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Abstract. New scenarios are now emerging with increasing amounts of
data due to the massive use of the Internet and new technologies. Tra-
ditional methodologies are unable to handle this huge amount of data,
so new approaches towards distributed paradigms, such as MapReduce,
have to be designed. This environment is widely known in the literature
as Big Data. The interpretability of the results is a key aspect in Emerg-
ing Pattern Mining. In this study, the influence of the type of rule used
to extract knowledge in an evolutionary fuzzy algorithm for Emerging
Pattern Mining in Big Data environment is analysed. The adaptation of
the EvAEFP-Spark algorithm to extract disjunctive formal norm rules
is also presented.
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1 Introduction

Today we live in a world in which huge amounts of data are continually being
generated. This produces enormous volumes of data, with variety of formats
that arrives at high velocity, making traditional data mining methods unable to
process this “Big Data” [16]. The term “Big Data” is currently a hot topic in
industry and academia [9], where most of the methods developed are based on
the MapReduce paradigm [2]. A very important advantage of the MapReduce
paradigm is that allows the creation of scalable methods, a key aspect in data
science to obtain more accurate knowledge [25].

Emerging Pattern Mining (EPM) is part of the supervised descriptive rule
discovery (SDRD) framework [18]. This data mining task tries to find patterns
whose support increases significantly from one class, or dataset, to another [5].
EPM has been successfully applied in several cases in different fields [20, 19, 26].
However, the EPM task is extremely complex when the volume of data is huge
due to the non-convexity of the problem [23]. When the size of the datasets
increases, the number and complexity of the emerging patterns extracted by
the EPM algorithms also greatly increases. This makes the interpretability of
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the results obtained a key aspect to take into account. In this sense, rules are a
suitable tool for the representation of knowledge in the extraction of information
describing emerging patterns.

One of the more suitable approaches to deal with these problems are the
evolutionary fuzzy systems (EFS) [13]. These systems are a hybridisation of
evolutionary algorithms (EAs) [1] and fuzzy logic [27]. EAs are a well-known
optimisation methods that efficiently search for the best solutions on huge search
spaces. Additionally, the use of fuzzy logic allows to obtain a representation of
the knowledge closer to human reasoning and makes it unnecessary to discretise
numerical variables.

The objective of this work is to analyse the influence of the type of rule used
to represent the knowledge in EPM in a Big Data environment using EFSs. To
do so, we present an extension of a fuzzy EPM algorithm for Big Data prob-
lems, EvAEFP-Spark [12], allowing the use not only of canonical but disjunctive
normal form (DNF) rules to represent the knowledge. To do so, the paper is
organised as follows: Section 2 briefly introduces the main concepts used in this
paper. Section 3 presents the extension of the EvAEFP-Spark algorithm, an evo-
lutionary proposal for EPM under Big Data environments, in order to use DNF
rules. Finally, Section 4 presents an experimental study for the comparison of the
results of the algorithm using canonical or DNF rules and Section 5 introduces
the concluding remarks.

2 Preliminaries

This section presents the main concepts used in the work. This way, Section 2.1
contains a brief background of EPM, Section 2.2 describes the concept of EFS,
and finally Section 2.3 reviews the MapReduce paradigm.

2.1 Emerging Patterns Mining

Dong and Li [5, 7] defined EPM as the task of finding all patterns with a growth
rate (GR) value greater than a threshold ρ ≥ 1. Given two datasets D1 and D2,
the GR of a pattern x is defined in Eq. 1.

GR(x) =


0, IF SupD1

(x) = SupD2
(x) = 0,

∞, IF SupD1(x) 6= 0 ∧ SupD2(x) = 0,
SupD1

(x)

SupD2
(x) , another case

(1)

where SupDi(x) =
countDi

(x)

|Di| is the support of the pattern in the dataset i.

The aims of EPM are to find emerging tendencies in timestamped datasets,
discriminative characteristics among classes or searching for differences among
variables.

An important aspect to take into account is that EPM is a non-convex prob-
lem [23], i.e., more general patterns can have lower GR values with respect to
more specific ones. Hence, it is usual to deal with huge search spaces in EPM,



3

also obtaining a large number of EPs. As a result, there have been attempts
throughout the literature to filter or reduce the number of patterns obtained, in
order to only obtain high quality EPs. To do so, concepts like jumping EPs [6],
strong jumping EPs [8], or fuzzy EPs [10], among others, have been introduced
and joined with different search strategies in order to make EPM faster. In the
literature, different methods can be find following the border-based approach,
like the DeEPS method [15], and following a tree-based approach, with methods
like SJEP-C [8] and FEPM [10], among others.

2.2 Evolutionary Fuzzy Systems

An EFS is a hybridisation of fuzzy systems and a learning process in an EA
[13]. EAs are algorithms based on natural evolution to deal with optimisation
problems with complex search spaces. They have a good trade-off between the
quality of the results and the time needed to obtain such results. EAs have been
widely used in the literature in this kind of problems.

Fuzzy systems are based on fuzzy logic [27], so allowing to handle uncertainty.
In addition, fuzzy systems allow the representation of numeric variables in a more
human-readable way by using linguistic labels (LLs), where a fuzzy set represent
a single label on the variable. These labels can be defined by the user or using
uniform partitions if knowledge is unavailable.

EFSs can be applied in EPM as a process to search for EPs in a huge and
complex search space. The objective is then a rule learning process that allows
to obtain interpretable knowledge through the use of IF-THEN rules with fuzzy
logic statements. These systems are known as fuzzy rule-based systems (FRBSs).
They are a well-suited method to obtain simple and interpretable knowledge.

2.3 MapReduce

The EPs algorithms have difficulties when applied to Big Data problems. MapRe-
duce [2, 3] is one of the most popular programming paradigms to deal with Big
Data. It is composed of two main parts, the map and the reduce phases that
works as follows: the map phase obtain some intermediate results from the input
data, and the reduce phase joins all those intermediate results to produce the
final result.

Spark [28] is one of the most popular frameworks implementing the MapRe-
duce paradigm. It is a highly efficient cluster computing framework for large-scale
data processing based on an intensive use of main memory. This fact allows
Spark to improve the performance on iterative algorithms like EAs in orders of
magnitude with respect to other frameworks such as Apache Hadoop [24].

3 The EvAEFP-Spark Algorithm

The algorithm EvAEFP-Spark [12] is an adaptation of the EvAEFP algorithm
[11] for Big Data problems. EvAEFP-Spark extracts an undetermined number of
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fuzzy EPs in order to describe trends from supervised learning. The fuzzy EPs
can be formalised as rules in order to obtain more interpretable results. This
paper presents an extension to the EvAEFP-Spark algorithm allowing the use
of a different type of fuzzy rules to represent the knowledge extracted.

EvAEFP-Spark employs an EA with a “Chromosome = Rule” codification,
where each individual in the population represents a potential rule. In this
method, only the antecedent part of the rule is represented. This means that, in
order to obtain rules for all possible values of the target class, this method must
be executed once for each class.

The algorithm uses fuzzy rules when the features are continuous, and the
fuzzy sets corresponding to the linguistic labels (LLs) are defined by means of
the corresponding membership functions. These can be specified by the user or
defined by means of a uniform partition if expert knowledge is not available.
In this work, uniform partitions with triangular membership functions are used.
An example with five uniform LLs can be observed in Fig. 1.

very low

low

medium

high

very high

Fig. 1. Represention of a numeric variable with five uniform linguistic labels.

In the original version, EvAEFP-Spark uses canonical rules, where the an-
tecedent of a rule is composed of a conjunction of value-variable pairs, and the
value 0 is used to indicate that the variable is not considered for the rule. In Fig
2 a phenotype and genotype representations of an individual is presented.

Genotype
x1 x2 x3

2 0 3

⇓
Phenotype

IF (x1 = LL2
1) ∧ (x3 = LL3

3) THEN (xObj = Class)

Fig. 2. Representation of a canonical rule in the EvAEFP-Spark algorithm.
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The extension presented in this paper allows the use of DNF rules, where each
variable can take more than one value. A DNF rule represents the knowledge
in a flexible and compact way and facilitates the extraction of more general
rules. A fixed-length binary representation is used for a DNF rule, in which one
bit for each of the possible values of every feature is stored. Therefore, if the
corresponding bit contains the value 0 it indicates that the value is not used in
the rule (value 1 indicates that the value is used). In Fig 3 a phenotype and
genotype representations of an individual in DNF form is presented.

Genotype
x1 x2 x3

1 0 1 0 0 0 1 0 0

⇓
Phenotype

IF (x1 = (LL1
1 OR LL3

1)) ∧ (x3 = LL1
3) THEN (xObj = Class)

Fig. 3. Representation of a DNF rule in the EvAEFP-Spark algorithm.

3.1 Main properties and operational scheme

Algorithm EvAEFP-Spark is a mono-objective EA with an iterative rule learn-
ing (IRL) approach [22]. Therefore, the algorithm extracts the best rule of the
evolutionary process and iterates until a stopping criteria is reached, i.e., the
execution is stopped when the last pattern is not an EP, it does not cover new
examples, or it has a null support. The evolutionary algorithm used is genera-
tional with elitism, where the best individual is kept in the population of the next
generation, and uses as genetic operators a tournament selection [17] with two
individuals, a two-point crossover operator [14] and a biased mutation operator
presented in [4].

Fig 4 shows the operational scheme of EvAEFP-Spark. First, the algorithm
reads the data and splits it into disjoint partitions, then sending each partition
to a computing node. Next, the IRL approach begins by generating the initial
population for the target class by means of a biased procedure. 50% of the
individuals in the initial population are generated randomly and the remaining
are generated with a maximum of an 80% of its variables initialised. At the end
of the evolutionary process, the best rule is extracted and added to the final
result set. This process is repeated while the stopping condition is not satisfied.

A key concept of an EA is the fitness function. This is used to evaluate the
quality of an individual. In EvAEFP-Spark, the fitness function is defined as:

Fitness(R) =
√
TPr ∗ TNr (2)

where a geometric mean between the true positive rate (TPr) and the true
negative rate (TNr) is used in order to obtain a balanced way to maximise the
precision and generality of a potential rule.
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Generate and evaluate
initial population

Generate Offspring 
population by applying

genetic operators

Evaluate Offspring
population with 

MapReduce

# of evals.
reached?

Get Best Individual
and add it to the result

Stopping
criteria

reached?

All classes
have been
processed?

Return the set
of rules obtained

No

Yes

Yes

No

Fig. 4. General Operational scheme of the EvAEFP-Spark algorithm.

3.2 MapReduce approach

The fitness function is the most expensive task of an EA because it involves
traversing the complete dataset once for each individual in the population, in
order to calculate the TPr and TNr. When using EAs in a Big Data environment
for the EPM task, it is necessary to express the results by means of a confusion
matrix in order to analyse the fitness function. Table 1 represents a confusion
matrix for an emerging rule with tp as the number of examples correctly covered,
fn such as the number of examples for the class not covered, fp is the number of
examples incorrectly covered, and tn is the number of examples non-covered for
the not class. The measures used in the fitness function can be easily calculated
from this confusion matrix, since TPr(R) = tp

tp+fn and TNr = tn
tn+fp .

Table 1. Confusion matrix for a rule

Predicted
Real Positive Negative

Positive tp fn
Negative fp tn

In EvAEFP-Spark the fitness function has been developed following the
MapReduce paradigm in order to reduce the complexity when evaluating the
population. On each generation of the EA, the map phase sends those individ-
uals generated by genetic operators and, thus, not evaluated yet, to the data
partitions. Then, on each map, a confusion matrix is calculated for each individ-
ual. After that, the reduce phase performs the sum of all the possible confusion
matrices, getting only one confusion matrix for each individual with the correct
values to calculate the measures back on the driver. A scheme of this MapReduce
approach is shown in Figure 5.
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Fig. 5. Scheme of the evaluation procedure of the EvAEFP-Spark algorithm following
a MapReduce approach.

4 Experimental study

An experimental study with some big datasets available in UCI repository [21]
has been performed in order to compare the results of the EvAEFP-Spark al-
gorithm with both canonical and DNF rules. The main characteristics of these
datasets, namely, the name of the dataset, the number of instances, the num-
ber of features and their types (Real, Integer and Nominal), and the number of
classes are summarised in Table 2.

Table 2. Characteristics of the datasets used in the experimental framework.

Dataset Instances Features (R/I/N) Classes

census 299284 41 (1/12/28) 3
kddcup 494020 41 (26/0/15) 23
rlcp 5749132 11 (11/0/0) 2
susy 5000000 18 (18/0/0) 2

For the comparison, a 5-fold stratified cross validation scheme is used in order
to avoid the arbitrariness of the classical k-fold cross validation and the depen-
dence of the results with respect to the partitioning performed. The parameters
used in the execution of the algorithm are summarised in Table 3.

As introduced in [12], when running algorithm EvAEFP-Spark it is neces-
sary to specify the number of partitions used to divide the input data. In this
experiments 128 partitions have been used. To perform the comparison between
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Table 3. Parameters used for the EvAEFP-Spark algorithm in the experiments.

Parameter Value

Number of fuzzy labels 3
Number of evaluations 10000
Population length 100
Crossover probability 0.60
Mutation probability 0.01

the results of the two types of representations for the knowledge extracted, the
quality of the EPs extracted is analysed through the following quality measures:

– GR. It is the main quality measure in EPM and it is defined in Eq. 1.
However, the range for this quality measure ([0,∞]) implies the necessity to
measure the percentage of patterns that are EPs on the test set.

– True Positive Rate (TPr). It measures the ratio of true positive examples
covered by the rule, giving a generality measure of the rule obtained.

– False Positive rate (FPr). It measures the ratio of false positive examples
covered by the rule, giving a precision measure for the rule obtained.

Table 4. Results of the algorithm EvAEFP-Spark with canonical and DNF rules

Dataset Rule GR TPR FPR Time

census
Can 0.819 0.534 0.430 2100
DNF 0.913 0.649 0.467 2264

kddcup
Can 0.602 0.416 0.002 11960
DNF 1.000 0.748 0.748 13596

rlcp
Can 1.000 0.951 0.013 2621
DNF 1.000 0.957 0.014 22067

susy
Can 0.533 0.302 0.211 9929
DNF 0.533 0.386 0.299 29160

The results of the experimental study are shown in Table 4. In general, the
values obtained using canonical and DNF rules are very similar, with a small
advantage in favour of the DNF rules. However, the minimum advantage of
the DNF representation is greatly diluted considering the huge amount of time
expended in obtaining such patterns. This time difference is much more relevant
with the volumen of data is higher. In addition, they are more complex and less
interpretable rules than canonical rules.

5 Conclusions

An extension of the EvAEFP-Spark algorithm to handle DNF rules is presented
in this paper. In a DNF rule, more than one value can be taken by each variable,
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so allowing to represent the knowledge in a flexible and compact way and facili-
tating the extraction of more general rules. The experiments on datasets in a Big
Data environment does not show a significant advantage of one representation
over the other. However, the time to obtain DNF rules is significantly higher
than canonical. Therefore, selecting one type or another of rules will mainly
depend on the type of knowledge to be extracted.
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