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Abstract. The Concentrating Photovoltaic technology is focused on the
generation of electricity reducing the associated costs. The main charac-
teristics is to concentrate the sunlight in solar cells by means of optical
device such as plastic or glass material. This technology could contribute
with several benefits to our environmental. This paper presents a new
study of the Concentrating Photovoltaic technology with the analysis of
the solar spectrum considering the impact of the direct normal irrandi-
ance spectral distribution. In this way, a estimation of regression coef-
ficients for the spectral matching ratio multivariable regression and the
average photon energy multivarible regression are obtained through a
differential evolution approach. The accurate calculation of the model
parameters reveals relations among the atmospheric conditions very use-
ful for the experts.

Keywords: Regression solar · Data mining · Differential evolution ·
Concentrating Photovoltaic technology

1 Introduction

The main aim of Concentrating Photovoltaic (CPV) technology is to generate
electricity with a lower associated cost. Regarding this purpose, the sunlight
is concentrated in the solar cell by means of an optical device, deriving in an
increase of the cell efficiency and a resulting reduction of the required cell area
to generate the same power. These optical devices are commonly made of plas-
tic or glass material, which are significantly cheaper than the solar cells. CPV
modules are, in most of the cases, based on Multijunction (MJ) solar cells, which
moreover tend to be composed of a serial layout of high efficiency semiconductor
c© Springer International Publishing Switzerland 2016
F. Mart́ınez-Álvarez et al. (Eds.): HAIS 2016, LNAI 9648, pp. 273–282, 2016.
DOI: 10.1007/978-3-319-32034-2 23
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materials [13]. This technology has numerous benefits like higher energy den-
sity, higher efficiency, needs of lower surface and lower semiconductor material
requirements [5]. Nevertheless, some technical and economic barriers must be
removed to reduce the electricity production costs using this technology and to
make it really competitive.

Because the bankability of a CPV Plant is an important topic to pave the
way toward a sustained growth of this technology and this bankability is based
on energy yield prediction under real atmospheric conditions, an accurate esti-
mate of the maximum power (PM ) of the CPV modules is crucial [9,14]. The
accurate calculation of this PM would allow to estimate the electric production
of a CPV power plant and the analysis of its costs and profitability, with the con-
sequent benefits for the commercial development of this CPV technology. The
calculation of the PM delivered by a CPV module under specific environmen-
tal parameters is not a trivial issue. A generalized problem which concerns to
the lack of an international standard method for outdoor power rating of CPV
modules, is perceived by investors as a worrying item. The American Society
for Testing and Materials (ASTM) E2527-06 is, until now, the unique standard
which allows calculating the maximum power delivered by a CPV module under
specific atmospheric conditions. However, this standard does not consider the
spectral distribution as one of these input environmental conditions. As it has
been previously studied by several researchers the spectral distribution of the
direct normal irradiance has an important effect on the electrical behaviour of
CPV modules. Due to the latter, its inclusion in the modelling has a paramount
relevance. In this work, two different variables have been used to include this
spectral influence: the Spectral Machine Radio (SMR) and the Average Photon
Energy (APE).

This work proposes the use of two different equations for SMR and APE.
The first equation must be implemented when the DNI spectral distribution
has a higher red-content than the standard one; otherwise, the second equation
will be used when the incident direct spectrum has a higher blue-content than
the standard. This estimation model is, at the same time and with the objec-
tive of increasing its accuracy, divided into two different spectrum intervals. The
optimisation of these equations is analysed through different proposals such as
differential evolution (DE), support vector machine (SV M), artificial neural
networks, etc. Results obtained in the experimental study show a good behav-
iour of the DE algorithm in order to model through multiple linear equations
the PM , as a function of the following atmospheric conditions: DNI, TA, WS , and
DNI spectral distribution through two alternative indexes: SMR and APE. The
regression coefficients with the best fir to the equations are obtained through
the algorithm with the lowest error in the prediction of the PM .

The contribution is organized as follows: Sect. 2 describes the main properties
of CPV technology analysing the influential atmospheric conditions in order
to measure the electric performance of the CPV modules, and the use of two
indexes to define the influence of DNI spectral distribution on the CPV modules’
electrical performance. Section 3 outlines the experimental framework and shows
the results obtained, and finally, some concluding remarks are outlined.
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2 CPV Technology

The main aim of the CPV technology is to contribute to the generation of elec-
tricity with a lower cost, by using the least possible amount of material. Most
of CPV modules available in the market use high efficient MJ solar cells, with
an optical device to focus the solar radiation in the MJ solar cell surface. The
required optical device must include a primary optics, that is in charge of collect-
ing and concentrating the DNI, and a secondary optics to uniformly distribute
the sunlight from the primary optic, along the whole surface of the solar cell [11].
Due to the latter, only the direct component of the global radiation is used, in
other words, the diffuse component is not exploited. The assembly of various
solar cells, with their respective complementary elements, constitutes a CPV
module. Finally, it is necessary to use a tracking system to hold the CPV mod-
ule and to orient it towards the Sun, in such way that the component solar cells
are, at every moment, perpendicularly disposed to the solar ray [16].

2.1 Study of Influential Atmospheric Conditions on the Electric
Performance of CPV Modules

The DNI is considered as the main atmospheric parameter which influences the
outdoor electric performance of a CPV module. The relation between DNI and
PM is almost linear, so its effect is predominant.

Using the DNI as the integration value along the whole wavelength range for
a specific photovoltaic (PV) device is a common practice. Nevertheless, we can
consider the DNI value for each wavelength value, obtaining the solar spectrum
distribution. As has been widely demonstrated, the DNI, as well as its spectral
distribution, have an important influence on the electric performance of MJ solar
cells. It is well known that the MJ solar cells temperature affect to their electric
performance. In this sense, the temperature has an almost negligible positive
effect on the short circuit current delivered by the MJ solar cell, and a negative
predominant effect on both the open circuit voltage and PM [10,12,19,23]. The
same behaviour is observed when analyzing the impact of the temperature on
the electric performance of CPV modules equipped with MJ solar cells [21].
However, the own disposition of the MJ solar cells inside the CPV module makes
it very difficult to measure their temperature. In this work, TA is considered as
influential factor, given a direct relation between cell temperature and TA [1,2].

The consideration of the WS as one of the influential factors whose contribu-
tion must be added in the equation proposed by the ASTM E-2527-09 standard.
In this way, WS can perform a positive refrigerating effect on the electric perfor-
mance of a CPV system, cooling the MJ solar cells which compose the module
down, and obtaining therefore a better behaviour [4]. However, high WS values
can also exert a negative effect of misalignment on the tracker [15], displacing
the MJ solar cells from their optimum arrangement in the solar beam direct
trajectory.

A review of the main models for estimating the PM of CPV modules has
been recently published [22]. However, it must be taken into account that, when
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talking about standard power rating methods, the ASTM E2527-09 methodology
is the unique model in CPV field.

2.2 The Use of SMR and APE Indexes to Characterise
the DNI Spectral Distribution

The influence of the solar spectrum distribution on the electric performance of
CPV modules can be considered from two different indexes: SMR and APE.
On the one hand, SMR is defined as a index which expresses the ratio between
the effective DNI received by two different junctions (top and middle) of the
MJ solar cells which compose the CPV module [6]. When the incident solar
spectrum differs from the AM 1.5D standard, the effective DNI collected by
each of these junctions could be different, so the photocurrent generated by the
whole MJ solar cell is limited by the junction generating a lower photocurrent
at each moment. The SMR index is calculated as follows:

SMR (AM1.5D)TOP−junction
MIDDLE−junction =

DNITOP−junction

DNIMIDDLE−junction
(1)

where DNITOP−juntion and DNIMIDDLE−junction represent the effective
DNI collected by the top and middle junction, respectively. Attending to the
last equation, there are three different possibilities:

– SMR < 1, the incident spectral distribution is red-richer than the standard
one, which means that the middle junction collected an effective DNI higher
than the one collected by the top junction, being this last the limiting junction.

– SMR > 1, the incident spectral distribution is blue-richer than the standard
one, which means that the top junction collected an effective DNI higher than
the one collected by the middle junction, being this last the limiting junction.

– SMR = 1, top and middle junctions collected the same effective DNI, which
means that the incident spectrum coincides with the AM1.5D standard one.

The SMR influence on the normalized Short Circuit Current (ISCN ) -and
therefore on the PM - generated by a CPV module were normalized in terms of
DNI, to avoid its predominant effect. As can be appreciated, under SMR values
lower than 1, this factor has a positive influence on the electric performance of
the CPV module. In other words, increasing values of SMR makes the module
to produce a higher ISCN . Otherwise, when SMR values are close to 1 (which
means spectral distributions close to the AM1.5D standard one), the module is
working in an optimum way. Under SMR values higher than 1, this parameter
has a negative influence, making the module to deliver a lower value of ISCN .

On the other hand, APE index is defined as a unique value which charac-
terises the shape of the DNI spectral distribution between a determined wave-
length range [17]. As increasing the value of the APE index, the incident spec-
trum is expected to have a higher blue content. The APE index can be obtained
by calculating the following equation:

∫ b

a
Eλ(λ)dλ

∫ b

a
φλ(λ)dλ

(2)
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where:

– Eλ (W (m2 · nm)): Spectral irradiance.
– φ (1/(m2 · nm · s)): Spectral photon flux density (ratio between the spectral

irradiance Eλ and the energy of the photon of wavelength lambda).
– a and b are considered as the integration limits and depend on the spectro-

radiometer specifications.

The APE index has been introduced as a remarkable parameter to describe,
in an easy way, the impact of the solar spectrum change in different PV solar
technologies [20].

There is an intrinsic relation between APE and SMR which is almost linear,
except when the solar spectral distribution has high red-content, in which APE
values are lower than expected. In this way, it is possible to obtain a first degree
polynomial expression to define this relation, without entailing a big error:

f(x) = p1x + p2 (3)

Coefficients (with 95 % of confidence bounds):

– p1 = 0.34 (0.3385, 0.3414)
– p2 = 1.487 (1.485, 1.488)

Goodness of fit (values given by MatlabTM curve fitting toolbox):

– R − square : 0.9601
– RMSE : 0.00644

From the last obtained equation, it is possible to calculate the APE value
which corresponds to the AM1.5D standard spectral distribution, or in other
words, the APE value which corresponds to SMR = 1. As can be observed,
the maximum of the function was found for SMR values closer to the unit,
under which the CPV module should work on its optimum manner. Because of
that, SMR = 1, that according to the linear relation between SMR and APE
corresponds to APE = 1.83, is going to be considered as the turning point to
the definition of the model proposed in this paper, dividing it into two different
spectral intervals. This turning point corresponds to the AM 1.5D standard
spectral distribution.

3 Experimental Study

The data were obtained from one model of CPV modules, whose main char-
acteristics are solar cells type Multijunction − GaInP/Ga(In)As/Ge with 25
solar cells and a concentration factor of 550. The measures were acquired at the
rooftop of the Higher Polytechnical School of Jaén during the period between
March 2013 and November 2013, forming a whole dataset composed of 8780 sam-
ples in the case of the module M1. The atmospheric measures were registered
every 5 min using the outdoor devices specified in Table 1 and described below:
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Table 1. Measurement of atmospheric conditions by outdoor devices.

Atmospheric condition Units Outdoor device Measures range

DNI (W/m2) Pyheliometer [140–1024]

Spectrum APE (eV ) Spectro − radiometer [1.59–1.87]

Spectrum SMR (−) Spectro − heliometer [0.40–1.13]

TA (◦C) Spectro − heliometer [11.39–41.82]

WS (m/s) Anemometer [0.04–20.50]

– A Kipp & ZonnenTM CHP 1 pyrheliometer to the measurement of the direct
normal irradiance (DNI).

– An EKOTM MS700 spectro-radiometer with a collimator tube to the measure-
ment of the direct normal spectral Irradiance distribution with a wavelength
range of 350–1050 nm. From the measurement of the spectrum distribution
the APE value is calculated.

– A Triband spectro-heliometer composed by three component cells, with the
same structure of the MJ solar cells which compose the analysed CPV mod-
ules. In this way it is possible to independently measure the effective irradiance
collected by each junction, and so calculate the SMR index.

– A meteorological Station formed by a YoungTM 41382VC relative humidity &
temperature probe to register the TA and a YoungTM 05305VM anemometer
to measure the WS .

The analysis of the data is performed in two stages. Firstly, an experimen-
tal study with different algorithms is performed in order to measure the mean
squared error (MSE) of the PM for the module, i.e. the MSE between real PM

values and PM values predicted. Next, the regression coefficients obtained for the
approach with the best results and more interpretable are presented. Algorithms
included in the experimental study are outlined below:

– The DE algorithm is a stochastic algorithm for optimising and searching based
on the natural evolution process and it was defined by Storn and Price [24]
as a versatile function optimiser where mutation is emphasised. DE uses a
mutation operator to promote the diversity in the population where a scaled
difference between an original individual and several randomly selected indi-
viduals from the same population is performed. Subsequently to the result a
recombination operator is applied in order to lead the search for an optimal
solution.

– A multiple linear regression (MLR) method based on [8] where the most
popular estimation method for the coefficients, least squares, pick them to
minimize the residual sum of squares.

– Wang and Mendel (WM) [25] is a method for generating fuzzy rules by super-
vised learning. This fuzzy classical approach divides the input and fuzzy spaces
of the given numerical data into fuzzy regions and generates a linguistic fuzzy
rule for each fuzzy region (if it is possible) from the given data. The fuzzy rule
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based system uses the t-norm product and centroid defuzzification formula to
determine the output

– Classification and regression trees (CART ) [3] is a kind of decision tree that
can produce either classification or regression trees, depending on the given
output variable. This decision tree is composed of: Rules for splitting data
at a tree node based on the values of the input variables; Stopping rules for
stablishing when a branch is terminal; an output value for the dependent
variable in each terminal node.

– The SV M model uses the sequential minimal optimization training algorithm
and treats a given problem in terms of solving a quadratic optimization prob-
lem. The NUSV R [7], also called vSV M , for regression problems is an exten-
sion of the traditional SV M and it aims to build a loss function.

– MLPConjGrad [18] uses the conjugate gradient algorithm to adjust weight
values of a multilayer perceptron. Compared to gradient descent, the conjugate
gradient algorithm takes a more direct path to the optimal set of weight values.
Usually, the conjugate gradient is significantly faster and more robust than
the gradient descent. The conjugate gradient also does not require the user to
specify learning rate and momentum parameters.

It is important to separate with respect to the interpretability of the algo-
rithms in order to analyse the possibility to know the regression coefficients in
the PM equations. In this way, we could divide algorithms in two groups: Inter-
pretable (DE, MLR, WM and CART ) and non-interpretable (NUSV R and
MLPConjGrad). Finally, it is important to remark that the experimentation
process is performed through a separation between training and test dataset. In
this case, we use 80 % (training) of the whole dataset to calculate the regres-
sion coefficients that best fit the equations which compose the proposed model.
Otherwise, 20 % (test) of the whole dataset was used to validate the predictive
capacity of the proposed model.

Table 2. MSE test results obtained to the CPV module under study

Index Interpretable models Non interpretable

DE MLR WM CART NUSVR MLPConjGrad

SMR < 1 8.35 9.31 16.83 8.36 8.80 5.34

SMR ≥ 1 7.47 7.58 32.92 8.25 7.99 7.23

APE < 1.83 8.41 9.45 20.08 8.59 11.27 6.24

APE ≥ 1.83 6.79 6.90 37.37 8.21 7.24 6.55

The MSE are shown in Table 2. The algorithm with the best results is the
MLPConjGrad. However, it is impossible to analyse the regression coefficients
with this algorithm because they are considered “black box” and it is very dif-
ficult to show relations, coefficients, impact and so on between the variables. In
this way, the following algorithm with best results is the DE. This approach
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is interpretable and these results show the capacity to solve the proposed mul-
tiple linear regression model with MSE values within the interval [6.79–8.41].
In Table 3, the regression coefficients obtained by the DE algorithm for the
analysed CPV module are presented.

Table 3. Regression coefficients obtained by DE methodology for the CPV modules

Index a1 a2 a3 a4 a5

SMR < 1 0.076423 −1.63E-05 −1.11E-04 3.00E-04 0.062229

SMR ≥ 1 0.150911 −9.48E-06 −3.63E-04 3.38E-04 −0.012287

APE < 1.83 −0.178408 −1.66E-05 −1.53E-04 3.01E-04 0.174229

APE ≥ 1.83 0.219101 −8.79E-06 −3.75E-04 3.06E-04 −0.044181

According to the regression coefficients calculated by the DE-proposal for
the module, it can be remarked:

– Almost linear relation between DNI and PM delivered by CPV modules. This
can be appreciated due to the low values of a2 coefficients compared to a1 ones.

– Very slight negative influence of TA on the PM delivered by CPV modules.
This influence is given by a3 regression coefficients.

– Very slight positive influence of WS on the PM delivered by CPV modules.
This influence is given by a4 regression coefficients.

– As it was predicted, a positive influence of the DNI spectral distribution
on the PM of the CPV modules for values of SMR < 1 or APE < 1.83 is
observed: when increasing the value of SMR or APE, the PM is increased. This
influence is given by a5 regression coefficients for the first spectral interval.

– Negative influence of the DNI spectral distribution on the PM of the CPV mod-
ules for values of SMR ≥ 1 or APE ≥ 1.83. In this way, when increasing the
value of SMR or APE, the PM is decreased. This effect is perceptible through
the analysis of a5 regression coefficients for the second spectral interval.

The multivariable regression model presented in this paper is very important
as it allows obtaining the regression coefficient which quantify the influence of
different atmospheric conditions on the PM delivered by a CPV module. This
functionally can not be achieved by an ANN model.

4 Conclusions

The multivariable regression model proposed in this work is based on the ASTM
E-2527-09. This standard defines a methodology to calculate the PM delivered
by CPV modules or systems, through the resolution of a multiple linear equa-
tion based on the following input atmospheric conditions: DNI, TA and WS .
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To calculate this PM value, the regression coefficients which compose the mul-
tiple linear equation must be previously calculated. Nevertheless, the method-
ology proposed by the ASTM E-2527-09 has a big drawback, as it does not
consider the influence of the solar spectrum distribution. In this work, the stan-
dard methodology has been modified in order to make it more accurate. This
modification consists on adding an additional term which quantifies the influ-
ence of the DNI spectral distribution on the PM delivered by CPV modules.
The proposed model allows to consider this additional term through the use of
two alternative indexes: SMR and APE. In this way, the applicability of the
model is increased as it can be implemented from the measurement acquired
through a triband spectro-heliometer (SMR) or a spectro-radiometer(APE).

The PM values obtained by the model (through the regression coefficients
calculated by means of DE) under determined atmospheric conditions, were
compared with the corresponding real PM values for one analysed CPV mod-
ules. As a result, it is concluded that the proposed model obtained good MSE
values within of a considerable range of powerful lower than 3 %. Specifically,
In PV field, errors between [0–2]% are classified as a very good predictions, in
the interval between [2–3.5]% as good, and within the range [3.5–5]% they are
considered as satisfying.
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electrical characterization of high concentration photovoltaic cells and modules: a
review. Renew. Sustain. Energy Rev. 26, 752–760 (2013)

23. Siefer, G., Bett, A.: Analysis of temperature coefficients for III-V multi-junction
concentrator cells. Prog. Photovoltaics Res. Appl. 22(5), 515–524 (2014)

24. Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme
forglobal optimization over continuous spaces.Technical report TR-95-012 (1995)

25. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE
Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)


	bfm%3A978-3-319-32034-2%2F1
	Preface
	Organization
	Contents

	hais2016
	Estimating the Maximum Power Delivered by Concentrating Photovoltaics Technology Through Atmospheric Conditions Using a Differential Evolution Approach
	1 Introduction
	2 CPV Technology
	2.1 Study of Influential Atmospheric Conditions on the Electric Performance of CPV Modules
	2.2 The Use of SMR and APE Indexes to Characterise the DNI Spectral Distribution

	3 Experimental Study
	4 Conclusions
	References





