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subcomponents and by the synthesis of the forecast. Multiple runs have demon-
stra.ted. the stability and consistence of predictions for quasi-periodical signals
with Signal-to-Noise Ratio 0.5 and more. The algorithm should be used w?th ;
g_reat precaution for signals with supposed chaotic behaviour, SSA decomposi-
tion sh.ouid be excluded in this case. The climate system on th:a last 11:1il]enn?um1

sc_talfes is probably dominated by the 900 years periodical component The n:
diction suggests that the present short-time global warming trend wil:l contiiu

for at least 200 years and be followed by a reverse in the temperature trend {7]e
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Combining simple exponential smoothing models
for time series forecasting

F. Martinez, M.D. Pérez, F. Charte, and M.J. del Jesus

Department of Computer Science, University of Jaén, Spain

Abstract. Simple exponential smoothing is a well-known technique for
forecasting univariate time series without trend and seasonality. Fore-
cast combinations such as medians or means are known to improve the
accuracy of point forecasts. In this paper we have experimented with
combining the forecasts of several simple exponential smoothing models
with different smoothing factors. Experimental results, using the M3-
competition time series, show that the combined forecasts outperform
the forecasts of the model that best fits the series.

Keywords: Combined forecast, Time series forecasting, Simple expo-
nential smoothing

1 Introduction

Time series forecasting is a key tool in many areas, such as Hydrology, Business
or Biology, wherein well-known statistical models such as ARIMA or exponential
smoothing are used to make predictions about the future values of a time series
[1]. Very often a large number of series need to be forecast, in this situation an
automatic forecasting algorithm is an essential tool [2].

Ensemble learning [3] is a useful technique used by data mining practitioners
to improve classification and numeric prediction accuracy. In this technique in-
stead of learning one model from a training data set several models are learned.
That is, multiple models that “fit well“ the training data are selected from a
candidate model space containing models that“explain® the training data. In
order to make predictions an ensemble learner combines the predictions of its
learned models using a combination function such as the average or the median.
The predictive performance of an ensemble learner often outperforms the perfor-
mance of the individual models comprising the ensemble. Why? A single model
can be either too simple and not capture the essential patterns in the data, or
too complex and overfit the data. In fact, there is hardly ever a true underlying
model, and even if there was, selecting that model will not necessarily give the
best predictions, because the parameter estimation may not be accurate. On the
other hand, an ensemble of models can capture diflerent patterns of the data
and reduce the danger of overfitting or the uncertainty of choosing the wrong
model.

The idea underlying ensemble learning has also been applied in time series
forecasting to produce combined forecasts [4-6]. One of the four conclusions of
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