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Abstract—This paper proposes a multilabel fuzzy decision tree
classifier named FuzzDTML. The algorithm uses generalized fuzzy
entropy, aggregated over all labels, to choose the best attribute
for growing the tree. The proposed algorithm also can generate
leaves predicting partial label sets, which can incorporate to
some degree the dependence among labels, as well as produce
more interpretable models. An empirical analysis shows that,
although the algorithm does not yet incorporate pruning nor
fuzzy interval adjustment phases, it is competitive with other
tree based approaches for multilabel classification, with better
performance in data sets having numerical features that can be
fuzzified.

I. INTRODUCTION

Multilabel classification [1] is a data mining task in which
more than a single label, from a set of labels L, can be assigned
to a given instance at the same time. The labels are generally
grouped into a binary vector Y of size |L|, where a 1/0 value
at position yi indicates the relevance/irrelevance of the label
li to an a given instance X , from a set of instances X . A
Multilabel Classifier (MLC) F is a mapping function defined
as F : X → Y , which aims to predict the label vector Y for
a given instance X .

Algorithms for inducing MLCs can be divided into two
groups: (a) problem transformation methods, where the MLC
problem is organized as a set of single-label classification
tasks, so that traditional classifier learning algorithms can
be applied; and (b) algorithm adaptation methods, where a
specific learning algorithm is extended in order to cope to
MLC problems directly. The former has the advantage that,
once the problem was transformed, any single label classifier
can be applied. However, depending on how the labels are
transformed, they should be considered independently, loosing
inter-label information; or joined as a single class token,
loosing label diversity as only combinations that appear in
the training set can be predicted. Furthermore, a single-label
model needs to be induced for each transformed problem,
increasing computational costs. The later can be used to build
an overall, single model. The drawback is that the algorithm
adaption is not trivial, and each algorithm requires specific
adaptations.

In this paper, we propose FuzzDTML, a MLC fuzzy decision
tree algorithm. The reasons for developing a fuzzy decision

tree MLC are two-fold: firstly, we can use the inherent
interpretability of fuzzy based systems to give some intuition
or explanation about a classification. This is a very important
feature in some data mining and knowledge discovery tasks
where not only a “black-box” classification is necessary, but
also some interpretation of the classification. Second, MLCs
has often some degree of vagueness among the labels bound-
aries, which cannot be properly caught by standard crisp (non-
fuzzy) classifiers.

The main characteristics of FuzzDTML are:
• the algorithm induces an overall, single MLC model,

facilitating its interpretation;
• it can generate leaves with partial label sets, which can

incorporate in the model some aspects of label depen-
dency;

• the performance is comparable with other tree-based
MLC, but the algorithm shows some advantage with data
sets with numerical attributes.

This paper is organized as follows: Section II presents
related work. Section III describes the proposed algorithm.
Section IV reports the carried out empirical evaluation to
analyze the performance of the proposed method, and Sec-
tion V presents some concluding remarks and future research
directions.

II. RELATED WORK

Decision tree is a widely-used classification technique due
to its easily understandable tree-like representation [2]. The
main idea consists in growing the branches of a tree where
each split corresponds to a test through an attribute’s value.
The choice of the splitting attribute is performed heuristically,
and the process is recursively repeated for each branch. Each
split is called a node and the first split is called the root of the
tree. When some stopping criterion is met, the splitting process
is terminated, and a leaf node containing a prediction is
created. Post-processing steps, such as pruning, is often carried
out for avoiding overfitting and improve interpretability.

There are some proposals for adapting decision tree algo-
rithms for multilabel classification. A straightforward approach
is to use some data transformation method, and then apply a
decision tree algorithm as the base classifier. Two common

978-1-5090-6034-4/17/$31.00 c©2017 IEEE



approaches are the Binary Relevance transformation, which
transform a MLC problem into a set of binary problems, one
for each label; and the Label Power Set transformation, which
transform the original MLC problem into a multiclass one,
where classes correspond to each possible label combination
from the label power set. Binary relevance generates a tree for
each label, whereas the label power set generates a single tree
model. An adaptation of the C4.5 decision tree algorithm was
proposed in [3]. This adaptation computes the sum of labels’
entropies for choosing the best attribute to grow the tree, and
leaves predict a vector of labels.

Many fuzzy decision tree induction algorithms have been
proposed in the literature [4]. Fuzzy decision tree algorithms
have been successfully applied to problems in many areas
such as decision making, data mining, knowledge engineering
and industrial applications [5]. They can be considered as a
generalization of crisp decision trees. A fuzzy decision tree
allows the transverse of multiple branches of a node with
different satisfaction degrees within the range of [0, 1]. The
most commonly used fuzzy decision tree algorithms is the
Fuzzy ID3 algorithm [6]. The main idea of fuzzy ID3 is similar
to classical ID3. The key difference between two algorithms is
the use of fuzzy entropy to choose the best attribute to grow the
tree. Other approaches include Min-Ambiguity algorithm [7],
which selects the attribute with the minimum uncertainty as
an extended attribute based on possibility theory, and the
selection based on the Gini index [8]. A recent approach
uses generalized information entropy [9], that can be applied
to data sets having numerical and categorical features. Post-
processing steps in fuzzy decision tree also includes the ad-
justment of fuzzy membership functions to fine-tune fuzziness
evaluation [10].

There are a few attempts to use fuzzy sets in MLC. [11]
proposes a nearest neighbor fuzzy MLC using the approximate
reasoning framework of veristic variables, which is compet-
itive to non-fuzzy approaches. [12] also proposes a fuzzy
nearest neighbor approach based on fuzzy sets for text clas-
sification. They propose a modified fuzzy similarity measure
developed for restricting the search space. The authors report
that the method performs better than other methods in terms of
precision and execution time. [13] proposes a multilabel fuzzy
classifier for MLC. A fuzzy relevance measure is adopted
to transform high-dimensional documents to low-dimensional
fuzzy relevance vectors to avoid the curse of dimensionality.
The approach speed-ups classification, as well as produce
competitive results with other multilabel approaches. [14]
uses fuzzy hyper graph regularization for multilabel sub-
cellular location prediction. They report superior results due
to the benefit of exploiting both feature correlations and label
correlations. [15] analyses the behavior of FURIA [16], a
rule based classifier, associated to problem transformation
methods. FURIA achieved good classification performance
compared with non fuzzy rule-based systems. To the best of
our knowledge, there are no studies involving fuzzy decision
tree for multilabel classification.

III. FUZZDTML

Recent fuzzy decision tree systems generally include four
components:

Fuzzy partitioning where linguistic variables are created by
fuzzifying numerical attributes. This phase is usually
defined either by means of expert knowledge or homo-
geneously over the input space;

Attribute selection for tree growth where the fuzzified fea-
tures are evaluated in order to choose the best feature for
branching the tree;

Tree pruning which heuristically remove some possible un-
necessary tree branches;

Fuzzy partitioning tuning where membership functions are
adjusted in the post-processing phase to improve effi-
ciency.

The main objective of this paper is the development of an
attribute selection strategy to grow the tree in MLC context.
This section describes the proposed FuzzDTML algorithm.
The algorithm pseudo-code is presented in Algorithm 1. The
algorithm takes as input a set of instances X together to
their corresponding label vectors Y , the set of labels L, the
fuzzy membership degree of the current node D (which in the
beginning of the execution is 1 for all instances), and a pointer
reference to the current node (the tree root in the first call).
The tree is grown recursively.

Algorithm 1 FuzzDTML

function FUZZDTML(X ,Y ,L,D,Node)
L′ = {li ∈ L | li can be a leaf}
Node.addNewLeaf(L′)
L′′ ← L \ L′
if L′ 6= ∅ then

A← best splitting attribute
for all Aj ∈ D(A) do

D′ = M(P ∩Aj)
Child ← Node.addNewChild(Aj)
FuzzDTML (X ,Y ,L”,D′,Child)

end for
end if
return Node

end function

An interesting feature of FuzzDTML is that leaves predicting
subsets of labels can be generated, and the induction will
continue with the remaining labels. From the current label
set L, the algorithm first verifies which labels pass the leaf
creation criteria. If there is a non-empty subset L′ of labels
that can generate a leaf, a new leaf is created predicting the
(partial list of) labels L′ which pass these criteria. The leaf
generation criteria are based on two parameters:

• Let f ji = M(D ∩ j)/M(D), j ∈ {0, 1} be the member-
ship state for the relevance(j = 1)/irrelevance(j = 0) of
label li for the current fuzzy partition D. The label li is
included in L′ if f ji ≥ δ, ∀j ∈ {0, 1}, with value li = j



and weight f ji , where δ is a parameter defined by the
user.

• Let n = |M(D)| > 0. The label li is included in L′ if
n ≤ n0, with value li = maxj(f

j
i ) and weight f ji , where

n0 is a parameter defined by the user.
The parameter δ controls the “purity” of the label in the leaf,

whereas the parameter n0 controls the quantity of instances
to continue growing the tree. When the level of purity for
the relevance/irrelevance of a label surpasses a threshold (δ),
or when the number of instances with non zero membership
degree is below a minimum (n0), a leaf node is created.

The possibility to create leaves with partial labels can
naturally incorporate in the model some aspects of label
dependency [17]. An example of a decision tree of a toy
multilabel data set with 10 features and 5 labels, generated
using the synthetic data set generator for multilabel learning1

and available in the utiml R package 2 is shown in Figure 1.
It can be seen from figure that the branch Att1 = low has a
leaf with partial labels [y1, y2, y3, y5], while the value of label
y4 depends on the sibling branch on Att2. A similar situation
occurs in the branch Att1 = high, where a partial leaf with
labels [y1, y3, y4, y5] exists, and the value of label y2 depends
on the sibling branch on Att9.

If the set difference L′′ between the label set L and the set
of labels which became leaves in the current execution L′ is
not empty, the algorithm continues the tree growth by choosing
the best attribute to split. The choice of the best attribute is
based on an adaption of the generalized fuzzy information [9]
for MLC. The fuzzy entropy of condition attribute Ai, with
domain Ai1, . . . , Aik, is defined as:

FE li(D,Ai) =

j=k∑

j=1

mij

mi
E(D,Aij) (1)

Eli(D,Aij) = −
∑

l∈{0,1}

mijl

mij
log2

mijl

mij
(2)

where mij = M(D ∩Aij), mi =
∑k

j=1mij , mijl = M(D ∩
Aij ∩ ll), mij =

∑
l∈{0,1}mijl. M(·) is the membership

function of a fuzzy partition.
As in [3], the extension of FE to the MLC case is defined

as the sum of FE li ,∀li ∈ L, as shown in Equation 3. The
attribute with minimum FE is shown to grown the tree.
Observe that if a leaf with partial labels has been created as an
ancestor of the current node, they are not taken into account
for computing FE .

FE =
∑

li∈L
FE li (3)

One of the characteristics of the generalized fuzzy entropy
as proposed by [9] is that it can be applied to data sets with
numerical (fuzzifyied) and categorical attributes.

1http://sites.labic.icmc.usp.br/mldatagen/
2https://CRAN.R-project.org/package=utiml

Finally, the induced tree is converted to a rule base, in order
to classify new instances. This allow the use of different fuzzy
reasoning configurations. Tree pruning and fuzzy partition
adjustment were not implemented yet.

IV. EXPERIMENTAL EVALUATION

To gain some insights in the performance of our proposed
algorithm, we used 9 multilabel data sets available from the
mldr repository [18] for evaluation. The main data set charac-
teristics are shown in Table I. For each data set, the table shows
the number of instances; number of input features (the number
of categorical/numeric features are shown in brackets); number
of labels; number of label sets; number of single label sets;
cardinality (average number of relevant labels per instance);
density (average proportion of relevant labels per instance);
mean label imbalance ratio; SCUMBLE (concurrence among
frequent and rare labels) [19]; and theoretical complexity
score [20]. The first four data sets contain numerical features
only, and following four contains categorical features only. The
ninth data set contains both numerical and categorical features.

We compare the behavior of FuzzDTML with three base-
lines:
BR(J48) binary relevance problem transformation method,

using J48 as base classifier;
LPS(J48) label power set problem transformation method,

using J48 as base classifier;
MLC45 multilabel extension of C4.5, as proposed in [3].

BR and LPS are implemented in mulan [30], and use
the J48 weka [31] implementation of C4.5 decision tree
algorithm. MLC45 is implemented in clus3. FuzzDTML was
implemented in Java, using the fuzzy decision tree toolkit
implementation4 as base. For classifying new instances, the
jfuzzylite [32] was used as the inference system. The
minimum t-norm was used form rule conjunction, while the
maximum s-norm for inference disjunction. Numerical at-
tributes were fuzzified using triangular membership functions,
with tree fuzzy partitions for each attribute. Experiments
were run using 10-fold cross validation. The parameter δ in
FuzzDTML was set to 0.8, as suggested by [9]. The parameter
n0 was set 5, as the default parameter in J48. The evaluation
was performed using three different performance measures:
Hamming Loss, Ranking Loss, and Micro-averaged AUC.

BR(J48) induces an independent decision tree for each label.
On the other hand, LPS(J48), MLC45 and FuzzDTML induces
an overall, single model for all labels. Thus, LPS(J48), MLC45
and FuzzDTML can be considered as more interpretable models
than BR(J48).

Hamming Loss (Equation 4) is the average Hamming dis-
tance between the actual true label vector (Y ) and predicted
label vector (Z). The Hamming distance is the symmetrical
(xor) difference between the two vectors, normalized by the
vector size. As this is a loss function, the lower its value the
better, and the lower bound is zero.

3http://clus.sourceforge.net
4https://github.com/mhjabreel/FDTKit



Att1

low

[y1, y2, y3, y5] = [0, 1, 0, 0]
Att2

low

[y4] = [1]

medium

[y4] = [1]

high

[y4] = [0]

medium

[y1, y2, y3, y4, y5] = [0, 1, 0, 1, 0]

high

Att9

low

[y2] = [1]

medium

[y2] = [0]

high

[y2] = [0]

[y1, y3, y4, y5] = [0, 0, 1, 0]

Fig. 1. An example of a MLC fuzzy decision tree induced by FuzzDTML

TABLE I
MULTILABEL DATA SET CHARACTERISTICS

num. num. num. num. num. single
dataset instances features labels labelsets labelsets cardinality density meanIR SCUMBLE TCS
cal500 [21] 502 68 (0/68) 174 502 502 26.044 0.150 20.578 0.372 15.597
emotions [22] 593 72 (0/72) 6 27 4 1.868 0.311 1.478 1.265 9.364
scene [23] 2407 294 (0/294) 6 15 3 1.074 0.179 1.254 4.251 10.183
yeast [24] 2417 103 (0/103) 14 198 77 4.237 0.303 7.197 1.064 12.562
genbase [25] 662 1186 (1186/0) 27 32 10 1.252 0.046 37.315 3.614 13.840
medical [26] 978 1449 (1449/0) 45 94 33 1.245 0.028 89.501 3.043 15.629
slashdot [27] 3782 1079 (1079/0) 22 156 56 1.181 0.054 17.693 4.396 15.125
tmc2007 [28] 28596 500 (500/0) 22 1172 408 2.220 0.101 17.134 0.967 16.372
flags [29] 194 19 (9/10) 7 54 24 3.392 0.485 2.255 1.103 8.879

HLoss =
1

|X |
∑ Y∆Z

|L| (4)

The average Hamming Loss for each data set is shown in
Table II. For calculating the predicted labels, the fuzzy output
of FuzzDTML was binarized considering and threshold of 0.5.
The best (lowest) result for each data set is highlighted in
bold. BR(J48) achieved the best results in 5 data sets, while
FuzzDTML and MLC45 achieved the best results is two data
sets each. Label power set did not achieve the best result in
any data set.

TABLE II
AVERAGE HAMMING LOSS ↓

dataset BR(J48) LPS(J48) MLC45 FuzzDTML
cal500 0.1610 0.2014 0.1371 0.1367
emotions 0.2497 0.2734 0.2421 0.2490
scene 0.1311 0.1494 0.1341 0.1573
yeast 0.2467 0.2778 0.2250 0.2244
genbase 0.0484 0.0660 0.0090 0.0463
medical 0.0104 0.0131 0.0229 0.0216
slashdot 0.0422 0.0548 0.0497 0.0525
tmc2007 0.0550 0.0706 0.0721 0.0827
flags 0.2577 0.2861 0.2661 0.3076

A statistical comparison of these algorithms can be visual-
ized in Figure 2. This figure plots the average (Friedman) rank
diagram for each algorithm. Although FuzzDTML only appears
in the third position, according to the aligned rank with Holm

p-value correction multiple comparison procedure [33], with
95% confidence level, no statistical difference exists among
the two first ranked algorithms and FuzzDTML (indicated by
a line joining the three algorithms). However, it is interesting
to note that FuzzDTML performs quite well in the data sets
with numerical attributes (the two best performances occur
within these data sets). These data sets are the ones which most
benefice from the fuzzification process. The good performance
of BR(J48) in terms of Hamming Loss in general, and with
data sets with categorical attributes in particular, can be
explained by the creation of individual models for each label.

Fig. 2. Average ranks diagram for Hamming Loss

Although Hamming loss is one of the most used measures
for evaluating MLC, it ignores the scoring information pro-
vided by the algorithms, as only the crisp classification values
are taken into account. To overcome this limitation, we also
evaluated two measures which uses the scores provided by the
algorithms, analyzing the ranking of relevant/irrelevant labels
that can be derived from these scores.



The second measure used to evaluate the algorithms is
Ranking Loss (Equation 5). This measure ranks all labels ac-
cording to the likelihood of being relevant, and then takes into
account all possible combinations of relevant and irrelevant
labels. The measure count how many times an irrelevant label
(yir ∈ Yi) has a higher rank than a relevant label (yr ∈ Yi).
The measure is normalized by the product of the number of
relevant and irrelevant labels. The lower the ranking loss, the
better the performance, according to this measure.

RLoss =
1

|X |
∑ 1

|Yi| · |Yi|
|yr, yir : r(xi, yr) < r(xi, yir)| (5)

The average ranking loss is shown in Table III. For
FuzzDTML, the fuzzy output was used as the scoring function
to rank the labels, whereas for the other algorithms the scores
of relevance of the labels. MLC45 achieved the best (lowest)
result in five data sets, followed by BR(J48) and FuzzDTML,
with the best results in two data sets each. Furthermore,
FuzzDTML again achieved good results in the data sets which
have numerical attributes, where the two best performance was
obtained. Label power set did not achieve the best result in
any data set.

TABLE III
AVERAGE RANKING LOSS ↓

dataset BR(J48) LPS(J48) MLC45 FuzzDTML
cal500 0.2968 0.6550 0.1807 0.1811
emotions 0.2977 0.3330 0.2624 0.2087
scene 0.2362 0.2199 0.1862 0.2409
yeast 0.3130 0.4015 0.2033 0.1952
genbase 0.6040 0.6039 0.0062 0.3797
medical 0.0663 0.1364 0.1119 0.1122
slashdot 0.1389 0.2586 0.1930 0.1876
tmc2007 0.1099 0.3230 0.0954 0.1401
flags 0.2463 0.4910 0.1998 0.2517

A statistical comparison using the ranking loss is shown in
Figure 2, which also plots the average (Friedman) rank dia-
gram for each algorithm. According to the aligned rank with
Holm p-value correction multiple comparison procedure [33],
the algorithms can be grouped within two groups of no
statistical differences: MLC45, FuzzDTML and BR(J48); and
FuzzDTML, BR(J48), and LPS(J48). FuzzDTML was ranked
second, with no statistical differences between the first and
third ranked algorithms. BR(J48), which achieved the best
mean rank score in terms of Hamming Loss, is ranked third
in terms of Ranking Loss. A possible reason to this fact is
that the binary relevance transformation considers the labels
in isolation, contrary to the other methods.

The third measure used for comparing algorithms is Micro-
averaged AUC5 (microAUC - Equation 6). MicroAUC also
use the ranking information provided the scores, but differently
from ranking loss, which compares ranks of the labels for each
instance, microAUC computes the fraction of pairs of relevant
labels ranked over irrelevant ones, no matter which instances

5Area under the ROC curve

Fig. 3. Average ranks diagram for Ranking Loss

they belong to. The higher the value of microAUC, the better
the algorithm, according to this measure.

microAUC =
|xr, yr, xir, yir : r(xr, yr) ≥ r(xir, yir)|

|Yr| · |Yir|
(6)

Table IV shows the average microAUC values for each data
set for the four algorithms. MLC45 achieved the best value in
6 data sets, BR(J48) in two, and FuzzDTML in one data set.
LPS(J48) did not achieve the best microAUC in any data set.

TABLE IV
AVERAGE MICROAUC ↑

dataset BR(J48) LPS(J48) MLC45 FuzzDTML
cal500 0.7019 0.4312 0.8157 0.7654
emotions 0.7038 0.7140 0.7693 0.7906
scene 0.7553 0.7601 0.8341 0.7079
yeast 0.6863 0.6710 0.7948 0.7753
genbase 0.5265 0.5806 0.9927 0.6387
medical 0.9283 0.8871 0.9015 0.9031
slashdot 0.8538 0.7379 0.8085 0.8140
tmc2007 0.8783 0.7881 0.9020 0.8519
flags 0.7641 0.6489 0.8121 0.7258

Figure 4 shows the statistical comparison among the four
algorithms by plotting the average (Friedman) ranks of each
algorithm. According to the aligned rank with Holm p-value
correction multiple comparison procedure [33], the algorithms
can be grouped within two groups of no statistical differences:
MLC45, FuzzDTML, and BR(J48); FuzzDTML, BR(J48), and
LPS(J48). Although FuzzDTML only achieves the best mi-
croAUC in one data set, it is ranked second in terms of
microAUC, and no statistical differences was detected when
compared to the first and third ranked algorithms.

Fig. 4. Average ranks diagram for microAUC

By analyzing the three performance measures, we can see
a common pattern. FuzzDTML is statistically comparable with
MLC45 and BR(J48), and achieved good performance with
numerical attributes. These attributes are benefited by the
fuzzification process, showing the suitability of our proposed



method for these data sets. This results can be considered
very satisfactory, as FuzzDTML does not yet have pruning
mechanisms, and fuzzy partition adjustment could be used to
improve performance [10].

V. CONCLUSION

This paper presents FuzzDTML, a fuzzy decision tree MLC.
To the best of our knowledge this is the first multilabel fuzzy
decision tree algorithm proposed in the literature. FuzzDTML
produces a single model. Furthermore, leaves with partial
labels can be induced. These factors contribute to model
interpretability. Although FuzzDTML can be applied to data
sets with categorical or mixed type attributes, it achieved
good performance in data sets with numerical attributes. This
fact shows the suitability of the fuzzification process in MLC
decision tree induction.

Future research directions include the research of better
ways to cope with data sets with categorical and mixed type
features. Other open-ended issues include the development of
pruning techniques and fuzzy partition adjustment, as well as
developing enhancing the dealing with rare labels.
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label dependence and loss minimization in multi-label classification,”
Machine Learning, vol. 88, no. 1-2, pp. 5–45, 2012.

[18] F. Charte, D. Charte, A. Rivera, M. J. del Jesus, and F. Herrera, “R
ultimate multilabel dataset repository,” in International Conference on
Hybrid Artificial Intelligence Systems. Springer, 2016, pp. 487–499.

[19] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Concurrence
among imbalanced labels and its influence on multilabel resampling
algorithms,” in Proc. of the 9th International Conference on Hybrid Ar-
tificial Intelligent Systems (HAIS’2014), ser. LNAI, vol. 8480. Springer,
2014.

[20] F. Charte, A. Rivera, M. J. del Jesus, and F. Herrera, “On the impact of
dataset complexity and sampling strategy in multilabel classifiers per-
formance,” in International Conference on Hybrid Artificial Intelligence
Systems. Springer, 2016, pp. 500–511.

[21] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic
annotation and retrieval of music and sound effects,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 16, no. 2, pp. 467–
476, 2008.

[22] A. Wieczorkowska, P. Synak, and Z. Ra’s, “Multi-label classification
of emotions in music,” in Intelligent Information Processing and Web
Mining, 2006, vol. 35, ch. 30, pp. 307–315.

[23] M. Boutell, J. Luo, X. Shen, and C. Brown, “Learning multi-label scene
classification,” Pattern Recognition, vol. 37, no. 9, pp. 1757–1771, 2004.

[24] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classifi-
cation,” in Advances in Neural Information Processing Systems, vol. 14,
2001, pp. 681–687.

[25] S. Diplaris, G. Tsoumakas, P. Mitkas, and I. Vlahavas, “Protein classifi-
cation with multiple algorithms,” in Proc. 10th Panhellenic Conference
on Informatics, Volos, Greece, (PCI’2005), 2005, pp. 448–456.

[26] K. Crammer, M. Dredze, K. Ganchev, P. P. Talukdar, and S. Carroll,
“Automatic code assignment to medical text,” in Proc. Workshop on
Biological, Translational, and Clinical Language Processing, Prague,
Czech Republic, (BioNLP’2007), 2007, pp. 129–136.

[27] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine Learning, vol. 85, pp. 333–359,
2011.

[28] A. N. Srivastava and B. Zane-Ulman, “Discovering recurring anomalies
in text reports regarding complex space systems,” in Aerospace Confer-
ence, 2005, pp. 3853–3862.

[29] E. C. Goncalves, A. Plastino, and A. A. Freitas, “A genetic algorithm
for optimizing the label ordering in multi-label classifier chains,” in
25th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’2013),, 2013, pp. 469–476.

[30] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“Mulan: A java library for multi-label learning,” Journal of Machine
Learning Research, vol. 12, pp. 2411–2414, 2011.

[31] E. Frank, M. A. Hall, , and I. H. Witten, The WEKA Workbench. Online
Appendix for ”Data Mining: Practical Machine Learning Tools and
Techniques”, 2016.

[32] J. Rada-Vilela, “fuzzylite: a fuzzy logic control library,” 2014. [Online].
Available: http://www.fuzzylite.com

[33] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,” Information Sciences, vol. 180, no. 10, pp. 2044–2064, 2010.


