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Abstract—Internet and the new technologies are generating

new scenarios with and a significant increase of data volumes.

The treatment of this huge quantity of information is impossible

with traditional methodologies and we need to design new

approaches towards distributed paradigms such as MapReduce.

This situation is widely known in the literature as Big Data.

This contribution presents a first approach to handle fuzzy

emerging patterns in big data environments. This new algorithm

is called EvAFP-Spark and is development in Apache Spark

based on MapReduce. The use of this paradigm allows us

the analysis of huge datasets efficiently. The main idea of

EvAEFP-Spark is to modify the methodology of evaluation of the

populations in the evolutionary process. In this way, a population

is evaluated in the different maps, obtained in the Map phase of

the paradigm, and for each one a confusion matrix is obtained.

Then, the Reduce function accumulates the confusion matrix for

each map in a general matrix in order to evaluate the fitness

of the individuals. An experimental study with high dimensional

datasets is performed in order to show the advantages of this

algorithm in emerging patterns mining.

I. INTRODUCTION

Nowadays we live in the information era. An era where
several petabytes of information are generated each day due
to cheaper storage, mobile network access, social networks
and other kinds of sensors networks [1]. This produces vast
volumes of data, with variety of formats that arrives at high
velocity. These characteristics make traditional data mining
methods unable to process this “Big Data” [2]. The term “Big
Data” is currently a hot topic in industry and academia because
of its possibilities [3]. The majority of methods are based on
the MapReduce paradigm [4]. MapReduce not only allows to
deal with Big Data, it is a paradigm to allow the creation
of scalable methods, which is really important in the data
sciences to get more accurate knowledge [5].

Emerging Patterns Mining (EPM) is a data mining task that
belongs to the supervised descriptive rule discovery (SDRD)
framework [6]. This task tries to find out patterns whose
supports increases significantly from one class, or dataset, to
another [7]. The characteristics of patterns extracted makes
EPM methods good classifiers. This methods have been ap-
plied with success in several cases in different fields [8]–[10].

However, the majority of works in the literature do not use
the descriptive characteristics of the emerging patterns (EPs),
losing a good source of knowledge for the experts.

Despite of the possibilities of EPM, the task is extremely
complex when the volume of data is huge due to the non-
convexity of the problem [11]. For this reasons, experts
are looking for subsets of interesting EPs and methods that
efficiently mines such subsets. One of the approaches more
suitable are the evolutionary fuzzy systems (EFS) [12]. These
systems are an hybridisation of evolutionary algorithms (EAs)
[13] and fuzzy logic [14]. EAs are a well-known optimisation
methods that search for the best solutions on huge search
spaces efficiently. Additionally, the use of fuzzy logic allows
to obtain a representation of the knowledge which is closer
to human reasoning. Moreover, the use of numerical variables
without discretisation improves the accuracy and the set of
rules can be more precise due to the use of a belonging degree
instead of a crisp one.

In this contribution we present a first approach to handle
Big Data problems with EPM. The approach is an adaptation
of the EvAEFP algorithm [15] to the MapReduce paradigm.
The algorithm is an EA that finds EPs with high descriptive
characteristics in a faster way than its predecessor on big
datasets. To achieve this purpose, this paper is organised
as follows: Section II presents a brief background of the
main concepts used in this paper. Section III presents the
evolutionary proposal for EPM under Big Data environments,
the EvAEFP-Spark algorithm. Section IV presents an exper-
imental study that validates the proposed algorithm. Finally,
the contribution is concluded with the main findings.

II. PRELIMINARIES

In this section, a brief background of the main concepts
employed in the paper are presented. First, a background of
EPM is shown in Section II-A. Next, the main properties of
EFS are summarised in Section II-B. Finally, a brief review
of the MapReduce paradigm can be observed in Section II-C



A. Emerging Patterns Mining
EPM was defined by Dong and Li [7], [16] as the task of

finding all patterns with a growth rate (GR) value greater than
a threshold ⇢ � 1. Given two datasets D1 and D2, the GR of
a pattern x is defined in Eq. 1.

GR(x) =

8
><

>:

0, IF SupD1(x) = SupD2(x) = 0,
1, IF SupD1(x) 6= 0 ^ SupD2(x) = 0,

SupD1 (x)
SupD2 (x)

, another case

(1)
where SupDi(x) =

countDi (x)
|Di| is the support of the pattern in

the dataset i.
The objectives of EPM is to find out emerging tendencies

in timestamped datasets, discriminative characteristics among
classes or serching for differencies among variables.

The main problem of EPM is that it is a non-convex problem
[11], i.e., more general patterns can have lower GR values with
respect to more specific ones. For this reason, the search space
and the number of generated EPs could be huge. Throughout
the literature there have been attempts to filter the number of
patterns in order to get only high quality EPs with concepts
like jumping EPs [17], strong jumping EPs [18], or fuzzy EPs
[19], amongst others. This kind of patterns are joined with
different search strategies in order to make EPM faster. In
the literature, we can find methods following the border-based
approach, like the DeEPS method [20], and following a tree-
based approach, with methods like SJEP-C [18] and FEPM
[19], amongst others.

B. Evolutionary Fuzzy Systems
An EFS is an hybridisation of fuzzy systems augmented by

a learning process in an EA [12]. EAs are algorithms based on
natural evolution to solve optimisation problems with complex
search spaces. They have a good trade-off between the quality
of results obtained and the elapsed time to obtain such results
and it have been widely used in the literature.

On the other hand, fuzzy systems are based on fuzzy
logic [14]. This allows to handle uncertainty and allows the
representation of numeric variables in a more human-readable
way. This is done by means of linguistic labels (LLs) where a
fuzzy set represent a single label on the variable. This labels
could be defined by the user or by means of uniform partitions
if knowledge is unavailable.

The application of EFSs within the EPM can be observed as
a search process in a huge and complex search space, so EFSs
are a good solution in order to solve the problem of the EPs
extraction. Specifically, the objective is a rule learning process
to obtain interpretable knowledge through the use of IF-THEN
rules with fuzzy logic statements. This type of systems are
known as fuzzy rule-based systems (FRBSs). They are a well-
suited method to obtain simple and interpretable knowledge.

C. MapReduce
MapReduce [21], [22] is one of the most popular program-

ming paradigms to deal with Big Data. It is composed in two

main parts: the map, and the reduce phases. In a nutshell, the
map phase create some intermediate results of the input data
and the reduce data joins all those intermediate results of the
map phase to produce the final result.

One of the most popular frameworks that implements the
MapReduce paradigm is Spark [23], which is a cluster com-
puting framework for large-scale data processing with high
efficiency due to an intensive use of main memory. This fact
improves the performance on iterative algorithms like EAs in
orders of magnitude with respect to other frameworks like
Apache Hadoop [24]. The contribution presented in this paper
is developed for Spark with the Scala programming language.

III. THE EVAEFP-SPARK ALGORITHM

This method is an adaptation of the EvAEFP algorithm [15]
for Big Data problems. EvAEFP-Spark extracts an undeter-
mined number of fuzzy EPs in order to describe trends from
supervised learning. The fuzzy EPs can be formalised as rules
in order to obtain more interpretable results. By this way, a
rule is represented as:

R : Cond ! ClassV alue

where Cond is a conjunction of attribute-value pairs and
ClassV alue is the value of the target class. It is important
to remark that the objective of the method is to obtain
discriminative characteristics among classes. In this way, D1 is
a partition of the original dataset where there are only instances
of a class, and D2 is formed with instances belonging to the
other class. For multi-class problems, a One vs All (OVA)
binarisation technique is applied in order to get rules for all
possible classes.

A. Main properties
EvAEFP-Spark employs an EA with a “Chromosome =

Rule” codification, where each individual in the population
represents a potential rule. In this method, only the antecedent
part of the rule is represented. This means that, in order to
obtain rules for all possible values of the target class, this
method must be executed once for each class. In Fig 1 a
phenotype and genotype representations of an individual is
presented. Note that a value of zero represents the absence of
the variable in the rule.

Genotype
x1 x2 x3 x4

2 0 3 0

+
Phenotype

IF (x1 = LL2
1) ^ (x3 = LL1

3) THEN (xObj = Class)

Fig. 1. Representation of a rule in the EvAEFP-Spark algorithm.

As we can observe, a numerical variable is represented
through LLs in the algorithm. With this representation, an



example e is considered as covered by a rule R if its An-
tecedent Part Compatibility (APC) value is greater than zero.
This measure is defined as:

APC(e,R) = T (µ1
n(e1), ... , µi

n(ei)) (2)

where T is a t-norm function, in this case, the minimum t-
norm, and µi

n(ei) is a function that calculates the belonging
degree in the LL n for the variable i. For discrete variables,
it checks if the example at variable i has the discrete value
n, returning one if matches, or zero elsewhere. This algorithm
employs equivalent triangle representations for numerical vari-
ables. An example with five uniforms LLs can be observed in
Fig. 2.

very low

low

medium

high

very high

Fig. 2. Represention of a numeric variable with five uniform linguistic labels.

The proposed method is a mono-objective EA with an
iterative rule learning (IRL) approach [25]. In this way, the
algorithm extracts the best rule of the evolutionary process and
iterates until a stopping criteria is reached, i.e., the execution
is stopped when the last pattern is not an EP, it does not cover
new examples not covered by previous extracted rules, or it
has a null support. Additionally, this algorithm is generational
with elitism where the best individual is kept in the population
of the next generation.

The genetic operators used are a tournament selection [26]
with two individuals, a two-point crossover operator [27] and
a biased mutation operator presented in [28].

B. Operational scheme

The operational scheme of the proposed method is presented
in Fig 3. As can be observed, the algorithm starts reading the
data. Then, splits the data in disjoint partitions and send each
partition to each computing node in the cluster. Next, the IRL
approach is shown where the initial population is generated
for the target class by means of a biased procedure. The
initial population contains the 50% of individuals generated
randomly and the remaining are generated with a maximum
of an 80% of its variables initialised. At the end of the
evolutionary process, the best rule is extracted and added to
the final result set. This process is repeated while the stopping
condition is not satisfied.

Split the dataset 
and send to each partition

Generate and evaluate
initial population

Generate O!spring 
population by applying

genetic operators

Evaluate O!spring
population with 

MapReduce

# of evals.
reached?

No

Get Best Individual
and add it to the result

Yes

Stopping
criteria

reached?

No

All classes
have been
processed?

Yes

No

Return the set
of rules obtained

Yes

Fig. 3. General Operational scheme of the EvAEFP-Spark algorithm.

The key concept of an EA is the fitness function. This is
used to evaluate the quality of an individual. In EvAEFP-
Spark, the fitness function is defined as:

Fitness(R) =
p
TPr ⇤ TNr (3)

where a geometric mean between the true positive rate (TPr)
and the true negative rate (TNr) is used in order to obtain a
balanced way to maximise the precision and generality of a
potential rule.

C. MapReduce approach

The fitness function is the most expensive task of an EA.
In this way, for each individual is necessary to traverse the
complete dataset once for each individual in the population in
order to calculate the TPr and TNr. In the analysis of Big Data
through EAs this consideration must be taken into account.

For the analysis of the fitness function in Big Data environ-
ments within EPM through the use of EAs is necessary the
presentation of the results expressed by means of a confusion
matrix. Table I represents a confusion matrix for an emerging
rule with tp as the number of examples correctly covered, fn
such as the number of examples for the class not covered, fp
is the number of examples incorrectly covered, and tn is the
number of examples non-covered for the not class.

The measures used in the fitness function can be easily cal-
culated from this confusion matrix. In fact, TPr(R) = tp

tp+fn

and TNr = tn
tn+fp .



TABLE I
CONFUSION MATRIX FOR A RULE

Predicted
Real Positive Negative

Positive tp fn
Negative fp tn

In EvAEFP-Spark the fitness function has been developed
following the MapReduce paradigm in order to reduce the
complexity when evaluating the population. On each gen-
eration of the EA, the map phase sends those individuals
generated by genetic operators and, thus, not evaluated yet,
to the data partitions. Then, on each map, a confusion matrix
is calculated for each individual. After that, the reduce phase
performs the sum of all the possible confusion matrices,
getting only one confusion matrix for each individual with the
correct values to calculate the measures back on the driver. A
scheme of this MapReduce approach is shown in Figure 4.

Fig. 4. Scheme of the evaluation procedure of the EvAEFP-Spark algorithm
following a MapReduce approach.

IV. EXPERIMENTAL STUDY

An experimental study with some big datasets has been
performed in order to validate the proposal presented in this
paper. In this study, a comparison of the main descriptive
quality measures and execution times with respect to the
original EvAEFP algorithm is analysed.

This study has been evaluated through different datasets
available in UCI repository [29]. The characteristics of these
datasets are summarised in Table II.

The study is compared through a 5-fold stratified cross
validation which avoids the arbitrariness of the classical k-fold
cross validation and the dependence of the results with respect
to the partitioning performed in order to get the descriptive

TABLE II
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTAL

FRAMEWORK.

Dataset # Instances # Instances (R/I/N) # Classes

census 299284 41 (1/12/28) 3
kddcup 494020 41 (26/0/15) 23
rlcp 5749132 11 (11/0/0) 2
susy 5000000 18 (18/0/0) 2

quality measures. The parameters used in the execution of the
algorithms are summarised in Table III.

TABLE III
PARAMETERS USED FOR THE EVAEFP AND THE EVAEFP-SPARK

ALGORITHMS IN THE EXPERIMENTAL FRAMEWORK.

Parameter Value

number of fuzzy labels 3
number of evaluations 10000
population length 100
crossover probability 0.60
mutation probability 0.01

Additionally, EvAEFP-Spark needs to specify the number
of partitions used to divide the input data. In this experimental
study we execute the algorithm with 4, 8, 16, 32, 64, 128 and
256 partitions. With respect to the quality of the EPs extracted,
this is analysed through the following quality measures:

• GR. It is the main quality measure in EPM and it is
defined in Eq. 1. However, the range for this quality
measure ([0, 1]) implies the necessity to measure the
percentage of patterns that are EPs on the test set.

• True Positive Rate (TPr). It measures the ratio of true
positive examples covered by the rule, giving a generality
measure of the rule obtained.

• False Positive rate (FPr). It measures the ratio of false
positive examples covered by the rule, giving a precision
measure for the rule obtained.

• Execution time. It measures the time elapsed in seconds
for the complete execution process.

Complete results for this experimental study can be ob-
served in Table IV where the quality of the EPs extracted for
the new approach is kept. In general, the values of the quality
measures analysed are very similar, so the new approach
satisfies the objectives of the sequential one. The variations
in some values are registered due to the complexity of the
patterns extracted for both methods, i.e. the EvAEFP algorithm
extracts a number of rules higher than the EvAEFP-Spark
and the rules also contain a higher number of variables.
Moreover, the sequential algorithm is not able to obtain results
in prudential times for RLCP and Susy.

On the other hand, the execution time for the new big data
approach are reduced in the process of extraction of EPs. In
fact, when the number of maps is increased the time continues
reducing. Specially, this assertion can be observed in datasets



TABLE IV
RESULTS OBTAINED BY THE SEQUENTIAL EVAEFP ALGORITHM AND

EVAEFP-SPARK WITH DIFFERENT NUMBER OF PARTITIONS

Dataset Algorithm GR TPR FPR Time

census

EvAEFP 1.000 0.492 0.395 10443
EvAEFP-Sp (4) 0.819 0.534 0.430 4915
EvAEFP-Sp (8) 0.819 0.534 0.430 3584
EvAEFP-Sp (16) 0.819 0.534 0.430 2863
EvAEFP-Sp (32) 0.819 0.534 0.430 2522
EvAEFP-Sp (64) 0.819 0.534 0.430 2169
EvAEFP-Sp (128) 0.819 0.534 0.430 2100

EvAEFP-Sp (256) 0.819 0.534 0.430 2298

kddcup

EvAEFP 0.509 0.432 0.247 57840
EvAEFP-Sp (4) 0.602 0.416 0.002 21767
EvAEFP-Sp (8) 0.602 0.416 0.002 16709
EvAEFP-Sp (16) 0.602 0.416 0.002 13980
EvAEFP-Sp (32) 0.602 0.416 0.002 12472
EvAEFP-Sp (64) 0.602 0.416 0.002 11859

EvAEFP-Sp (128) 0.602 0.416 0.002 11960
EvAEFP-Sp (256) 0.602 0.416 0.002 12347

rlcp

EvAEFP - - - -
EvAEFP-Sp (4) 1.000 0.951 0.013 5628
EvAEFP-Sp (8) 1.000 0.951 0.013 4138
EvAEFP-Sp (16) 1.000 0.951 0.013 3660
EvAEFP-Sp (32) 1.000 0.951 0.013 2969
EvAEFP-Sp (64) 1.000 0.951 0.013 2746
EvAEFP-Sp (128) 1.000 0.951 0.013 2621

EvAEFP-Sp (256) 1.000 0.951 0.013 2948

susy

EvAEFP - - - -
EvAEFP-Sp (4) 0.533 0.302 0.211 13050
EvAEFP-Sp (8) 0.533 0.302 0.211 12939
EvAEFP-Sp (16) 0.533 0.302 0.211 11645
EvAEFP-Sp (32) 0.533 0.302 0.211 10729
EvAEFP-Sp (64) 0.533 0.302 0.211 10481
EvAEFP-Sp (128) 0.533 0.302 0.211 9929

EvAEFP-Sp (256) 0.533 0.302 0.211 10865

with a high dimensionality such as RLCP or Susy where the
most reduced execution time are obtained with a high number
of maps. A graphical analysis for times and for each dataset
are shown in Fig. 5.

For this first approach of Big Data in EPM, it is important
to note different questions to take into account into the
development of future approaches. The reduction of time has
a linear decreasing until the 100 number of maps due to the
complexity of the dataset directly, and by the MapReduce
overload produced that causes an extra computation time on
each generation of the algorithm. The EvAEFR-Spark follows
an IRL approach an it is executed as many times as needed
while the algorithm discovers new EPs. On the other hand,
when the cost of the computation of the confusion matrices
is significantly reduced due to the parallel computation (the
MapReduce, with a considerable number of maps) overload
is not a problem and makes the algorithm faster than the
sequential. It can be observed in complex datasets such as
kddcup, rlcp or susy. Finally, the study shows the difficulty of
determining the optimal number of maps, because this number
is dependent on the problem to analyse. For example, the
census datasets obtain the best execution time with a number
of maps between 30 and 60, whereas datasets complex obtain
the best times considering a higher number of maps.

V. CONCLUSIONS

In this paper the EvAEFP-Spark algorithm is presented. This
method is an adaptation of EvAEFP for Big Data environ-
ments. Additionally, it is the first attempt to handle Big Data
problems with EPM which is a SDRD task. The main objective
of EPM is to discover patterns with high GR values, but the
definition of the problem makes it a hard task when the amount
of data is huge. By this way, the evolutionary approach of the
EvAEFP algorithm and its lower computational complexity
with respect to other classic methods makes it a possible task
to handle this kind of problems efficiently. In this way, the
proposed MapReduce approach is based on a map phase where
the population on a given generation is sent to the partitions
and for each individual a partial confusion matrix is calculated.
Next, a reduce phase where the confusion matrices of the map
phase for an individual are summarised in order to get the
final confusion matrix. In this way, the quality measure are
calculated efficiently. A comparison between the EvAEFP and
the EvAEFP-Spark shows the advantages of this new proposal
in big data environments.
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