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Abstract—This is a summary of our article published in
Information Fusion [1] to be part of the CAEPIA-18 Key Works.
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I. SUMMARY

The performance of most machine learning algorithms

depends on the quality of the input data, and in particular

on its features. Many techniques exist which combine their

information into a new feature set, with the aim of improving

learned models. This new set is usually of lower dimension

and contains more abstract variables. Procedures which result

in new feature sets can be named after several terms: feature

engineering, feature learning, representation learning, feature

selection, feature extraction and feature fusion. Manifold

learning algorithms, especially those based on artificial neural

networks (ANNs), fall into the last category.

Autoencoders (AEs) are feedforward ANNs with a symmet-

ric encoder-decoder structure (see Fig. 1), where the middle

layer represents an encoding of the input data. They are trained

to reconstruct their inputs onto their output layer while some

restrictions prevent them from copying the data along. AE

components can generally be represented as functions: an

encoder f and a decoder g which map inputs x to outputs

r: r = g(f(x)). The desired encoding would be y = f(x).
Typical activation functions such as linear, binary or ReLU

are of limited use in AEs, while logistic, hyperbolic tangent

and SELU are more common. According to whether the

dimension of their encoding is lower or higher than that of

the data, AEs can be either undercomplete or overcomplete,

respectively. If they have just one hidden layer they are called

shallow, and otherwise they are considered deep.

A taxonomy of the main variants of AEs has been proposed

according to the properties of the inferred model:
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Fig. 1. A possible neural architecture for an autoencoder.

• Lower dimensionality

– Basic [2]: the basis for most autoencoders, a sym-

metric feedforward ANN with a distance between

the outputs and the inputs as the objective function,

trainable with stochastic variants of gradient descent

(SGD, AdaGrad, RMSProp, Adam...). Training can

be done layer by layer in a stacked fashion.

– Convolutional [3]: layers in this variant are convo-

lutional, which explicitly consider a 2-dimensional

structure for processing images.

– LSTM-based [4]: models sequential data by placing

Long-Short-Term Memory units as encoders and

decoders.

• Regularization

– Sparse [5]: introduces a penalty term for encodings

with many activations, thus resulting in a low acti-

vation average. The Kullback-Leibler divergence can

be used to attract the AE to the desired average

activation value.

– Contractive [6]: achieves local invariance to changes

in many directions around the training samples by

adding a penalty term based on the Frobenius norm

of the Jacobian matrix of the encoder.

• Noise tolerance

– Denoising [7]: its generated features are less sensi-

tive to noise by training with corrupted versions of
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input data.

– Robust [8]: uses a special loss function, correntropy,

in order to build more robust features. Correntropy

measures the probability density that two events are

equal, and is less affected by outliers than other

distance metrics.

• Generative model

– Variational [9]: applies a variational Bayesian ap-

proach to encoding, assuming a latent, unobserved

random variable generates the observations. It tries

to approximate the distribution of the latent variable

given the data.

– Adversarial [10]: brings adversarial learning to AEs,

simultaneously training a discriminator and a gener-

ator (the encoder), each competing with the other.

AEs are also the inspiration for other, more complex, neu-

ral structures. For example, autoencoder trees which involve

decision trees, dual-autoencoders which learn two latent rep-

resentations, and recursive AEs which introduce more pieces

of input as the model deepens.

AEs can be related to the wide range of existing feature

fusion methods: in the linear case, they are equivalent to

PCA when linear activations and mean squared error loss

function are used. As a consequence, they can be seen as

generalizations of PCA which allow nonlinearities and other

objective functions. They are more easily applicable than

Kernel PCA since in that case the choice of kernel highly alters

the behavior of the model. Other nonlinear approaches such as

Isomap and Locally Linear Embedding can be compared to the

contractive AE, as they attempt to preserve the local structure

of the data. Restricted Boltzmann Machines are alternatives to

AEs for greedy layer-wise initialization, but their models are

hard to simulate than those of AEs.

The usual purpose of AEs is performing feature fusion in

order to improve classification and regression performance,

and to facilitate other unsupervised tasks which can be hard

in high-dimensional scenarios, such as clustering. Most appli-

cations of AEs can be summarized in the following categories:

• Classification: reducing or transforming the training data

in order to achieve better performance in a classifier.

• Data compression: training AEs for specific types of data

to learn efficient compressions.

• Detection of abnormal patterns: identification of discor-

dant in- stances by analyzing generated encodings.

• Hashing: summarizing input data onto a binary vector for

faster search.

• Visualization: projecting data onto 2 or 3 dimensions with

an AE for graphical representation.

• Other purposes: reconstruction of deteriorated images,

noise reduction in automatic speech recognition, curation

of biological databases, tagging digital resources.

In [1] we propose some guidelines which can help when de-

signing AEs for different tasks. The following is an overview

of these:

• Architecture: a starting point is choosing the desired

length of the encoding and the type of units for the neural

structure.

• Activations and loss function: sigmoid-like functions gen-

erally work well in the encoding layer. Place linear or

ReLU at the output when using mean squared error, or

logistic activation when using cross-entropy error.

• Regularizations: can be used according to the desired

properties in the encoding. Weight decay can prevent

overfitting, sparsity can be useful in many scenarios and

contraction can find a lower-dimensional manifold.

The main software libraries and frameworks which allow

for the construction and training of AEs are Tensorflow, Caffe,

Torch, MXNet, and Keras. Software pieces which specifically

implement AEs are packages Autoencoder and SAENET of

the CRAN repository, H2O and yadlt for Python.

A case study is provided in [1] with the well known

MNIST handwritten digits dataset, covering several adjustable

parameters such as the encoding length, the optimization

algorithm, activation functions and some of the predominant

AE variants.
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