multijunction – GaInP/
GaInAs/Ge

6 625

Table 5
Measurement of atmospheric conditions by outdoor devices.

Atmospheric
condition

Units Outdoor device Measures
range

Figures

DNI (W/m2) Pyheliometer [140–1024] Fig. 6
Spectrum APE (eV) Spectro� radiometer [1.59–1.87] Fig. 6
Spectrum SMR (–) Spectro� heliometer [0.40–1.13] Fig. 6
TA (�C) Spectro� heliometer [11.39–41.82] Fig. 7
WS (m/s) Anemometer [0.04–20.50] Fig. 7

Table 6
MAPE test results obtained by both implemented algorithms to the CPV modules
under study.

Mod Index DE (%) MLR (%)

M1 SMR < 1 3.07 3.06
SMR P 1 2.17 2.19
APE < 1:83 2.94 2.99
APE P 1:83 2.05 2.06

M2 SMR < 1 2.45 2.47
SMR P 1 3.08 3.94
APE < 1:83 2.48 2.40
APE P 1:83 2.59 1.91
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Nevertheless, the DE algorithm obtained better results in the
majority of the cases. In general, the obtained results show the
capacity of both implemented methodologies to solve the pro-
posed multiple linear model, with MAPE values within the interval
[1.91–3.94]%. From the analysis of the MAPE values calculated for
the two CPV modules under study, the possibility of using both
SMR and APE indexes to define the influence of the DNI spectral dis-
tribution on CPV modules electric performance, is enhanced.

In Table 7, the regression coefficients obtained by the DE algo-
rithm for the two analyzed CPV modules are presented.

It is important to highlight that the solar tracker which support
the CPV modules under study, is optimised for the module M1.
Because of that, the electrical parameters delivered by this CPV
module M1 were considered as basis of the study of the influence
of atmospheric conditions on the electrical behaviour of CPV mod-
ules. In this way, and according to the regression coefficients calcu-
lated by the DE-proposal for the module M1, it can be remarked:
Table 7
Regression coefficients obtained by DE methodology for the two CPV modules.

Module Index a1 a2

M1 SMR < 1 0.076423 �1.63E�0
SMR P 1 0.150911 �9.48E�0
APE < 1:83 �0.178408 �1.66E�0
APE P 1:83 0.219101 �8.79E�0

M2 SMR < 1 0.045007 �6.15E�0
SMR P 1 0.063086 �7.10E�0
APE < 1:83 0.000072 �7.98E�0
APE P 1:83 �0.023640 �8.73E�0
� Almost linear relation between DNI and PM delivered by CPV
modules. This can be appreciated due to the low values of a2

coefficients compared to a1 ones.
� Very slight negative influence of TA on the PM delivered by CPV

modules. This influence is given by a3 regression coefficients.
� Very slight positive influence of WS on the PM delivered by CPV

modules. This influence is given by a4 regression coefficients.
� As it was predicted, a positive influence of the DNI spectral dis-

tribution on the PM of the CPV modules for values of SMR < 1 or
APE < 1:83 is observed: when increasing the value of SMR or
APE, the PM is increased. This influence is given by a5 regression
coefficients for the first spectral interval.
� Negative influence of the DNI spectral distribution on the PM of

the CPV modules for values of SMR P 1 or APE P 1:83. In this
way, when increasing the value of SMR or APE, the PM is
decreased. This effect is perceptible through the analysis of a5

regression coefficients for the second spectral interval.

The multivariable regression model presented in this paper is
very important as it allows obtaining the regression coefficient
which quantify the influence of different atmospheric conditions
on the PM delivered by a CPV module. This functionally can not
be achieved by an ANN model.

Some differences are observed between the electric perfor-
mance of the two analyzed CPV modules and their dependence
on the atmospheric conditions. This fact could be due to the exis-
tence of constructive variations between them, and also because
the solar tracker is calibrated so that the module M1 works in an
optimum way. In future experimental campaigns it is proposed
to recalibrate the solar tracker to make the module M2 to work
in an optimum manner. This would allow to compare those results
with the ones obtained in the work presented in this paper, and
would permit to obtain more generalised conclusions.

Despite the latter, and after analyzing the MAPE values calcu-
lated for the multiple linear regression model, it is concluded that
this model is suitable for simple and accurate predictions of the PM

delivered by different CPV modules.
7. Conclusions and future research directions

The multivariable regression model proposed in this work is
based on the ASTM E-2527-09. This standard defines a methodology
to calculate the PM delivered by CPV modules or systems, through
the resolution of a multiple linear equation. This expression allows
the calculation of the PM as a function of the following input atmo-
spheric conditions: DNI; TA and WS. To calculate this PM value, the
regression coefficients which compose the multiple linear equation
must be previously calculated. Nevertheless, the methodology
proposed by the ASTM E-2527-09 has a big drawback, as it does
not consider the influence of the solar spectrum distribution.

In this work, the standard methodology has been modified in
order to make it more accurate. This modification consists on
a3 a4 a5

5 �1.11E�04 3.00E�04 0.062229
6 �3.63E�04 3.38E�04 �0.012287
5 �1.53E�04 3.01E�04 0.174229
6 �3.75E�04 3.06E�04 �0.044181

6 �7.52E�05 �5.78E�05 0.025581
6 7.86E�05 -1.17E�05 0.002795
7 �4.80E�04 �5.23E�05 0.035437
6 5.18E�05 �6.57E�05 0.049991
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adding an additional term which quantifies the influence of the DNI
spectral distribution on the PM delivered by CPV modules. The pro-
posed model allows to consider this additional term through the
use of two alternative indexes: SMR and APE. In this way, the
applicability of the model is increased as it can be implemented
from the measurement acquired through a triband spectro-
heliometer (SMR) or a spectro-radiometer(APE).

Additionally, the proposed model consider a division between
two spectral intervals. The influence of the DNI spectral dis-
tribution on the PM delivered by CPV modules is marked by a turn-
ing point which coincides with the AM1.5D standard spectral
distribution. Attending to this influence, the model proposed the
use of two different multiple linear equations, corresponding to
each of the two considered spectral intervals.

To calculate the regression coefficients which best fit the multi-
ple linear equations which compose the proposed model, an
evolutionary algorithm based on DE was implemented. Addition-
ally, and to compare the worthiness of this DE algorithm, a simple
MLR method was used. The regression coefficients were calculated
from the experimental dataset measured for two CPV modules
under study.

Finally, the PM values obtained by the model (through the
regression coefficients calculated by means of DE and MLR algo-
rithms) under determined atmospheric conditions, were compared
with the corresponding real PM values for the two analyzed CPV
modules. As a result, it is concluded that the proposed model
obtained MAPE values within the range 1.91–3.94%. In PV field,
errors between 0% and 2% are classified as a very good predictions,
in the interval between 2% and 3.5% as good, and within the range
3.5–5% they are considered as satisfying.

This work presents a DE approach in order to calculate the regres-
sion coefficients in an extension of the ASTM E2527-09 standard.
The extended model considers the spectral distribution as one of
the input environmental conditions for the calculation of the maxi-
mum power delivered by a CPV module. To do so, two different vari-
ables have been analysed and included: SMR and APE. The
importance of the proposed model is highlighted with its suitability
when estimating the PM delivered by two different CPV modules.
The proposal is a simple and accurate methodology to obtain the
PM under influential atmospheric conditions: DNI; TA; WS and
SMR or APE (depending on the available outdoor device, spectro-
heliometer or spectro-radiometer respectively). The application of
the model to the forecasting of the PM delivered by big CPV power
plants would suppose an increasing of the investors’ confidence
and a consequent commercial development of this CPV sector.

As future research directions to this paper we propose:

� To analyse the possibility of obtaining multiple linear regression
equations to calculate the main parameters of a CPV module I–V
curve, such us maximum voltage and maximum current, open
circuit voltage and short circuit current.
� To apply the prediction model to estimate the energy generated

by big CPV power plants under determined atmospheric condi-
tions previously introduced as inputs to the model.
� To include additional atmospheric conditions and study the

possible relations between them.
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