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Abstract The presence of noise in datasets to which data1

mining techniques are applied can greatly reduce the quality2

and interest of the knowledge extracted. Subgroup discovery3

is a supervised descriptive rule discovery technique which is4

not exempt from this problem. The aim of this paper is to5

improve the descriptions of subgroups previously obtained6

by any subgroup discovery algorithm in noisy datasets.7

This is achieved using the post-processing approach of the8

MEFES algorithm, that first detects exceptions in the input9

subgroups and then includes those exceptions in the descrip-10

tions. The experiments performed in noisy datasets show the11

suitability of the proposal to improve the quality of the results.12

Keywords Subgroup discovery · Exceptions · Noisy data ·13

MEFES14

B Pedro González
pglez@ujaen.es

Ángel Miguel García-Vico
agvico@ujaen.es

Cristóbal José Carmona
cjcarmona@ubu.es

María José del Jesus
mjjesus@ujaen.es

1 Department of Computer Science, University of Jaen, 23071
Jaén, Spain

2 Department of Civil Engineering, University of Burgos,
09006 Burgos, Spain

3 Leicester School of Pharmacy, De Montfort University, LE1
9BH Leicester, UK

1 Introduction 15

Subgroup discovery (SD) [8,19] is an interesting task within 16

data mining that allows the extraction of novel and interesting 17

knowledge about subgroups of the data whose behaviour with 18

respect to a variable of interest is significantly different from 19

that of the whole dataset. 20

Different factors influence the quality of the subgroups 21

obtained by SD algorithms such as missing values, noise, 22

and so on. These problems can affect the interpretations, the 23

decisions taken and the models created from the data, as well 24

as the performance of the system. In particular, the presence 25

of noise in datasets on which data mining techniques are 26

applied can greatly reduce the quality and interest of the 27

knowledge extracted and worsen the accuracy. 28

Studies on the impact of noise in data mining tasks have 29

traditionally focused on predictive data mining, with little 30

attention has been paid to its impact in descriptive data min- 31

ing. In addition, the usual approach is the use of noise filtering 32

methods [23] as a pre-processing step to identify and elim- 33

inate noisy instances, but they usually can not produce data 34

with characteristics similar to those of the original data [38]. 35

In this way, it would be interesting to explore approaches dif- 36

ferent to the use of filters for dealing with noisy data in SD. 37

A particular consequence of noise in SD is the appearance of 38

exceptions within the models generated. The detection and 39

description of these exceptions caused by noise could be a 40

good starting point to improve the results of SD algorithms 41

in noisy environments. 42

The aim of this paper is to improve the descriptions of 43

the subgroups in noisy environments by using exceptions, 44

rather than using a pre-processing method to filter noise 45

in SD. According to this, a methodology is proposed that 46

involves obtaining SD rules (using any SD algorithm, both 47

evolutionary and non-evolutionary) to later detect exceptions 48
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in those rules in datasets with noise, in order to increase49

the level of description of the rules. This is done using50

the MEFES [6] post-processing algorithm that, applied to51

the results of a SD algorithm, allows to detect exceptions52

in the rules that describe the subgroups, and then obtain53

modified rules that include the exceptions. These exceptions54

could correspond to noisy values or outliers. The advantage55

of this approach is that experts can analyse the exceptions56

detected and determine whether they correspond to outliers57

(obtaining interesting knowledge) or noise. Our hypothe-58

sis is that this methodology, that works well in datasets59

without noise [6], will work particularly well with noisy60

data.61

A complete experimental study is developed with datasets62

with noise in order to verify the applicability of the post-63

processing mechanism, and check if it is a good alternative64

to the use of noise elimination or mitigation approaches.65

The remaining of the paper is organised as follows. Sec-66

tion 2 introduces the concept of SD and its main properties,67

and Sect. 3 describes the problem of the presence of noise in68

data mining and SD. Section 4 describes the post-processing69

proposal to improve the results of the SD algorithms in70

datasets with noise. Section 5 describes the experiments car-71

ried out, comparing the results of SD algorithms with those72

obtained after applying MEFES algorithm, and analysing73

whether this reduces the impact of noise on the quality74

of the results. Finally, Sect. 6 presents some concluding75

remarks.76

2 Subgroup discovery77

SD is a data mining technique which attempts to obtain a78

set of independent rules with a good compromise between79

generality-precision and with high levels of interest. This80

concept was initially introduced by Kloesgen [24] and Wro-81

bel [35], and formally defined by Siebes using the name Data82

Surveying for the discovery of interesting subgroups [31]. It83

can be defined as [36]:84

In subgroup discovery, we assume we are given a so-85

called population of individuals (objects, customers,86

. . .) and a property of those individuals we are inter-87

ested in. The task of subgroup discovery is then to88

discover the subgroups of the population that are statis-89

tically “most interesting”, i.e. are as large as possible90

and have the most unusual statistical (distributional)91

characteristics with respect to the property of interest.92

SD is receiving an special interest throughout the commu-93

nity in these years due to the capacity to describe problems94

from a different perspectives than traditional descriptive95

inductions such as applications in medicine [5,9,11], e-96

learning [28,29], industry [6,10,21], amongst others.97

Knowledge is represented by rules in SD. A rule (R) can 98

be defined as: 99

R : Cond → T argetV ar 100

where T argetV ar is a value for the variable of interest (tar- 101

get variable) for the subgroup discovery task and Cond is 102

commonly a conjunction of features (attribute-value pairs) 103

which is able to describe an unusual statistical distribution 104

with respect to the T argetV ar . 105

The main elements defining the SD approaches and the 106

quality measures used are described below. 107

2.1 Main elements of subgroup discovery approaches 108

Different elements must be considered to apply an SD algo- 109

rithm [3]: 110

– Type of the target variable. Different types of target vari- 111

able can be used: binary, nominal or numeric. Different 112

analyses can be applied for each type considering the 113

target variable as a dimension of the reality to study. 114

– Description language. The representation of the sub- 115

groups must be suitable to obtain interesting rules. These 116

rules must be simple and therefore are represented as 117

attribute-value pairs in conjunctive or disjunctive normal 118

form in general. Furthermore, the values of the variables 119

can be represented as positive and/or negative, through 120

fuzzy logic, or through the use of inequality or equality 121

and so on. 122

– Quality measures. These are a key factor for the extrac- 123

tion of knowledge because the interest obtained depends 124

directly on them. Furthermore, quality measures provide 125

the expert with the importance and interest of the sub- 126

groups obtained. Different quality measures have been 127

presented in the specialised bibliography [14,19,24–26]. 128

– Search strategy. This is very important, since the dimen- 129

sion of the search space has an exponential relation to 130

the number of features and values considered. Different 131

strategies have been used up to the moment, for exam- 132

ple beam search, evolutionary algorithms and search 133

in multi-relational spaces. The algorithms implemented, 134

their search strategies and applications can be observed 135

in [19]. 136

2.2 Quality measures in subgroup discovery 137

SD algorithms seek to obtain simple and interpretable sub- 138

groups, being desirable to cover most of the examples of 139

the property of interest. According to this definition and the 140

study of the different quality measures used in the literature 141

presented in [8], three guidelines are proposed in order to 142

establish the type of measure more suitable to analyse the 143

quality of the subgroups obtained by any SD algorithm: 144
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– Interpretability. The idea is to obtain few rules containing145

a low number of variables in order to help the expert to146

understand and use the extracted knowledge. The algo-147

rithm must obtain a low number of rules with a low148

number of variables because the algorithms look for sim-149

ple and interpretable subgroups through partial relations.150

Therefore, we propose the use of the number of variables151

and rules for this guideline152

– Relation sensitivity-confidence. An SD algorithm153

should obtain results with good precision, where most154

of the covered examples belong to the value of the anal-155

ysed target variable, i.e. the algorithm must achieve the156

best possible relation between sensitivity and confidence.157

Both quality measures are essential to provide subgroups158

to experts covering as many correctly described examples159

as possible. The balance between both quality measures is160

difficult to reach by the algorithms due to the decrease that161

a measure undergoes when trying to increase the other.162

Both quality measures (Sensitivity and Confidence) must163

be considered for this guideline.164

– Novelty. An SD model should contribute new knowledge165

about the problem, providing the experts with informa-166

tion that describes unusual and interesting behaviour167

within the data. This objective could be measured with a168

wide number of quality measures such as novelty, interest169

or significance, amongst others. Nevertheless, it is impor-170

tant to emphasise the use of unusualness to measure this171

objective because it contributes with generality and con-172

fidence to the problem. Moreover, this quality measure173

is widely used in the specialised literature. Therefore,174

despite the large number of quality measures within this175

category, we propose the use of unusualness.176

After that, the aim of an SD algorithm is to find a good177

balance between these three guidelines, since this leads to178

a good performance in a large number of quality measures179

used in SD, and not only in those used in the search process.180

3 Influence of noise in data mining and subgroup181

discovery182

Noise is a real problem which is usually found in data. Such183

is its influence in the construction of a model that it can184

lead to reduce system performance in terms of classification185

accuracy, time in building and/or size of the model [39]. In186

fact, the quality of any dataset is determined by a large num-187

ber of components [33]. Two of these are the source of the188

data and the input of the data, which are inherently subject189

to error. Errors in real-world datasets are therefore common190

and action must be taken to mitigate their consequences [37].191

Two different types of noise are generally distinguished192

[4]:193

– Noisy attributes, which are erroneous values of the 194

attributes of the dataset. Several causes induce noise in 195

an attribute such as labelling process, data entry errors, 196

absence of attributes and so on. 197

– Noisy classes, that occurs when the instance belongs to 198

the incorrect class; it can be caused by the same properties 199

mentioned previously. 200

Noise in a dataset can be found both in the target variable 201

or class as in the attributes, where the quality of the attributes 202

indicates how well attributes characterise the instances, and 203

the quality of the class labels represents whether the class 204

of each instance is correctly assigned. However, the noisy 205

classes only have sense in the training file and nowadays 206

there are techniques to reduce it in a good way [4]. On 207

the other hand, the noise in the attributes is more present 208

in the real data and its handling is more difficult [38]. 209

Noisy attributes include erroneous attribute values, miss- 210

ing or unknown attribute values or incomplete attributes, 211

amongst others. 212

When applying data mining techniques, if noise is present 213

in the training cases, this means that even low levels of noisy 214

attributes can cause common cases to overwhelm rare cases. 215

On the other hand, if noise is present in the test, the cases will 216

be misclassified because the noise corrupted the test instance 217

by making it to look like another class or because the incorrect 218

classification of a case was learned during the training step. 219

Traditionally, problems arising from the presence of noise 220

in classification has received special attention throughout the 221

literature. However, this problem has not been widely anal- 222

ysed from the descriptive point of view. Specifically, this 223

lack of analysis is also present in SD. The only approxima- 224

tion with an analysis about the presence of noise in data for 225

SD can be observed in [27], where the behaviour of EFSs in 226

SD is analysed and different noise filters are applied in order 227

to improve the results. However, this analysis lacks of inter- 228

esting information for the experts about the noise filtered. 229

This leads us to believe that we would obtain more inter- 230

esting knowledge using an alternative approach to filtering 231

in problems with noise in SD, such as the one presented in 232

the next section. 233

4 The use of MEFES with noisy datasets for 234

subgroup discovery 235

The problems derived from the use of filtering techniques 236

as a pre-processing with datasets with noise make us think 237

of the search for alternative strategies to handle data with 238

noise in SD. Perhaps we can take advantage of the fact that 239

several factors as missing values, outliers or the noise cause 240

rare cases in the dataset, i.e. these types of data cause small 241

groups of instances which correspond to another class. These 242
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incorrectly described instances can be described as excep-243

tions [32]. If we are able to detect these exceptions, we could244

determine if they correspond to noise or another situation,245

and the description of the subgroups could be improved by246

incorporating this knowledge into the rules.247

For this purpose, the post-processing algorithm MEFES248

[6] can be used. MEFES is a multi-objective evolutionary249

fuzzy system for the detection of exceptions in subgroups250

which extracts modified subgroups in a post-processing251

stage, improving the results obtained by any SD algorithm.252

The main purpose of the algorithm is to find out excep-253

tions associated for each subgroup, representing incorrectly254

described examples within the subgroup - examples within255

the subgroup with a different value of the target variable.256

The modified subgroups are formed by the initial subgroups257

and their exceptions. This way, based on the concept of the258

exceptions, an improvement of data mining algorithms can259

be focused as a search process of exceptions within the data260

described by any data mining model. In this way, knowl-261

edge extracted from a problem in a noisy environment can262

be improved.263

The following scheme summarises the operation of264

MEFES:265

1. Starts from a set of initial subgroups (R) obtained by any266

SD algorithm.267

2. Search for exceptions associated to each subgroup.268

3. Generate modified subgroups (R′) formed by the initial269

subgroups and their exceptions associated.270

4. Evaluate the modified subgroups.271

So, the objective is to introduce a methodology which272

consist of the following steps:273

– Use an SD algorithm, both evolutionary and non-274

evolutionary, to obtain subgroups in a dataset with noise.275

– Apply the post-processing algorithm MEFES to the rules276

obtained to detect exceptions in those rules which could277

be caused by noise.278

– Include these exceptions in the original rules to obtain279

modified rules in order to increase the level of description280

on the subgroups.281

Our hypothesis is that, as MEFES works well in datasets282

without noise [6], the proposed methodology will work283

particularly well with noisy data, since noise can cause excep-284

tions to appear in the rules, and that exceptions would be285

detected and the rules modified accordingly, so improving286

the results. In this sense, this methodology can become a287

good alternative to the use of pre-processing filtering meth-288

ods, by providing interesting knowledge to the experts.289

In addition, the use of MEFES as a post-processing stage290

provides:291

– an improvement of the accuracy of the SD algorithms, 292

because possible errors of the model in the description of 293

examples are fixed; and 294

– new knowledge to the experts, because new spaces in the 295

data with unusual behaviour are delimited. 296

Although the MEFES algorithm is described in detail 297

in [6], the most important features are summarised below. 298

MEFES is based on the NSGA-II approach [12], a multi- 299

objective evolutionary algorithm where the objective vectors 300

used are: sensitivity and confidence. The use of these quality 301

measures as objectives provides the algorithm an improve- 302

ment in quality measures such as precision and other specific 303

measures for SD as unusualness. 304

Amongst its main operators, it is interesting to remark the 305

use of these specific operators to keep the purpose of the 306

algorithm: 307

– Oriented initialisation. It generates a population with 308

individuals which contain amongst their properties the 309

same values that the initial subgroup together with new 310

values for the remaining attributes. Afterwards, this new 311

operator generates part of the population with biased indi- 312

viduals and the rest are generated randomly. 313

– Oriented mutation. It is a new operator derived from the 314

standard mutation [18]. In this case, the modification is 315

related to the values of the initial subgroup which must be 316

kept in the individual, i.e. the values of the new individual 317

corresponding to those of the initial subgroup cannot be 318

modified. 319

– Oriented re-initialisation based on coverage. A verifi- 320

cation on the Pareto to see whether evolves or not is 321

performed before to obtain the main population of the 322

next generation. It is considered that the Pareto evolves if 323

it covers at least one example of the dataset not covered 324

by the Pareto of the previous generation. If the Pareto 325

does not evolve a re-initialisation of the population is 326

performed but this initialisation keep the non-repeated 327

individuals of the Pareto front and all new individuals 328

keep the same values of the initial subgroup. 329

According to this, the modified subgroup is described by 330

the expression: 331

R′
i : IF Condi AND Exci THEN T argetV ar (1) 332

where Condi represents the condition for Ri and Exci rep- 333

resents conditions for associated exceptions to the rule Ri . 334

Examples of SD rules modified by the MEFES algorithm 335

including exceptions in the descriptions of the subgroups can 336

be find in [6]. In spite of that, en example is described below 337

to facilitate understanding. Let us suppose we have applied 338

an SD algorithm to discover subgroups for the well-known 339
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IRIS dataset, obtaining the following rule:340

R1 : IF PetalWidth = “High′′ THEN Class341

= I ris − virginica342

Once applied the MEFES post-processing algorithm to the343

SD rule, the modified rule obtained might look like the fol-344

lowing:345

R′
1 : IF (PetalWidth = “High′′ AND346

NOT(347

(Petal Length = “Low′′ AND SepalWidth = “Medium′′)OR348

(Petal Length = “Low′′ AND Sepal Length = “Low′′)))349

THEN Class = I ris − virginica350

In order to analyse this type of rules, modified quality351

measures for SD have to be defined because the evaluation352

of the subgroups with exceptions must be performed consid-353

ering the examples covered by the initial subgroup without354

the examples covered by its associated exceptions. Below are355

defined the modified quality measures used for the evaluation356

of the modified subgroups:357

– Unusualness of a subgroup with exceptions:358

Unus′(R′
i ) =

(

T PR′
i

(T P + F P)R′
i

−
(T P + F N )Ri

N

)

359

·
(T P + F P)R′

i

N
(2)360

where T PR′
i
= T PRi

− F PExci
, T PRi

are the number of361

correctly described examples of the rule, F PExci
are the362

number of incorrectly described examples for the set of363

associated exceptions to the rule, (T P+F P)R′
i
= (T P+364

F P)Ri
−(T P + F P)Exci

, (T P + F P)Ri
are the number365

of examples covered by the rule, (T P + F P)Exci
are the366

examples covered by the set of associated exceptions to367

the initial rule, (T P+F N )Ri
are the number of examples368

for values of the target variable, and N is the total number369

of examples.370

– Sensitivity of a subgroup with exceptions:371

Sens′(R′
i ) =

T PR′
i

(T P + F N )Ri

(3)372

– Fuzzy confidence of a subgroup with exceptions:373

Cn f ′(R′
i ) =

∑

Ek∈E/Ek∈T argetV ar APC(Ek, R′
i )

∑

Ek∈E APC(Ek, R′
i )

(4)374

where APC(Ek, R′
i ) = APC(Ek, Ri ) − APC(Ek,375

Exci ).376

Table 1 Properties of the datasets used from the KEEL repository

Name nv T argetV ar ns

Balance 4 3 625

Heart 13 2 270

Iris 4 3 150

Monk-2 6 2 432

Nursery 8 5 12, 960

Penbased 16 10 10, 992

Pima 8 2 768

Shuttle 9 7 2175

Spambase 57 2 4597

Wdbc 30 2 569

German 20 2 1000

Ionosphere 33 2 351

Magic 10 2 1902

New-thyroid 5 3 215

Page-blocks 10 5 5472

Phoneme 5 2 5404

Segment 19 7 2310

Sonar 60 2 208

Thyroid 21 3 7200

Zoo 16 7 101

5 Experimentation 377

This section describes the details of the experimental study 378

carried out to analyse the improvement of the results when 379

applying MEFES post-processing algorithm on the knowl- 380

edge generated by some of the most outstanding subgroup 381

discovery algorithms in a noisy environment. The experi- 382

mental study is divided in different subsections to clarify 383

the approach proposed. First, the experimental framework 384

used is described, including the datasets used, the process to 385

induce noise in the original datasets, and the methodology 386

employed to perform the experiments. Then, it is analysed 387

if the results of the SD algorithms worsen when the level of 388

noise is increased. Once the worsening of the results is veri- 389

fied, the MEFES post-processing algorithm is applied to the 390

results of the selected SD algorithms to analyse if the new 391

results improve the original ones. 392

5.1 Experimental framework 393

The experimental study uses 20 datasets from the KEEL [1,2] 394

repository.1 Table 1 shows the properties of these datasets, 395

including Name, number of variables (nv), number of values 396

of the target variable (T argetV ar ) and number of instances 397

(ns) of each dataset. 398

1 http://www.keel.es.
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Table 2 Parameters used in the
algorithms

Algorithm Parameter

Apriori-SD Minimum support = 0.03, minimum confidence = 0.6, number of rules = 5

SDIGA Population size = 100, evaluations = 10,000, crossover probability = 0.60,
mutation probability = 0.01, minimum confidence = 0.6, representation of
the rule = canonical, linguistic labels = 3, objective1 = sensitivity,
objective2 = unusualness

NMEEF-SD Population size = 50, evaluations = 10,000, crossover probability = 0.60,
mutation probability = 0.1, minimum confidence = 0.6, representation of
the rule = canonical, linguistic labels = 3, objective1 = sensitivity,
objective2 = unusualness

MEFES Population size = 50, evaluations = 10,000, crossover probability = 0.60,
mutation probability = 0.1, re-initialisation based on coverage with 90% of
biased, minimum confidence = 0.80, representation of the rule = canonical,
linguistic labels = 3

It is important to remark that one of the algorithms used399

in the experiments, Apriori-SD [22], is not able to handle400

large datasets, i.e. with more than 20 variables. This problem401

is illustrated in [6] with a experimental study based on a402

feature selection process. Therefore, the experimental study403

for Apriori-SD is carried out with only 15 of the datasets,404

those with up to 20 variables.405

In order to analyse the impact of the noise on the differ-406

ent datasets used for the SD task it is necessary to control407

the noise level. Therefore, manual mechanisms are used to408

add noise in data. Starting from the previously mentioned409

datasets from the KEEL repository, new datasets with noise410

are generated by adding noise on both the training and test411

partitions. The presence of noise in both the training and test412

partitions allows us to observe how noise affects the accuracy413

of the models generated.414

Noise is introduced in datasets through a random attribute415

noise scheme [40], where certain percentage of values of416

each attribute of the datasets are substituted with wrong417

(noisy) values, consistent with the hypothesis that interac-418

tions between attributes are weak [39]. The percentages of419

noisy values introduced determines de level of noise, i.e. a420

dataset with a noise level of 10% indicates that 10% of the421

attribute values of the dataset have been replaced by cor-422

rupt values. For the experiments, datasets with noise levels423

of 5% and 10 % have been generated. The noise introduced424

in each attribute has a low correlation with the noise intro-425

duced in the others. In addition, noise is only introduced with426

numerical attributes. The noisy values are assigned through427

a random value between the minimum and maximum of428

the domain of the attribute, following a uniform distribu-429

tion.430

The experiments have been carried out using some of the431

most representative algorithms for SD, both classical, such as432

Apriori-SD [22], and based on EFSs, such as SDIGA [20] and433

NMEEF-SD [7]. After that, the post-processing algorithm434

MEFES [6] has been applied to the results of the previous435

algorithms. The parameters used in the experimental study 436

for the different algorithms can be observed in Table 2. 437

In the experiments for the different algorithms, Apriori- 438

SD [22], SDIGA [20], and NMEEF-SD [7], and the applica- 439

tion of MEFES [6] on the rules generated by these algorithms, 440

the results presented in the different tables are obtained by 441

means of five-fold cross-validation. In this way, datasets are 442

divided into 5 partitions with equal number of instances but 443

maintaining the class ratio in each one. The training stage 444

is performed with four partitions, obtaining a set of sub- 445

groups, and the remaining partition is used to evaluate the 446

quality of this set of subgroups. This procedure is repeated 447

five times, using for the evaluation a different partition each 448

time. Finally, the results shown are the average results of the 449

five repetitions of the evaluation process. Therefore, qual- 450

ity measures presented in the result tables are the average 451

results of all the rule sets in the different datasets anal- 452

ysed: unusualness (U NU S), sensitivity (SE N S) and fuzzy 453

confidence (FC N F). The quality measures used for Apri- 454

ori+MEFES, SDIGA-MEFES and NMEEF-SD+MEFES are 455

U NU S′, SE N S′, and FC N F ′, but are represented with the 456

same acronyms in order to avoid confusion. 457

In order to complete the experimental study, analysing 458

whether there are significant differences between the results 459

of the algorithms Apriori-SD, SDIGA and NMEEF-SD with 460

respect to the application of the MEFES algorithm to their 461

results, a statistical comparison is performed. In [13,17] a 462

set of simple, safe and robust nonparametric tests for statisti- 463

cal comparisons of classifiers are recommended. According 464

to that, the Wilcoxon signed-ranks test [30,34] is selected in 465

this analysis to make the comparison. A complete description 466

of the Wilcoxon signed-ranks test and other nonparametric 467

tests for pairwise and multiple comparisons, together with 468

software for their use is available in [15,16] and on the com- 469

plementary website.2 470

2 http://sci2s.ugr.es/sicidm/.
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Table 3 Average results with
different levels of noise

Algorithm %Noise UNUS % ↓ SENS % ↓ FCNF % ↓

Apriori-SD 0 0.064 0.548 0.68

5 0.059 7.8 0.518 5.5 0.655 3.8

10 0.056 12.5 0.513 6.4 0.650 4.6

SDIGA 0 0.049 0.774 0.596

5 0.034 30.6 0.727 6.1 0.563 5.5

10 0.030 38.8 0.691 10.7 0.547 8.2

NMEEF-SD 0 0.094 0.907 0.796

5 0.082 12.8 0.875 3.5 0.761 4.4

10 0.069 26.6 0.825 9.0 0.726 8.8

5.2 Impact of noise in SD algorithms471

An analysis showing the impact of noise in evolutionary472

fuzzy systems for SD can be seen in [27]. However, we con-473

sider necessary to include a classical SD algorithm in order474

to obtain a more general view on the impact of noise in the475

results of the SD algorithms. Hence, in this study both clas-476

sical and evolutionary algorithms for SD are analysed with477

respect to their behaviour in a noisy environment. To do so,478

Apriori-SD, SDIGA and NMEEF-SD have been run with479

both the original datasets and datasets with different noise480

levels to check how the presence of noise affects the results481

of these algorithms. Table 3 shows the average results of482

the different quality measures for Apriori-SD, SDIGA and483

NMEEF-SD with different levels of noise, and the percent-484

ages of decrease when noise is introduced respect to the485

original datasets (0% noise). Different levels of noise in data486

are employed in this experimental study; specifically, we use487

5% and 10% of noise induced. The complete results on the488

different datasets for each algorithm are available in the web-489

site.3490

These experiments show that the results are worse when491

noise is introduced for both classical and evolutionary SD492

algorithms. In fact, these results become even worse as more493

noise is introduced in the datasets. In particular, the quality494

measure for SD that deteriorates the most in these algo-495

rithms is the unusualness. Sensitivity and confidence are also496

worsen, but reaching only 10% of decrease. This means that497

some of the quality measures suffer significant deterioration498

when the datasets have noise, making it interesting to work499

towards the reduction of the impact of noise on the results of500

SD algorithms.501

5.3 Impact of noise using the approach proposed502

A comparison of the results of the SD algorithms (Apriori-503

SD, SDIGA, and NMEEF-SD) and those obtained after504

3 http://simidat.ujaen.es/papers/SD-Noisy.

Table 4 Average results with different levels of noise and the post-
processing algorithm MEFES

%Noise Algorithm UNUS SENS FCNF

0 Apriori-SD 0.064 0.548 0.681

Apriori-SD + MEFES 0.070 0.509 0.723

SDIGA 0.049 0.774 0.596

SDIGA + MEFES 0.051 0.715 0.603

NMEEF-SD 0.094 0.907 0.796

NMEEF-SD + MEFES 0.099 0.894 0.817

5 Apriori-SD 0.059 0.518 0.655

Apriori-SD + MEFES 0.064 0.468 0.692

SDIGA 0.034 0.727 0.563

SDIGA + MEFES 0.037 0.666 0.572

NMEEF-SD 0.082 0.875 0.761

NMEEF-SD + MEFES 0.086 0.855 0.779

10 Apriori-SD 0.056 0.513 0.650

Apriori-SD + MEFES 0.061 0.468 0.692

SDIGA 0.030 0.691 0.547

SDIGA + MEFES 0.033 0.647 0.564

NMEEF-SD 0.069 0.825 0.726

NMEEF-SD + MEFES 0.073 0.804 0.745

applying the approach proposed (that implies the application 505

of the algorithm MEFES to the results of the SD algo- 506

rithms, and called Apriori-SD+MEFES, SDIGA+MEFES 507

and NMEEF-SD+MEFES) is presented in Table 4. In this 508

table, the level of noise (%Noise), Algori thm and results 509

of the quality measures explained above are shown. The 510

complete results obtained for each algorithm in the differ- 511

ent datasets are available in the Website http://simidat.ujaen. 512

es/papers/SD-Noisy. 513

As can be observed, in this experimental study are 514

employed different levels of noise in data in order to analyse 515

the quality of the post-processing approach for SD algo- 516

rithms in noisy environments (5 and 10% of noise induced). 517

In general, there is a relative loss of quality in measures 518

when the level of noise is increased, i.e. there is a loss of 519
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Table 5 Wilcoxon test for the
comparison SD Algorithm +
MEFES versus SD Algorithm

%Noise Algorithm R+ R− p val H ypothesis

0 Apriori-SD U NU S 114 6 0.002 Rejected by Apriori-SD + MEFES

SE N S 0 120 0.001 Rejected by Apriori-SD

FC N F 109 11 0.005 Rejected by Apriori-SD + MEFES

SDIGA U NU S 135 36 0.033 Rejected by SDIGA-MEFES

SE N S 0 153 0.001 Rejected by SDIGA

FC N F 135 36 0.033 Rejected by SDIGA-MEFES

NMEEF-SD U NU S 90 15 0.019 Rejected by NMEEF-SD + MEFES

SE N S 0 120 0.001 Rejected by NMEEF-SD

FC N F 105 0 0.001 Rejected by NMEEF-SD + MEFES

5 Apriori-SD U NU S 92.5 27.5 0.065 Rejected by Apriori-SD + MEFES

SE N S 0 120 0.001 Rejected by Apriori-SD

FC N F 105 15 0.011 Rejected by Apriori-SD + MEFES

SDIGA U NU S 175 56 0.384 Non-rejected

SE N S 0 231 0.000 Rejected by SDIGA

FC N F 205 26 0.001 Rejected by SDIGA-MEFES

NMEEF-SD U NU S 167 43 0.021 Rejected by NMEEF-SD + MEFES

SE N S 0 171 0.000 Rejected by NMEEF-SD

FC N F 192 18 0.001 Rejected by NMEEF-SD + MEFES

10 Apriori-SD U NU S 91 29 0.078 Rejected by Apriori-SD + MEFES

SE N S 0 120 0.001 Rejected by Apriori-SD

FC N F 110 10 0.005 Rejected by Apriori-SD + MEFES

SDIGA U NU S 186 45 0.013 Rejected by SDIGA-MEFES

SE N S 0 210 0.000 Rejected by SDIGA

FC N F 219 12 0.000 Rejected by SDIGA-MEFES

NMEEF-SD U NU S 157 33 0.013 Rejected by NMEEF-SD + MEFES

SE N S 0 210 0.000 Rejected by NMEEF-SD

FC N F 199 11 0.000 Rejected by NMEEF-SD + MEFES

quality between results obtained by a dataset with a con-520

crete noise level with respect to the case without added521

noise. The analysis for each quality measure is explained522

below:523

– Unusualness. MEFES improves the results of Apriori-524

SD, SDIGA, and NMEEF-SD independently of the level525

of noise as can be observed in Table 4.526

– Sensitivity. This quality measures can never be improved527

by MEFES because it quantifies the ratio of examples per528

target variable of the original subgroup. Despite this, the529

loss is directly related to the level of noise.530

– Confidence. This measure has a short relative loss531

between the dataset without noise and that with a level of532

10%. In all the cases, the results after applying MEFES533

improve those of the original SD algorithm.534

To complete these statements, a statistical study for the535

quality measures of unusualness, sensitivity and fuzzy con-536

fidence has been performed. These quality measures are537

analysed independently through the Wilcoxon test. The538

results of this test will show the existence or not of significant539

differences between the algorithms for each measure. A con- 540

fidence level of α = 0.1 is used in all the experiments. Table 541

5 presents the results, including the noise level (%Noise) 542

employed, the name of the Algori thm, the different qual- 543

ity measures (U NU S, SE N S, FC N F), the positive range 544

(R+), the negative range (R−), the correspondent p-value, 545

and the H ypothesis. 546

The results of the statistical tests with different levels of 547

noise determine that the algorithms Apriori-SD and NMEEF- 548

SD with the post-processing algorithm MEFES obtain the 549

best results with significant differences with respect to the 550

original SD algorithms in unusualness and fuzzy confidence. 551

In the case of the algorithm SDIGA, the post-processing algo- 552

rithm MEFES allows to obtain better results with significant 553

differences in fuzzy confidence but not in unusualness. As 554

expected, it is also confirmed that there are significant differ- 555

ences in favour of the original SD algorithms in terms of the 556

sensitivity measure. In summary, the results support that in 557

noisy environments, the application of the post-processing 558

algorithm MEFES allows to improve the results regarding 559

novelty and confidence. 560
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6 Conclusions561

In this paper, we have analysed the influence of the noise on562

SD algorithms. Specifically, the analysis has been performed563

with some of the most outstanding classical and evolutionary564

algorithms for SD, Apriori-SD, SDIGA and NMEEF-SD. To565

do so, different levels of noise (5 and 10%) were introduced566

into the original datasets.567

The experimental study shows a loss of quality of the568

results obtained when noise is introduced in the datasets.569

In this way, the appearance of noise in real-world datasets570

could lead to a loss of quality in subgroups obtained for any571

approach employed. The identification of these data in real-572

world data is a key factor in order to improve the results.573

This contribution proposes the use of a post-processing574

algorithm called MEFES in order to search for excep-575

tions within subgroups obtained for any SD algorithm from576

the literature, i.e. the application of MEFES in subgroups577

obtained previously allows the detection of exceptions with578

bad descriptions within the original subgroups. Considering579

the original and modified subgroup, an expert could deter-580

mine the elements corresponding to the noise and delete581

them from the data, or treat them in some way, for exam-582

ple. Therefore, the idea of this contribution is not delete the583

noise but rather consider a subgroup such as an independent584

problem, to palliate the possible noise within the subgroup585

and to improve the description of the original subgroup.586

The experimental study has been carried out in three of587

the most relevant algorithms within SD, Apriori-SD, SDIGA,588

and NMEEF-SD, with different features. Apriori-SD is a589

modification for the SD task of the widely known Apriori590

algorithm for association rules, SDIGA is monoobjective591

evolutionary fuzzy system for SD and NMEEF-SD is a multi-592

objective evolutionary fuzzy system based on the NSGA-II593

approach [12]. In these algorithms, the behaviour after the594

post-processing stage is satisfactory because the quality of595

the original subgroups extracted is improved, even with dif-596

ferent levels of noise.597
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