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Abstract External factors such as the presence of noise in
data can affect the data mining process. This is a common
problem that produces several negative consequences which
involves errors in the data collection, preparation and, above
all, in the results obtained by the data mining techniques
employed. The capabilities of themodels built under such cir-
cumstances will depend heavily on the quality of the training
data. Hence, problems containing noise are complex prob-
lems and accurate solutions are often difficult to achieve. A
particular supervised learning field like subgroup discovery
has overlooked the analysis of noise and its impact on the
descriptions obtained. This paper presents an analysis of the
impact of noise on the most relevant evolutionary fuzzy sys-
tems for subgroup discovery. We also focus on how filtering
techniques, devised for predictive tasks, may alleviate the
impact of noise on descriptive fields such as subgroup dis-
covery. Specifically, the analysis is carried out using recent
filtering techniques for several class noise levels. The results
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obtained show two different behaviours, on the one hand,
the SDIGA and NMEEFSD algorithms present a decrease
in the quality of the subgroups when the noise is increased,
making necessary the application of noise filtering in order
to compensate for this loss of quality. On the other hand, the
FuGePSD algorithm demonstrates its great capacity to work
in noisy environments without the necessity of using a pre-
liminary filter. The study is completed with an analysis of the
interpretability under the influence of noise focused on the
number of rules and variables.

Keywords Subgroup discovery · Class noise ·Noise filters ·
Evolutionary fuzzy systems

1 Introduction

The main goal of data mining consists of extracting useful
and valuable knowledge out of large amounts of raw data
(Cherkassky and Mulier 2007). The relevance and interest
of this knowledge is strongly influenced by the quality of
the used data but, in this stage, a very common problem is
the presence of noise in the dataset. Noise is usually found
in real-world data, often described as corrupted data items
not following the general distribution of the dataset, which
can lead to excessively complex models with deteriorated
performance (Wu and Zhu 2008) and thus harming the inter-
pretations and knowledge that can be extracted as well as
the decisions made based on them. The negative impact of
noise has been widely studied (Zhu and Wu 2004) in classi-
fication and regression. Studies comparing models obtained
with clean and noisy problems show a negative impact on
the accuracy, building time, size and interpretability of the
system. Hence, the treatment of noise has become one of the
main tasks of data preprocessing (García et al. 2015).
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Several approaches to dealing with noisy data and to
diminishing its negative effects have been studied in the lit-
erature, focusing on classification problems. Robust learners
(Bonissone et al. 2010) are characterized for being less influ-
enced by noise, but designing a robust learner is not a trivial
task. C4.5 (Quinlan 1993) is a classical example thanks to its
pruning phase. Several studies (Teng 1999) claim that com-
plete or partial noise correction using data polishingmethods
improves test performance results in comparisonwith no pre-
processing, but this is only feasible in small datasets due to
its high computational cost. Finally, the most popular choice
is noise filters (Brodley and Friedl 1999; Khoshgoftaar and
Rebours 2007), as they act as a preprocessing step, identify-
ing and eliminating the noisy instances from the training data.

Since class noise corrupts the instances’ labelling, any
supervised task in data mining will be affected. As we have
mentioned, the treatment of noise has focused on classifi-
cation, by means of proposing advanced filters (Sáez et al.
2016), modification of well-known algorithms (Sun et al.
2016) or comparative analysis (Sluban et al. 2010). How-
ever, the effect of noise and the capabilities of descriptive
algorithms in the presence of noise have mostly been over-
looked, and since this framework of datamining also relies on
supervised examples, the negative effects of noise cannot be
ignored. Subgroup discovery (SD) (Herrera et al. 2011) is a
descriptive data mining technique using supervised learning,
i.e. it is a half-way between classification and description,
where the knowledge is represented through rules. To the
best of our knowledge, no analysis or study has been carried
out to analyse the effect of noise and possible strategies to
deal with it in SD tasks. The analysis of quality measures in
SD is a key factor in order to observe the correct operation
of the SD algorithms. The values of these quality measures
will be affected by the presence of noise in the data.

In this study, we analyse the effects and treatment of noise
in SD learning for evolutionary fuzzy systems (EFSs) and
study different approaches to dealing with it. First, we focus
on thenegative effects of noise inSDand thequalitymeasures
commonly used. Next, we examine the possible approaches
to dealing with the noise in SD and alleviating the negative
effects it produces. Since noise filtering is a popular pre-
processing step in supervised learning (Frénay andVerleysen
2014) that does not require any modification of the SD algo-
rithms, we will use three recent filters for class noise: the
ensemble filter, the cross-validated committees filter and the
iterative-partitioning filter. Please note that most noise filter
techniques were devised for predictive instead of descriptive
tasks. Therefore, we are also interested in analysing the suit-
ability of such filters in SD. The study is carried out with
a wide number of datasets with different amounts of class
noise, and an analysis with respect to interpretability, inter-
est and trade-off between generality precision is presented.
Moreover, this study is supported with statistical tests.

The rest of this paper is organized as follows. Section 2
introduces the background concepts of SD and EFSs, Sect. 3
presents the noise filters applied in this experimental analysis,
Sect. 4 describes the experimental framework and Sects. 5
and 6 include the experimental results and their analysis; and
the interpretability of the subgroups obtained, respectively.
Finally, Sect. 7 presents some concluding remarks.

2 Preliminaries

This section introduces the main concepts used in this exper-
imental study. First, the definition and main properties of the
SD technique are outlined in Sect. 2.1. Next, the EFSs and
the most relevant algorithms for SD based on this type of
systems are summarized in Sect. 2.2.

2.1 Subgroup discovery

SD is a descriptive data mining technique whose main pur-
pose is to explore relationships between different variables
with respect to an interest variable, i.e. within of supervised
learning. Introduced byKloesgen (1996) andWrobel (1997),
it was defined thus (Wrobel 2001):

In subgroup discovery, we assume we are given a so-
called population of individuals (objects, customers,
. . .) and a property of those individuals we are inter-
ested in. The task of subgroup discovery is then to
discover the subgroups of the population that are statis-
tically “most interesting”, i.e., are as large as possible
and have the most unusual statistical (distributional)
characteristics with respect to the property of interest.

The knowledge in this task is usually performed through
the use of rules (Gamberger and Lavrac 2002; Lavrac et al.
2004a) where R can be formally defined as:

R : Cond → TargetV alue

In this way, TargetValue is a value for the variable
of interest (target variable) and Cond is commonly a con-
junction of features (attribute-value pairs) which is able to
describe an unusual statistical distribution with respect to
the TargetV alue.

Throughout the literature, a wide range of algorithms have
been presented which can be grouped with respect to the
search strategy employed, e.g. based on beam search like
CN2-SD (Lavrac et al. 2004b) and Apriori-SD (Kavsek and
Lavrac 2006), exhaustive search like SD-Map (Atzmueller
and Puppe 2006) and Merge-SD (Grosskreutz and Rueping
2009) for example, and evolutionary algorithms among oth-
ers. The proposals based on evolutionary algorithms as a
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search strategy are the main focus of this study and are
analysed in the following section.

Other important elements for SD such as the target vari-
able, the search strategy, the descriptive language of the
subgroups and the study of quality measures used can be
found in Carmona et al. (2014), Herrera et al. (2011).

2.2 Evolutionary fuzzy systems for subgroup discovery

A fuzzy system (Zadeh 1975) augmented with a learning
process based on evolutionary algorithms (Eiben and Smith
2003) is defined as EFS as can be observed in Herrera (2008).
In this definition, two concepts are presented: fuzzy systems
and evolutionary algorithms. The former are usually con-
sidered in the form of fuzzy rule-based systems (FRBSs),
which are composed of “IF-THEN” rules where both the
antecedent and consequent can contain fuzzy logic state-
ments. Fuzzy systems are based on fuzzy logic (Zadeh 1975),
which already allow us to consider uncertainty, and also to
represent the continuous variables in a manner which is close
to human reasoning. In this way, interpretable fuzzy rules
consider continuous variables as linguistic ones, where val-
ues are represented through fuzzy linguistic labels (LLs).
The fuzzy set corresponding to each LL can be specified
by the user or defined by means of uniform partitions if
knowledge is not available. This simple and interpretable
representation facilitates their application to real-world prob-
lems.

On the other hand, evolutionary algorithms are stochastic
algorithms for optimising and searching based on a natural
evolution process. These algorithmswere introduced byHol-
land (1975). Different computational models can be found
within these types of algorithms such as genetic algorithms
(Goldberg 1989;Holland 1975), evolution strategies (Schwe-
fel 1995), evolutionary programming (Fogel 1995), genetic
programming (Koza 1992), amongst others.

SD is a rule learning process that can be seen as an approx-
imation problem in which the objective is the learning of the
parameters of the model. In this task, the search space can
be very complex and the search strategy used becomes a
key factor. The use of EFSs is very well suited to this task
because these types of algorithms perform a global search
in the space in a suitable way, as can be observed in the
real-world problems solved in the literature, for example, in
Bioinformatics with the description of the Influenza A virus
(Carmona et al. 2013a) or a specific problem concerning an
acute sore throat (Carmona et al. 2015), in Medicine with the
description of patients’ patterns in a psychiatric emergency
department (Carmona et al. 2011), in E-commerce with the
analysis of the usage of customers of a website based on the
sale of olive oil (Carmona et al. 2012) or in Industry with the
description of concentrating photovoltaicmodules (Carmona
et al. 2013b), amongst others.

The most relevant EFSs for SD are summarized below,
and a complete description can be analysed in Carmona et al.
(2014).

2.2.1 SDIGA

SDIGA (del Jesus et al. 2007) is an EFS based on a monoob-
jective evolutionary algorithm which follows the iterative
rule learning (IRL) approach (Venturini 1993) whereby the
solution of each iteration is the best individual obtained and
the global solution is formed by the best individuals obtained
in the different runs. In addition, SDIGA is executed for each
value of the target variable because the consequent is not rep-
resented in the chromosome and in this way it obtains rules
for all values of the target variable.

The individuals represent the antecedent part of the
rule through the “Chromosome = Rule” approach and the
core of SDIGA is an evolutionary algorithm using a post-
processing stepbasedon a local search.This hybrid algorithm
extracts one simple and interpretable fuzzy rule with an ade-
quate level of interest for SD.

Fitness is an aggregation function where the selection of
quality measures like coverage, significance, unusualness,
accuracy, sensitivity, crisp support, fuzzy support, crisp con-
fidence and fuzzy confidence are determined by the expert.
The number of objectives within the weighted aggregation
function are between 1 and 3.

2.2.2 NMEEFSD

NMEEFSD (Carmona et al. 2010) is an EFS based on a
multiobjective evolutionary algorithm called NSGA-II (Deb
et al. 2002). This algorithm encodes the solutions according
to the “Chromosome = Rule” approach, where only the
antecedent is represented in the chromosome and the conse-
quent is prefixed to one of the possible values of the target
variable in the evolution. In this way, the algorithm is exe-
cuted as many times as the number of values for the target
variable it contains.

The algorithmemploys different genetic operators in order
to promote generality and diversity within the population and
to obtain interesting subgroups for theSD technique. It is very
important to highlight the use of the multiobjective approach
because it allows the experts the possibility to use different
quality measures as objectives. In this way, the final Pareto
front obtained by NMEEFSD is the set of non-dominated
solutions with respect to the quality measures considered.
As can be observed in Carmona et al. (2010), the best results
for this algorithm are obtained with the use of the quality
measures unusualness and sensitivity. Finally, a screening
function is performed at the end of the evolutionary process
in order to return only those solutions which reach a prede-
termined confidence threshold.
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2.2.3 FuGePSD

FuGePSD (Carmona et al. 2015) is the most recent EFS
presented in the literature. This algorithm is based on a
genetic programming algorithm (Koza 1992) with the ability
to extract descriptive fuzzy rules for the SD task. Con-
trary to the previous algorithms, FuGePSD represents the
rules through the “Chromosome = Rule” approach includ-
ing both the antecedent and the consequent of the rule.
Specifically, FuGePSD employs the genetic cooperative-
competition approach where rules of the population coop-
erate and compete among themselves in order to obtain
the optimal solution. The inclusion of the target variable
in the representation is often an advantage with respect to
alternative evolutionary algorithms available for SD, since
FuGePSD is executed only once, obtaining rules for the dif-
ferent values of the target variable.

Due to the nature of the algorithm, it is important to
define two fitness criteria: (1) to compete and (2) to cooperate
between individuals. The competition is performed through
unusualness and the operator token competition which is key
for the algorithm, and the cooperation is carried out through
the normalized accuracy for all values of the target variable.
As we have mentioned before, the token competition opera-
tor is a key factor of the algorithm because individuals with
good niches will attempt to exploit that one alone and prevent
further individuals from sharing its resources, unless a newer
one is stronger that the one initially developed.

Finally, only the best rules of the evolutionary process pass
through a screening function employed to obtain only rules
with values greater than a given threshold of sensitivity and
confidence.

3 Noise in data

A large amount of real-world datasets are affected by corrup-
tions that hinder the analysis, interpretations and decisions
concerning the models obtained. The data extraction process
also has influence on the quality: incorrect input of the data
and uncertainty-affected sources are two classic examples.
In supervised problems, this becomes especially relevant as
it harms the relationship that arises between the input and
output attributes. Thus, noise has attracted much attention in
classification and regression, where noise spoils the model
and the knowledge extracted from data. We can point out
two types of noise in the specialized literature (Zhu and Wu
2004):

– Class noise (Cao et al. 2012; Abellán and Masegosa
2012): it occurs when instances are incorrectly labelled.
Data entry errors or inadequacy of the information used
to label each instance are possible causes.

– Attribute noise (Teng 2004): it refers to alterations in
the input attributes’ values with respect to their origi-
nal underlying distribution draws. It includes erroneous
attribute values, but alsomissing values and “do not care”
values are included in this category.

Class noise has been considered as the most disruptive
type of noise (Sáez et al. 2014). For this reason, we focus on
class noise for SD, as it will alter and hinder the description
extracted in a greater way than attribute noise: it will cause
loss of quality in subgroups because rules cover examples
incorrectly labelled with a wrong class label.

Although in the literature there have been many studies
dealing with noisy data and model improvement, the most
popular choice are noise filters (Brodley and Friedl 1999;
Khoshgoftaar andRebours 2007), as they act as a preprocess-
ing step, identifying the noisy instances and eliminating them
from the training data. As we have mentioned, filters are
mainly devised for classification tasks and thus they aim to
remove examples to optimize the accuracy of predictivemod-
els. This objective may be well correlated with the metrics
evaluated by SD algorithms, but this question has not been
studied yet in the specialized literature. In this paper, we
will address this issue by observing the effects of noise and
the suitability of noise filters. Specifically, we will use three
state-of-the-art class noise filters of different natures which
are summarized in the following sections. The ensemble filter
is based on an ensemble of three different classifiers, while
the cross-validated committees filter generates partitions of
the training set to build an ensemble of a single classifier over
the different partitions. The iterative-partitioning filter is an
iterative filter, where noise is identified in several steps until
the stopping criterion is met.

3.1 Ensemble filter

The ensemble filter (EF) (Brodley and Friedl 1999) uses a set
of learning algorithms to create classifiers in several subsets
of the training data that serve as noise filters for the train-
ing set. The identification of potentially noisy instances is
carried out by performing an Γ -FCV (fold cross-validation)
on the training data with μ classification algorithms, called
filter algorithms. In the experimentation developed for this
contribution, we have utilized the three filter algorithms used
by the authors in Brodley and Friedl (1999), which are C4.5,
1-NN and LDA (Mclachlan 2004).

The complete process carried out by EF is described
below:

– Split the training dataset DT into Γ equal sized subsets.
– For each one of the μ filter algorithms.

123

Author's personal copy



The influence of noise on the evolutionary fuzzy systems for subgroup discovery

– For each of these Γ parts, the filter algorithm is
trained on the other Γ − 1 parts. This results in Γ

different classifiers.
– TheseΓ resulting classifiers are then used to tag each
instance in the excluded part as either correct or mis-
labelled, by comparing the training label with that
assigned by the classifier.

– At the end of the above process, each instance in the
training data has been tagged by each filter algorithm.

– Add to DN the noisy instances identified in DT using
a consensus voting scheme, taking into account the cor-
rectness of the labels obtained in the previous step by the
μ filter algorithms.

– Remove the noisy instances from the training set: DT ←
DT \ DN .

3.2 Cross-validated committees filter

The cross-validated committees filter (CVCF) (Verbaeten
and Assche 2003) uses ensemble methods in order to pre-
process the training set to identify and remove mislabelled
instances in classification datasets. CVCF is mainly based on
performing an Γ -FCV to split the full training data and on
building classifiers using decision trees in each training sub-
set. The authors of CVCF place special emphasis on using
ensembles of decision trees such as C4.5.

The basic steps of CVCF are the following:

– Split the training dataset DT into Γ equal sized subsets.
– For each of these Γ parts, C4.5 (as suggested by the
authors) is trained on the other Γ − 1 parts. This results
in Γ different classifiers.

– These Γ resulting classifiers are then used to tag each
instance in the training set DT as either correct or misla-
belled, by comparing the training label with that assigned
by the classifier.

– Add to DN the noisy instances identified in DT using a
voting scheme (the majority scheme in our experimen-
tation), taking into account the correctness of the labels
obtained in the previous step by the Γ classifier built.

– Remove the noisy instances from the training set: DT ←
DT \ DN .

3.3 Iterative-partitioning filter

The iterative-partitioning filter (IPF) (Khoshgoftaar and
Rebours 2007) is a preprocessing technique based on the par-
titioning filter (Zhu et al. 2003). It is employed to identify and
eliminate mislabelled instances in large datasets. Most noise
filters assume that datasets are relatively small and capable
of being learned after only one run, but this is not always true
and partitioning procedures may be necessary.

IPF removes noisy instances in multiple iterations until
a stopping criterion is reached. The iterative process stops
if, for a number of consecutive iterations s, the number of
identified noisy instances in each of these iterations is less
than a percentage p of the size of the original training dataset.
Initially, we have a set of noisy instances DN = ∅ and a set
of good data DG = ∅. The basic steps of each iteration are:

– Split the training dataset DT into Γ equal sized subsets.
– For each of these Γ parts, C4.5 is trained on this part as
recommended by the authors. This results in Γ different
trees.

– These Γ resulting classifiers are then used to tag each
instance in the training set DT as either correct or misla-
belled, by comparing the training label with that assigned
by the classifier.

– Add to DN the noisy instances identified in DT using
majority voting, taking into account the correctness of
the labels obtained in the previous step by theΓ classifier
built.

– Remove the noisy instances and the good data from the
training set: DT ← DT \ {DN ∪ DG}.

At the end of the iterative process, the filtered data are
formed by the remaining instances of DT and the good data
of DG ; that is, DT ∪ DG .

4 Experimental framework

This section outlines the main details of the experimental
study performed in order to analyse the suitability of noise
filtering forSD.Section4.1 summarizes the datasets analysed
in the study and the processes to induce class noise into the
original datasets and the methodology for the analysis of
the results. Next, the quality measures used to measure the
performance of the SD analysed in this experimental study
and the parameters of all algorithms considered are presented
in Sect. 4.2.

4.1 Datasets

The experimental study of this paper has been performed
with a wide number of datasets. Specifically, we have used
37 datasets from the KEEL Repository1 (Alcalá-Fdez et al
2011). The main characteristics of these datasets are sum-
marized in Table 1 where the number of attributes and their
types together the number of instances and classes for each
dataset are shown.

The initial amount of class noise in the datasets is
unknown, and thus, no assumptions about the noise level

1 http://www.keel.es/datasets.php.
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Table 1 Datasets used to introduce noise, including the number of
attributes and their type (real, integer or nominal), the number of exam-
ples and the number of classes for each one

Name # Attributes (R/I/N) # Examples # Classes

Automobile 25 (15/0/10) 150 6

Balance 4 (4/0/0) 625 3

Banana 2 (2/0/0) 5300 2

Car 6 (0/0/6) 1728 4

Cleveland 13 (13/0/0) 297 5

Contraceptive 9 (0/9/0) 1473 3

Dermatology 34 (0/34/0) 358 6

Ecoli 7 (7/0/0) 336 8

Flare 11 (0/0/11) 1066 6

German 20 (0/7/13) 1000 2

Hayes-roth 4 (0/4/0) 160 3

Heart 13 (1/12/0) 270 2

Ionosphere 33 (32/1/0) 351 2

Iris 4 (4/0/0) 150 3

Led7digit 7 (7/0/0) 500 10

Magic 10 (10/0/0) 19020 2

Monk-2 6 (0/6/0) 432 2

Newthyroid 5 (4/1/0) 215 3

Nursery 8 (0/0/8) 12690 5

Page-blocks 10 (4/6/0) 5472 5

Penbased 16 (0/16/0) 10992 10

Phoneme 5 (5/0/0) 5404 2

Pima 8 (8/0/0) 768 2

Ring 20 (20/0/0) 7400 2

Segment 19 (19/0/0) 2310 7

Shuttle 9 (0/9/0) 58000 7

Sonar 60 (60/0/0) 208 2

Spambase 57 (57/0/0) 4597 2

Splice 60 (0/0/60) 3190 3

Thyroid 21 (6/15/0) 7200 3

Twonorm 20 (20/0/0) 7400 2

Vehicle 18 (0/18/0) 846 4

Vowel 13 (10/3/0) 990 11

Wdbc 30 (30/0/0) 569 2

Wine 13 (13/0/0) 178 3

Yeast 8 (8/0/0) 1484 10

Zoo 16 (0/0/16) 101 7

can be made. In order to control the amount of noise in
each dataset, different class noise levels x% are introduced
with the uniform class noise scheme (Teng 1999). Follow-
ing this noise introduction procedure, x% of the examples
are corrupted by randomly replacing their current class label
with any other possible one, drawn from a discrete uniform
distribution. New class noise datasets are generated from

the original ones, considering the noise levels ranging from
x = 0% (base datasets) to x = 20%, by increments of 5%.

For each noise level, a noisy dataset from the original one
is created following the procedure described below:

1. An amount of x% of uniform class noise is introduced
into a copy of the full original dataset.

2. The original and the noisy dataset are partitioned into five
equivalent folds: each fold will contain the same exam-
ples. Please note that the noisy copy will have a x% of
labels changed.

3. For the noisy copy, the training partitions are maintained,
whereas the test partitions will substitute the noisy exam-
ples by the original ones, thus obtaining a test partition
that is noise-free.

The measures estimation of the algorithms in datasets is
obtained by means of three runs of a stratified fivefold cross-
validation. Five partitions are used since, if each partition has
a large number of examples, the noise effects will be more
notable, facilitating their analysis.

4.2 Quality measures used to evaluate the performance
in subgroup discovery

The main property for SD algorithms is the obtaining of
interesting, simple and interpretable subgroups, covering the
majority of the examples of the interest property (target
variable). Considering this definition, we analyse the most
relevant quality measures for SD as can be observed in the
guidelines presented in Carmona et al. (2014).

It is important to remark that the SD algorithms based
on EFSs use fuzzy logic in order to represent continuous
variables of the dataset, and it is necessary to present fuzzy
subgroups in order to understand their analysis. In Eq. 1,
the representation of a canonical fuzzy rule for SD can be
observed:

R : I F X1 = (LL2
1) AND X3 = (LL1

3)

T HEN TargetValue (1)

where:

– X = {Xm/m = 1, . . . , nv} is a set of features used to
describe the subgroups, and nv is the number of descrip-
tive features.

– T = {TargetValue/j = 1, . . . , ntv} is a set of values
for the target variable, and ntv is the number of values
for the target variable.

– LL
lnv
nv

is the LL number lnv of the variable nv .

The quality measures analysed are:
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Table 2 Parameters of the
algorithms

Algorithm Parameters

SDIGA (SDI) Fitness = (0.7 ∗ Sensitivity + 0.3 ∗ Unusualness); Linguistic labels =
3; Minimum confidence = 0.6; Population size = 100; Maximum
evaluations = 10,000; Crossover probability = 0.60; Mutation
probability = 0.01

NMEEFSD (NME) Objective1 = Sensitivity; Objective2 = Unusualness; Linguistic labels
= 3; Minimum confidence = 0.6; Population size = 50; Maximum
evaluations = 10,000; Crossover probability = 0.60; Mutation
probability = 0.10

FuGePSD (FuG) Fitness = Unusualness; Linguistic labels = 3; Minimum confidence =
0.6; Minimum sensitivity = 0.6; Population size = 100; Maximum
generations = 300; Crossover probability = 0.50; Mutation
probability = 0.20; Insertion Probability = 0.15; Dropping
Probability = 0.15; w1 = 0.7; w2 = 0.15; w3 = 0.15;
AllTargetValues = False

– Unusualness is the weighted relative accuracy of a rule
(Lavrac et al. 1999) which measures interest and a trade-
off between generality and precision. It can be computed
as:

Unus(Ri ) = n(Cond)

ns(
n(TargetV alue · Cond)

n(Cond)
− n(TargetV alue)

ns

)

(2)

It can be described as the balance between the coverage
of the rule and its accuracy gain, where n(Cond) is the
number of examples which satisfy the conditions deter-
mined by the antecedent part of the rule, ns is the number
of total examples, n(TargetV aluek ·Cond) is the num-
ber of examples which satisfy the conditions and also
belong to the value for the target variable within the rule,
and n(TargetV aluek) are all the examples of the target
variable. The domain of this quality measure is specified
for each problem because there is a direct dependence
with respect to the target variable.

– Sensitivity is the proportion of actual matches that have
been classified correctly (Kloesgen 1996) and it has a
component based on generality. It is computed as:

Sens(Ri ) = n(TargetV alue · Cond)

n(TargetV alue)
(3)

This quality measures can be found in the literature as
the Support based on the examples of the class, Recall or
T Prate, and its domain is [0, 1].

– Fuzzy confidence is an adaptation of the standard con-
fidence measure for fuzzy rules (del Jesus et al. 2007).
This quality measures obtain the precision of one sub-
group and it is defined as:

FCn f (Ri ) =
∑

Ek∈E/Ek∈TargetValue APC(Ek, Ri )∑
Ek∈E APC(Ek, Ri )

(4)

where APC (Antecedent Part Compatibility) is the
degree of compatibility between an example and the
antecedent component of a fuzzy rule, i.e. the degree
of membership for the example to the fuzzy subspace
delimited by the antecedent part of the rule. An example
Ek verifies the APC of a rule if

APC(Ek, Ri ) = T (μLL1
1
(ek1), . . . , μLL

lnv
nv

(eknv
)) > 0

(5)

This experimental study uses the parameters presented
in Table 2 for the algorithms SDIGA, NMEEFSD and
FuGePSD following the recommendations of the authors.
As we have mentioned previously, in view of the fact that
all algorithms are stochastic, three runs are performed, and
an average result from 15 values is shown for each dataset.
Therefore, values of a set of rules in unusualness (UNUS),
sensitivity (SEN S) and fuzzy confidence (FCNF) are com-
puted as the average for all rules.

5 The suitability of noise filtering for subgroup
discovery algorithms

The main objective of this experimental study is to analyse
whether using a filtering approach is beneficial for the perfor-
mance of different EFSs for SD. For this reason, we compare
the capabilities of these algorithms without filtering over the
increasingly noisy versions of the base datasets.

Firstly, complete results obtained for the algorithms with-
out filtering are presented in Tables 3, 4 and 5 for the
unusualness, sensitivity and fuzzy confidence quality mea-
sures, respectively. As can be observed in these results:
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– The algorithm with the best results for the original
datasets in all SD quality measures is the NMEEFSD
algorithm,whichobtains values higher than76% in fuzzy
confidence with a sensitivity close to 85%, i.e. subgroups
cover the majority of examples for the target variable
with a high value of confidence. In addition, the inter-
est of these subgroups is excellent because the values
of unusualness are very high with respect to the values
obtained by SDIGA and FuGePSD.

– SDIGAandNMEEFSDalgorithms have the same behav-
iour when the noise increases in the experimental study.
In this case, the values of unusualness, sensitivity and
fuzzy confidence are decreased between 20 and 40% in
usualness andvalues close to 10% in sensitivity and fuzzy
confidence.

– The FuGePSD algorithm has a good behaviour with the
noisy dataset, as can be observed in the experimental
study. This algorithm keeps the same values although
there is an increasing of noise with respect to the base
datasets. It is even able to improve the values of subgroups
obtained with noisy datasets. Moreover, FuGePSD is the
SD algorithm with the best results obtained in noisy
datasets, obtaining more precise and interesting sub-
groups.

Once the experimental study has been analysed from the
point of viewof the original datasets, it is necessary to present
the behaviour with the application of noise filtering for these
EFSs for SD. As we have mentioned in a previous section,
the noise filters employed are ensemble filter (EF), cross-
validated committees filter (CVCF) and iterative-partitioning
filter (IPF). To summarise, average results for each quality
measure and algorithm are detailed in Table 6, where the
original results without filter (NF) and after preprocessing
the noisy datasets with CVCF, EF and IPF are also shown.
We also indicate the base case (0%), in which no class noise
is introduced into the dataset.Moreover, in this table are high-
lighted the best values for each algorithmandqualitymeasure
with respect to the different percentages of noise. The com-
plete results for this experimental study can be analysed in
the URL http://simidat.ujaen.es/papers/Noise-EFSs-SD.

It is actually complicated to perform a general analysis
for all EFSs. In this way, the best results obtained for each
algorithm and filter with respect to the different levels of
noise are highlighted. With this selection, the understanding
of the study is facilitated. In addition, an analysis for each
algorithm is performed below:

– SDIGA is the SD algorithm with the lowest values in
all the quality measures. However, this assumption is
induced because it is the only algorithm which obtains
subgroups for all values of the target variable. As can be
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observed in Table 6, the algorithm has a good behaviour
with noisy datasets when the ensemble filter is applied
previously. In this way, the difference of values for qual-
ity measures between the original dataset (0%) and the
dataset with the most noise (20%) when the ensem-
ble filter is applied is null for unusualness and negative
for sensitivity and fuzzy confidence, i.e. the ensemble
filter is able to detect outliers and problems in sub-
groups extracted for minority classes which could be
penalising results obtained for SDIGA in complex noisy
datasets.

– The behaviour of the application of noise filtering
with respect to the NMEEFSD algorithm is similar to
that commented on previously for SDIGA. NMEEFSD
obtains the best resultswhen the ensemble filter is applied
in a previous stage to the extraction of subgroups. In this
case, the algorithm has a bad behaviour with the pres-
ence of noise in the datasets and it is necessary to apply a
previous filter such as ensemble. The difference between
the original dataset (0%) and the dataset with the highest
percentage of induced noise (20%), when the ensemble
filter is applied, are very close.While in fuzzy confidence
there is a slight improvement, in unusualness and sensi-
tivity it is quite the opposite.

– The FuGePSD algorithm has the best behaviour with
noisy datasets, as can be observed in Table 6. In fact,
this algorithm obtains better results without the appli-
cation of filters than with the application of some noise
filtering. FuGePSD also obtains the best results without
filter for all the groups of datasets analysed in this exper-
imental study, i.e. in 5, 10, 15 and 20% and for all quality
measures analysed. In fact, this algorithm keeps the same
value in fuzzy confidence between the base datasets and
the dataset with 20%of induced noise and it increases the
values of sensitivity and unusualness. In summary, this
algorithm is able to improve the interest and generality
of the extracted subgroups without losing precision.

It is important to remark upon the large experimental
study performed in this contribution, where more than 9300
experiments for each algorithm are carried out in order
to obtain these results. However, it is strictly necessary to
analyse them from one statistical point of view in order
to search for significant differences and confirm the pre-
vious assertions. Therefore, a statistical analysis with the
Friedman test (Friedman 1937) is used. The main objec-
tive is to compare the results obtained and to be able to
precisely analyse whether there are significant differences
amongst the four algorithms. This test first ranks the j th of
k algorithms on the i th of N datasets and then calculates
the average rank according to the F-distribution (Distribu-
tion value) throughout all the datasets, and calculates the
Friedman statistics. If the Friedman test rejects the null
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Table 7 Results for Friedman’s statistical test showing the best (first) ranked approach. If the null hypothesis N0 is rejected with α = 0.1, the
filter is highlighted in bold. When the null hypothesis is rejected with the same α, the best option is underlined

Unusualness Sensitivity Fuzzy confidence

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

SDI EF EF EF EF IPF IPF EF IPF EF EF EF EF
NME EF EF EF IPF EF EF EF EF EF EF EF EF
FuG EF NF NF NF NF NF NF NF NF NF NF NF

hypothesis, this indicates that there are significant differ-
ences.

The results of this statistical analysis can be observed in
Table 7 where for each algorithm and quality measure for
SD the option with the best ranking in the different levels of
noise is presented. In addition, the best option is highlighted
in bold in the case of significance differences considering
the Friedman test rejects at level of significance α = 0.10
and underlined if the null hypothesis is rejected with the
same confidence level. A post hoc analysis of the results
from Friedman’s statistical test showed that no significative
differences among the filters were found.

The majority of assumptions performed in the previ-
ous analysis are confirmed by the statistical tests. For the
NMEEFSD algorithm, the best results in noisy datasets are
obtained with significance differences through the previous
application of the EF. However, for the SDIGA algorithm the
behaviour is more complicated because for unusualness and
fuzzy confidence the previous assumptions are confirmed but
in sensitivity the best filter is IPF, althoughwithout significant
differences. In this way, for the SDIGA algorithm it would
be advisable to apply EF in noisy environments. Finally, we
must point out that the results obtained in the statistical tests
for the FuGePSD confirm the excellent behaviour of this
algorithm without the necessity of a previous noise filtering.

6 Effects of noise on subgroup discovery models
interpretability

In the previous section, we have analysed the effects on
the performance of SD methods of the presence of noise
with respect to three quality measures. However, this section
shows the effect of noise in SD based on the analysis of the
interpretability focused on the number of rules and variables.
In fact, in the literature in rule learning, and specifically in
SD, the number of rules and the average number of labels in
the rules are usually considered as a descriptive measure of
interpretability (Carmona et al. 2014).

Figure 1 depicts the average number of rules for SDIGA,
NMEEFSD and FuGePSD. From this figures, we can point
out the following, emphasising that the lower the number of
extracted rules is, the more interpretable the model should
be:

– As we can observe, the use of noise filters helps SDIGA
to maintain the number of rules generated as the noise
level increases, while not using a filter almost doubles
the number of rules obtained. Thus SDIGA is affected
by class noise, generating a fragmented description of
the subgroups if not correctly treated.

– NMEEEFSD generates a model comprised of the high-
est number of rules among all the three SD algorithms
considered. However, when noise increases and it is not
treated with filtering, the number of rules decrease. On
the other hand, by using EF the number of extracted rules
is maintained as the highest among all the filters. In this
sense, NMEEFSD obtains accurate descriptions but the
presence of noise forcesNMEEFSD to drop rules accord-
ing to its fitness function. EF is the most appropriate way
to avoid such a problem.

– In the case of FuGePSD, it behaves similarly to SDIGAas
the number of rules increases with the noise introduced.
However, although the CVC filter drives FuGePSD to
extract a similar number of rules to NF, the performance
with CVC when compared to NF is significatively lower.
Thus, FuGePSD does not benefit from filtering as it is
forced to fragment the description it creates by increasing
the number of rules.

Since the number of rules are not able to provide a whole
picture of the interpretability of a model, we now proceed to
analyse the number of labels involved in the rules generated
by the three SD techniques considered. In Fig. 2, the average
number of labels for SDIGA, NMEEFSD and FuGePSD is
shown. Taking into account that the lower the number of
labels extracted is, the more legible the model is expected to
be, and from these figures we can point out the following:

– In the case of SDIGA, the average number of labels
obtained decreases as the noise increases for IPF and
EF, while NF and CVC drive SDIGA to use a similar
amount of labels in every noise level. It is interesting to
remark that IPF and EF are the filters that help SDIGA to
behave better in the presence of noise. A possible expla-
nation is that IPF and EF clean the class borders better for
SDIGA, helping it to learn better subgroup descriptions,
while NF and CVC may cause SDIGA to overfit as the
noise increases.
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(a) (b)

(c)

Fig. 1 Average number of rules for each SD algorithm per class noise level. a SDIGA, b NMEEFSD, c FuGePSD

– If we consider NMEEFSD, we can see that NF creates
a larger amount of rules, while EF (the best filter for
NMEEFSD) helps to keep the number of labels involved
the lowest. On the other hand, not filtering (NF) makes
NMEEFSD use a larger number of labels in the rules
and thus overfit the subgroup descriptions. The other two
filters, CVC and IPF, help NMEEFSD to also obtain a
lower number of rules than NF, but not as lower as EF.

– FuGePSD shows a completely different behaviour to
SDIGA and NMEEFSD. While at low noise levels
the number of labels is high, as the noise introduced
increases, FuGePSD reduces the number of labels used in
the rules in order to avoid overfitting the description (as
SDIGA does). The use of filters hinders this behaviour,
as FuGePSD maintains a higher number of labels. We
can assume that the design of FuGePSD makes it more
robust than SDIGA.

As a summary of the depicted results for the average num-
ber of rules and labels, we may emphasize on how different
the three SD algorithms analysed in this study are. SDIGA
is prone to be affected by noise to a greater degree than
NMEEFSD and FuGePSD. By using filters, the description
that it obtains is somehow improved, but it is still too simple
when compared to NMEEFSD’s or FuGePSD’s. NMEEFSD
is an accurate technique at the cost of the largest number of

rules but the lowest number of variables. This kind of config-
uration seems to benefitmore fromfiltering than FuGePSD’s.
The model generated by FuGePSD contains a lower number
of rules than NMEEFSD’s but with more labels. In summary,
FuGePSD and SDIGA are more affected by class noise than
NMEEFSD, mainly because NMEEFSD is able to benefit
more from the application of noise filtering: it is the approach
that is more stable both in terms of number of rules and labels
extracted if noise filters are used.

While we may not decide which model is more inter-
pretable, a model with the lowest rules or a model with the
lowest number of labels, it is interesting to stress that noise
filtering seems to help more models with many and simple
rules than models with few but complex rules. Since filtering
usually cleans the class borders, a larger number of rules will
probably capture this simplified class description better.

7 Concluding remarks

In this paper, we have analysed the influence of the class
noise on the SD problem, that is a descriptive data mining
technique using supervised learning. Specifically, the analy-
sis has been performed with the most representative EFSs
for SD: SDIGA, NMEEFSD and FuGePSD. To do so, differ-
ent class noise amounts (5, 10, 15 and 20%) were introduced
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(a) (b)

(c)

Fig. 2 Average number of labels for each SD algorithm per class noise level. a SDIGA, b NMEEFSD, c FuGePSD

into the original datasets. Since no approaches on how to deal
with noise in SD can be found in the literature, we have con-
sidered the usage of noise filtering preprocessing techniques
commonly used in classification as a possible way to deal
with class noise. Since noise filters were designed to be used
in classification, one of the goals of this paper is to analyse
the suitability of such approaches in a descriptive task as SD.

The study carried out in this manuscript shows different
situationswith respect to the increment of noise depending on
the algorithm analysed. Although all the algorithms employ
the fuzzy SD approach that confers robustness against uncer-
tainty and noise to a certain extent, experts can observe the
advantages provided for noise filtering in SD. However, it is
important to remark on the analysis of the FuGePSD algo-
rithm which is the best EFS for SD in noisy environments.
This algorithm is able to detect the noise in the problem and
isolate it, and in this way the algorithm does not lose quality
in the extracted subgroups with this type of problems.

On the other hand, when the amount of noise increases its
treatment cannot be ignored for the SDIGA and NMEEFSD
algorithms and the application of specialized techniques as
noise filters is beneficial. Specifically, we remark that EF
becomes the better option when noise cannot be neglected.

We have also addressed how noise affects the complexity
and interpretability of the extracted models. While simple
and with lower performance models like those generated by

SDIGA marginally benefit from filtering, we have shown
that models with few but complex rules will probably benefit
much less than models with more but simpler rules. Depend-
ing on the type of SD algorithm the practitioner plans to
use, experts may decide whether to expend time filtering the
dataset by following this assumption.

In summary, this contribution focuses on theusageof noise
filters as a viable approach to deal with noisy scenarios with
EFSs SD. The noise treatment for SD needs more studies and
attention in order to deep its analysis, as this paper covers the
first step using well-known preprocessing techniques for a
related supervised field. We believe that this paper can serve
as a motivation to further analyse other approaches for EFSs
SD, develop novel SD algorithms robust to noise and also
expand research of class noise in SD. It can also motivate the
development of specific preprocessing techniques for SD, as
the performance metrics for SD differ from those usually
considered in classification (where noise filters are usually
born). As a final remark, this study provides the basis for
the future use of EFSs of SD in real-world problems when
experts address problems with noisy environments, and in
this way they could obtain more comprehensible knowledge
in this data mining field.
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