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ABSTRACT

Clustering has always been a topic of interest in knowledge discov-

ery, it is able to provide us with valuable information within the

unsupervised machine learning framework. It received renewed

attention when it was shown to produce better results in environ-

ments where partial information about how to solve the problem is

available, thus leading to a new machine learning paradigm: semi-

supervised machine learning. This new type of information can be

given in the form of constraints, which guide the clustering pro-

cess towards quality solutions. In particular, this study considers

the pairwise instance-level must-link and cannot-link constraints.

Given the ill-posed nature of the constrained clustering problem,

we approach it from the multiobjective optimization point of view.

Our proposal consists in a memetic elitist evolutionary strategy that

favors exploitation by applying a local search procedure to the elite

of the population and transferring its results only to the external

population, which will also be used to generate new individuals.

We show the capability of this method to produce quality results

for the constrained clustering problem when considering incre-

mental levels of constraint-based information. For the comparison

with state-of-the-art methods, we include previous multiobjective

approaches, single-objective genetic algorithms and classic con-

strained clustering methods.
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1 INTRODUCTION

Clustering constitutes a key research area in data science. It is one

of the most successful techniques within the unsupervised learning

paradigms, where no information other than the raw dataset is

given to perform an analysis, so no information on how it should

be handled is available. Traditionally unsupervised, clustering re-

ceived renewed attention when new types of information were

included into the task, leading to the machine learning paradigm

known as Semi-supervised Learning [6]. Within this framework we

are able to incorporate background information into the clustering

process in order to augment the capabilities of the algorithms. This

newly-added type of information can be given in the form of con-

straints, resulting in constrained clustering (CC). The goal of this

technique is to find a partition of the dataset that satisfies a con-

straint set and that meets the characteristics of a classic clustering

method result. It has been successfully applied in many fields of

knowledge, among which it is worth mentioning: advanced robotics

applications [33], applied marketing [34], obstructive sleep apnea

analysis [23], terrorist sub-communities detection [31], electoral

district design [4], and lane finding in GPS data [38] among others.

Many distinctions can be done within the general CC framework.

Three main ways to include constraints into the clustering problem

are known: cluster-level [3], instance-level [10] and feature-level

CC [32]. Regarding the inclusion of constraints into the clustering

process, two main approaches are discussed in the literature: (1)

in distance-based methods the goal is to learn a new metric that

reflects the information contained in the constraint set [39ś41],

(2) in clustering-engine adapting methods a clustering method is
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modified to be able to handle the constraints by using them as

hints to guide the clustering process [11, 30, 38]. Finally, we can

also distinguish between the concepts of hard [38] and soft [21]

constraints. Hard constraints must necessarily be satisfied, while

soft constraints are taken as a strong guide for the algorithm that

uses them but can be partially satisfied in the output partition [34].

This study focuses on the Must-link (ML) and Cannot-link (CL) soft

pairwise instance-level constraints, which tell us if two specific

instances of a dataset must be placed in the same or in different

clusters respectively.

The use of ML and CL constraints makes the constrained clus-

tering problem NP-complete [12]. Multiobjective Evolutionary Al-

gorithms (MOEAs) are presented as a promising option to solve

the CC problem, not only because of their excellent capability to

handle NP-complete problems [7], but also because of their ability

to combine multiple clustering-oriented objective functions that

leads to consistent and high quality partitions. Many measures can

be used to guide the clustering process towards a quality solution

[35], although it is often difficult to integrate them in a single func-

tion that could be optimized by a standard optimizer. Similarly,

when dealing with constraints in a single-objective optimization

scheme, it could be difficult to find an appropriate weighting for

the constraints [16]. Multiobjective optimization schemes provide

us with a powerful tool to overcome all these drawbacks.

Many MOEAs have been developed to solve problems with dif-

ferent characteristics and needs on exploration and exploitation;

among the most successful methods are: Strength Pareto Evolution-

ary Algorithm 2 (SPEA2) [43], Pareto Archived Evolution Strategy

(PAES) [20], Pareto Envelope-based Selection Algorithm (PESA) [9],

MultiObjective Messy Genetic Algorithm (MOMGA) [37]. Although

MOEAs have been successfully applied to clustering before [25, 26],

very little work has been done on investigating their suitability

for the CC problem; two relevant studies in this topics are the one

presented in [16], where the MOCK technique (an adaptation of

PESA-II [8]) is extended to include constraints, and the one in [22],

where a MOEA is used to perform spectral clustering taking into

account a set of constraints. However, the exploitation-exploration

tradeoff featured in these proposal does not seem to be adequate for

the CC problem. In [16] a k-means based initialization step and a

highly biased mutation operator cause the population to converge

in early stages of the exploration of the solutions space, while in

[22] a classic (non evolutionary) clustering method is finally applied

to get a partition from the results delivered from the used MOEA.

In this study we focus on Multiobjective Evolutionary Algorithm

based on Decomposition (MOEA/D) [42]. We propose Memetic

Elitist-MOEA/D (ME-MOEA/D) to enhance exploitation in the ex-

ploration of the solutions space, which we have found to favor

CC. We have chosen MOEA/D as our basis because of its capa-

bility to decompose the optimization of several objective func-

tions into subproblems that can be locally optimized via a Local

Search (LS) procedure. The proposedmethod features a CC-oriented

exploitation-exploration tradeoff that is able to properly explore the

solutions space and exploit certain regions of it without compro-

mising the mentioned exploration capability. It produces partitions

of the dataset as result without the need for any further cluster-

ing method, either in initialization or in post-processing. Another

memetic variant of MOEA/D (conceptually different to the one

proposed in this study) can be found at [1].

The rest of this paper is organized as follows: in Section 2 we

introduce background related to CC and multiobjective optimiza-

tion, Section 3 describes our proposal and its application to CC, the

experimental setup is explained in Section 4, results and its analysis

are presented in Sections 5 and 6 respectively. Finally, conclusions

are discussed in Section 7.

2 BACKGROUND

2.1 Constrained Clustering

Partitional clustering consists in grouping instances of a dataset

into a fixed number of clusters, which we will call k . More formally,

a dataset X = {x1, · · · ,xn } is composed of n instances, each one

of them described by u features, and with the ith instance noted

as xi = (x[i,1], · · · ,x[i,u]). A typical clustering algorithm assigns

a class label li to each instance xi ∈ X . As a result, we obtain the

set of labels L = {l1, · · · , ln }, with li ∈ {1, · · · ,k}∀i ∈ {1, · · · ,n},
that effectively splits X into k non-overlapping clusters ci to form

a partition called C . The criterion used to assign an instance to a

given cluster is the similarity to the rest of elements in that cluster,

and the dissimilarity to the rest of instances of the dataset, which

can be obtained with some kind of distance measurement [18].

In most clustering applications it is common to have some kind of

information about the dataset to be analyzed. In pairwise instance-

level CC this information is given in the form of pairs of instances.

A constraint states whether the instances which it refers to must,

or must not, be assigned to the same cluster. It is possible to obtain

a better result by using this type of information than by using com-

pletely unsupervised clustering algorithms. We can now formalize

the two types of constraints mentioned:

• Must-link constraintsC=(xi ,x j ): instances xi and x j from X

must be placed in the same cluster.

• Cannot-link constraints C,(xi ,x j ): instances xi and x j from
X cannot be assigned to the same cluster.

The goal of CC is to find a partition (or clustering) of k clusters

C = {c1, · · · , ck } of the datasetX that ideally satisfies all constraints

in the constraint set. As in the original clustering problem, the sum

of instances in each cluster ci must be equal to the number of

instances in X , which we have defined as n = |X | =
∑k
i=1 |ci |.

2.2 Multiobjective Optimization

The multiobjective optimization problem (MOP) can be formalized

as in Equation 1:

minimize F (y) = (f1(y), · · · , fm (y))

s.t. y ∈ Ω
, (1)

where Ω is the variable space and F : Ω → Rm consists ofm real-

valued functions (objective functions). Rm is known as the objective

space and the attainable object set is defined as {F (y)|y ∈ Ω}. The
MOP presented in 1 is said to be continuous if y ∈ Rn and Ω is

defined as in Equation 2, where hj are continuous functions.

Ω = {y ∈ Rn |hj (y) ≤ 0, j = 1, · · · ,m}. (2)

334



Improving Constrained Clustering Via Decomposition-based

Multiobjective Optimization with Memetic Elitism GECCO ’20, July 8–12, 2020, Canún, Mexico

The goal of MOP techniques is to balance all objective functions

in Equation 1, which in the general case is not trivial due to conflicts

between them. The tradeoff balance found by a MOP technique

can be defined in terms of Pareto optimality. Let v,w ∈ Rm , then

v dominates w if and only if fi (v) ≤ fi (w)∀i ∈ {1, · · · ,m} and if

∃j | fj (v) < fj (w), j ∈ {1, · · · ,m}. This is:v dominatesw if and only

if v is better thanw in at least one objective function and as good

asw in the rest of them.

A point y∗ ∈ Ω is said to be Pareto optimal if there is no other

point y ∈ Ω such that y dominates y∗; when this is fulfilled then y∗

is a Pareto optimal objective vector. We refer to the set of Pareto

optimal points as Pareto Set (PS), and their associated objective

vectors are called the Pareto Front (PF). The aim of a MOP tech-

nique is to find the best possible PF for any given optimization

problem. Please note that the above definition of MOP applies to

minimization problems, although the maximization version of it

can be obtained by simply reversing all inequalities.

3 CONSTRAINED CLUSTERING THROUGH
MEMETIC ELITIST MOEA/D

In this section we describe in detail the Memetic Elitist MOEA/D

(ME-MOEA/D) optimization scheme, which is based on theMOEA/D

method [42], and its application to the CC problem.

Representation Scheme. We start by defining the representation

scheme for the CC problem. There are three main representa-

tion schemes for the clustering problem when approached from

the point of view of evolutionary computing: prototype-based

representation, label-based representation and graph-based rep-

resentation. An extensive review of the advantages and disad-

vantages of each one of them can be found in [14]. For the CC

problem we choose the label-based representation, where each

individual pi of a population P with size |P | defines a partition

of the dataset X by explicitly assigning a label to each one of its

instances. With this we have that pi = {p[i,1], · · · ,p[i,n]} where
p[i, j] = l |l ∈ {1, · · · ,k}∀j ∈ {i, · · · ,n}. This means that every posi-

tion p[i, j] of pi contains the label of the jth instance of the dataset

X . This representation lets us keep a better control of the number of

clusters and allows for a straightforward evaluation of the partition

encoded in each individual of the population.

Multiobjective Problem Decomposition. The classic MOEA/D ap-

proaches the multiobjective optimization problem from the point

of view of decomposition. It keeps a population P of |P | individ-
uals and a weight vector λ for each one of them. Each individual

in P is referred to as pi , and its associated weight vector as λi =

{λ[i,1], · · · , λ[i,m]}. The set of weight vectors Λ = {λi , · · · , λ |P |}
is used to introduce the decomposition factor into the optimiza-

tion process, where every λi is composed of m values such that

λ[i, j] ≥ 0|j ∈ 1, · · · ,m and
∑m
j=1 λ[i, j] = 1. This way, the m-

dimensional λ-space is defined. MOEA/D decomposes the problem

by approximating the PF as separated scalar problems. For the CC

problem the Tchebycheff [24] decomposition scheme, shown in

Equation 3, is utilized.

minimize дte (pi |λi , z
∗) =max{λ[i, j] | fj (pi ) − zj |}

s.t. pi ∈ Ω
, (3)

where z∗ = (z∗1, · · · , z
∗
m ) is the reference point, which for a mini-

mization problemwould be defined as z∗j = min{ fj (pi )|j ∈ 1, · · · ,m}

with pi ∈ Ω. With this we have that, for each Pareto Optimal point

y∗, there is a weight vector λ such that y∗ is optimal for Equation 3

and each optimal solution of Equation 3 is optimal for Equation 1.

This way, by modifying the weight vectors {λ1, · · · , λ |P |}, one is
able to obtain different PFs.

One of the major concepts behind MOEA/D is the neighbor-

hood in the λ-space. Let us assume that the optimal solution of

дte (pi |λi , z
∗) should be close to the one for дte (pi |λj , z

∗) if λi and
λj are close in the λ-space. Then, we can use any information about

дte s with weight vectors close to λi to improve дte (pi |λi , z
∗). In

order to do so, the concept of neighborhood must be defined: the

neighborhood of λi is composed by its γ closest weight vectors

in Λ. Distances between weight vectors are calculated using the

Euclidean distance.

Genetic Operators. As most evolutionary algorithms, the pro-

posed ME-MOEA/D uses the crossover and mutation operators to

introduce explore the solutions space. For every individual pi in the

population, a new individual is generated by means of the crossover

operator, which combines characteristics from two already explored

individuals. The mutation operator is applied to this new individual

to randomly modify some of its inherited characteristics. For the

CC problem, the uniform crossover operator and uniform mutation

operator are used. When it comes to selecting two individuals for

the crossover operator, ME-MOEA/D uses a biased selection opera-

tor which always randomly chooses a first individual pa from the

λ-neighborhood of pi . A second individual pb is (also randomly)

chosen from the same λ-neighborhood or from the external pop-

ulation (EP), which is the set of non-dominated solutions, with a

certain probability given by a parameter γ ∈ (0, 1). This parameter

γ is meant to control the exploration-exploitation tradeoff of ME-

MOEA/D. When γ = 0, the unbiased selection operator is used, so

pb is always chosen from P , whereas if γ = 1, pb is always chosen

from EP.

Memetic Elitism. In the ME-MOEA/D optimization scheme, a

bias towards high-quality individuals is introduced by means of

an LS procedure and a biased selection operator. In ME-MOEA/D

the elite of the population must be obtained in each generation.

To do so the dominance index of each individual pi has to be com-

puted. The dominance index refers to the number of individuals

in population P dominating pi , so that the ν lower dominance in-

dex individuals are selected as the elite of the population. Then,

an LS procedure is applied to the elite of the population, trans-

ferring its result not to the population P but to EP instead. Note

that the LS procedure is a single-objective optimization method,

so it cannot be applied to optimize all m objective functions at

the same time. However, once again we can use the weight vec-

tors in our favor: since each individual pi has a weight vector λi
associated, we can determine what would be the less significant

objective function when computing дte (pi |λi , z
∗), which would be

fα |α = argminmi=1{λ[i,1], · · · , λ[i,m]}. The proposed LS optimizes

fα (pi ), under the assumption that the classic MOEA/D optimiza-

tion scheme is in charge of optimizing the rest of the functions for
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each individual. We have found that this helps the population to

converge to quality solutions for the CC problem.

The goal of the LS procedure is to locally improve solutions (in-

dividuals pi from P ) in a non-exhaustive way. To do so, it randomly

chooses an instance from the dataset (an index from an individual

pi ) and iteratively assigns it to different clusters. When improve-

ment in the fitness function is detected, the change is transferred to

the solution; when there is no possible improvement, the LS is said

to and the fails counter is increased. When the maximum number

of fails is reached the LS procedure stops. This maximum number of

fails is given in the form of a proportion ξ ∈ (0, 1) of the number of

instances in the dataset X (the length of each individual pi ). Param-

eter ξ allows for an effective control of the exploration-exploitation

tradeoff. Algorithm 1 summarizes the LS procedure describe above.

Algorithm 1: Local Search

Input: Dataset X , constraint sets C= and C,, individual to
be locally improved pi , weights vector λi , fail
percent ξ , number of clusters k .

// Find the least significant cost function index

α ← argminmi=1{λ[i,1], · · · , λ[i,m]}
fails← 0
while improvement or f ails < n × ξ do

improvement ← false
j ← RandInt({1, · · · ,n})
// Random shuffle labels set

RSL← RandomShuffle({1, · · · ,K})
for l ∈ RSL and while not improvement do

p′i ← pi
// Move instance i to the cluster

associated with label l
p′
[i, j]
← l

if fα (p
′
i ) < fα (pi ) then

pi ← p′i
improvement ← true

end
end
if not improvement then

fails←fails+1
end

end

return pi

Target Functions for the CC Problem. We have found that the

three target functions (m = 3) described below work best for the

CC problem. The Davies-Bouldin function [13] is the ratio of the

within-cluster mean distance to the between-cluster separation. We

use it to keep clusters as compact and separated from each other as

possible. The within-cluster mean distance for a cluster ci is defined

in Equation 4.

ci =
1

|ci |

∑
x j ∈ci

∥x j − µi ∥
2
, (4)

where µi is the centroid of cluster ci . The distance between two

clusters ci and c j is computed as di, j = ∥µi − µ j ∥
2, which is

the Euclidean distance between their centroids. Then, we define

Ri = maxj, j,i {(ci + c j )/di, j }, so that the Davies-Bouldin function

for a partition C and a dataset X can be defined as in Equation 5.

A partition that minimizes DB(C,X ) will result in a high quality

clustering.

DB(C,X ) =
1

k

k∑
i=1

Ri . (5)

Secondly, the Connectedness function is utilized to keep the num-

ber of clusters of the generated solutions under control [15]. Given

an instance of the dataset, it is related to the number of neighboring

instances that are in different clusters. It is computed as in Equation

6 for a given partition C and a dataset X .

Conn(C,X ) =
n∑
i=1

©«
ϵ∑
j=1

xi,nni (j)
ª®¬
, (6)

where nni (j) is the jth neighbor of instance xi , ϵ is a parameter that

defines the size of the neighborhood for every instance and xi,nni (j)
is computed as in Equation 7. A good partition would minimize

Conn(C,X ).

xi,nni (j) =

{ 1
j �ck |xi ,nni (j) ∈ ck
0 otherwise

. (7)

Lastly, the Infeasibility function is used to integrate constraints

into the clustering process. It simply measures the number of vi-

olated constraints in a given partition and can be computed for

a given partition C , a set of ML constraints C=, and a set of CL

constraints C, as in Equation 8.

Infs(C,C=,C,) =
n∑
i=0

n∑
j=0

V (C=(xi ,x j )) +V (C,(xi ,x j )), (8)

where V (·) is a function that returns 1 if the constraint given as

argument exists and is violated and 0 otherwise. It is clear that

Infs(C,C=,C,) is a function to minimize.

The Algorithm. In each generation the current population is

composed of the best solution found so far for each individual pi
(subproblem), and an external population (EP) is maintained to store

all non-dominated solutions found. It is also necessary to maintain

the target function values for each individual in the population; to

this purpose, ME-MOEA/D uses the set {FV1, · · · , FV |P |}, where
FVi is the F -value of individual pi . Algorithm 2 summarizes the

overall ME-MOEA/D optimization process.

For the CC problem, we want to minimize all three objective

functions described above in this section, so we initialize z such

that it is always updated in the first generation of the optimization

process, before it is used in дte (line [14] in Algorithm 2). We set

it to z = [∞,∞,∞] during the initialization process (line [4] in

Algorithm 2). Regarding the set of weight vectors Λ, we generate it

according to a normal distribution to ensure a good spread of values.

This will cause average the distances in the λ-neighborhoods to

be similar for every λi , and hence for every pi . Note that these are

problem-specific initialization methods.
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Algorithm 2: Memetic Elitist MOEA/D

Input: Dataset X , constraint sets C= and C,, size of the
population |P |, size of the λ-neighborhoods δ ,
number of clusters k , selection operator bias
probability γ , size of the elite of the population ν , set
of weight vectors Λ.

// Initialization Step

EP = ∅
Obtain the λ-neighborhood for every λi ∈ Λ as

{λ1i , · · · , λ
δ
i } by computing the Euclidean distances in Λ.

Then, for every i ∈ {i, · · · , |P |} set ∆(i) = {i1, · · · iδ }
Generate the initial population P = {p1, · · · ,p |P |} and get

their fitness values as FVi = F (pi )∀i ∈ {i, · · · , |P |}
Initialize z = [zi , · · · , zm ]
while stopping criteria are not met do

for i ∈ {i, · · · , |P |} do
// Selection Operator

if RandInt(0, 1) < γ then
Select pa randomly from the pi λ-neighborhood
and select pb randomly from EP

else
Select pa and pb randomly from the pi
λ-neighborhood.

end
// Crossover Operator

Obtain a new individual pnew by applying the
uniform crossover operator to pa and pb .

// Mutation Operator

Mutate pnew by applying the uniform mutation
operator

// Update reference point z
For each j ∈ {1, · · · ,m} set zj = fj (pnew ) if
fj (pnew ) < zj

// Update the neighborhood of pi
For each j ∈ ∆(i) set pj = pnew and FVj = F (pnew )
if дte (pnew |λj , z) ≤ дte (pj |λj , z)

// Update the external population EP

Remove from EP all vectors dominated by F (pnew )
Add F (pnew ) to EP if it is not dominated by any
vector in EP

// Memetic Elitism

Obtain the indices of the best ν individuals in P
according to the dominance index as EliteIndices

for j ∈ EliteIndices do
Apply LS to pj having into account λj to get an
improved individual pLS

Remove from EP all vectors dominated by
F (pLS )

Add F (pLS ) to EP if it is not dominated by any
vector in EP

end
end

end

return EP

4 EXPERIMENTAL SETUP AND
CALIBRATION

For our experiments, we will compare the results obtained by the

proposed method and five other well-known approaches to CC

over 15 datasets and 3 constraint sets for each one of them. Most

of these datasets can be found at the Keel-dataset repository1 [36],

though some of them have been obtained via scikit-learn python

package2 [27]. Table 1 displays a summary of every dataset.

Table 1: Summary of datasets used for the experiments.

Name No. Instances No. Classes No. Features

Appendicitis 106 2 7

Breast Cancer 569 2 30

Bupa 345 2 6

Haberman 306 2 3

Heart 270 2 13

Ionosphere 351 2 33

Iris 150 3 4

Monk2 432 2 6

Newthyroid 215 3 5

Pima 768 2 8

Saheart 462 2 9

Sonar 208 2 60

Soybean 47 4 35

Spectfheart 267 2 44

Wdbc 569 2 30

Classification datasets are commonly used in the literature to

test CC algorithms; the reason behind this is that they enable us to

generate constraints with respect to the true labels. We will use the

method proposed in [38] to generate artificial constraint sets. This

method consists of randomly selecting two instances of a dataset,

then comparing its labels, and finally setting anML or CL constraint

depending on whether the labels are the same or different.

We will generate, for each dataset, three different sets of con-

straints (CS10, CS15 and CS20) that will be associated with three

small percentages of the size of the dataset: 10%, 15% and 20%. With

nf being the fraction of the size of the dataset associated with each

of these percentages, the formula (nf (nf − 1))/2 tells us how many

artificial constraints will be created for each constraint set; this

number is equivalent to how many edges a complete graph with

nf vertices would have. Table 2 shows the number of constraints

of each type obtained for each dataset.

4.1 Evaluation Method

Since we have the true labels associated with each of the datasets,

we can use them to evaluate the results provided by each method.

We will use the Adjusted Rand Index (ARI) to measure the accuracy

of the predictions resulting from each method we test [17]. The

basic Rand Index computes the degree of agreement between two

partitions C1 and C2 of a given dataset X . C1 and C2 are viewed as

collections of n(n − 1)/2 pairwise decisions [29].
For each pair of instances xi and x j in X , a partition assigns

them to the same cluster or to different clusters. We take a as the

number of pairings where xi is in the same cluster as x j in both

C1 and C2, and b as the opposite event (xi and x j are in different

clusters in C1 and C2). Then, the degree of similarity between C1

and C2 is calculated as Rand(C1,C2) = (a + b)/(n(n − 1)/2).

1https://sci2s.ugr.es/keel/category.php?cat=clas
2https://scikit-learn.org/stable/datasets/index.html
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Table 2: Number of constraints used in experiments.

Dataset
CS10 CS15 CS20

ML CL ML CL ML CL

Appendicitis 39 16 71 49 164 67

Breast Cancer 876 720 1965 1690 3487 2954

Bupa 323 272 699 627 1201 1145

Haberman 304 161 634 401 1135 756

Heart 178 173 396 424 744 687

Ionosphere 330 300 732 646 1299 1186

Iris 26 79 82 171 136 299

Monk2 473 473 979 1101 1917 1824

Newthyroid 108 123 270 258 449 454

Pima 1604 1322 3595 3075 6452 5329

Saheart 595 486 1292 1123 2330 1948

Sonar 100 110 245 251 436 425

Soybean 4 6 6 22 12 33

Spectfheart 233 118 543 277 965 466

Wdbc 840 756 1925 1730 3472 2969

The ARI is a corrected-for-chance version of the Rand Index. This

correction uses the expected similarity of all comparisons between

clusterings specified by a random model to set up a baseline. The

ARI is computed as in Equation (9).

ARI(C1,C2) =
Rand(C1,C2) − Expected Index

Maximum Index − Expected Index
, (9)

where Maximum Index is expected to be 1 and Expected Index is

the already mentioned expected degree of similarity with a random

model. It is easy to see that ARI(C1,C2) ∈ [−1, 1], such that an ARI

value close to 1 means a high degree of agreement between C1 and

C2, a positive value close to 0 means no agreement and a value

smaller that 0 means that the Rand(C1,C2) is less than expected

when comparing with random partitions. To summarize, the higher

the ARI, the greater the degree of similarity betweenC1 andC2. For

more details on ARI see [17].

Our goal is to quantify the quality of the solutions obtained as a

result of the methods presented in this study. To accomplish this

task we just set one of the two partitions given as parameters to the

ARI function as the ground truth labels. We also include the Unsat

measure, that refers to the percentage on unsatisfied constraints.

4.2 Validation of results

In order to validate the results that will be presented in Section

5, we will use Bayesian statistical tests, instead of the classic Null

Hypothesis Statistical Tests (NHST). In [2] we find an in-depth

analysis of the disadvantages of NHST, and a newmodel is proposed

for carrying out the comparisons researchers are interested in. "In

a nutshell: NHST do not answer the question we ask". To put it clear,

the disadvantages of the NHST that the authors highlight in [2] are

based on the trap of black-and-white thinking, this is: to reject, or

not to reject?

Most of the problems of NHST can be avoided by using Bayesian

tests instead of NHST. In particular, we will use the Bayesian sign

test, which is the Bayesian version of the frequentist non-parametric

sign test. To make use of it, we will employ the R package rNPBST,

whose documentation and guide can be found in [5].

The Bayesian sign test is based on obtaining the statistical distri-

bution of a certain parameter ρ according to the difference between

the results, under the assumption that said distribution is a Dirich-

let distribution. To get the distribution of ρ we count the number

of times that A − B < 0, the number of times where there are no

significant differences, and the number of times that A − B > 0. In

order to identify cases where there are no significant differences,

we define the region of practical equivalence (rope) [rmin, rmax], so
that P(A ≈ B) = P(ρ ∈ rope). Using these results we calculate the
weights of the Dirichlet distribution and sample it to get a set of

triplets with the form described in Equation 10.

[P(ρ < rmin) = P(A − B < 0), P(ρ ∈ rope)
P(ρ > rmax) = P(A − B > 0)]

. (10)

4.3 Calibration

We describe the parameters used in them in this section. Parameters

used for the proposed ME-MOEA/D method are described in Table

3. For the two evolutionary algorithms considered in this study (ME-

MOEA/D and MOCK), the stopping criterion for the optimization

process is the maximum number of target function evaluations,

which will be set to 300,000.

Table 3: Parameters setup for ME-MOEA/D.

Parameter Meaning Value

|P | Internal population size 100

δ Size of the λ-neighborhoods 10

γ Selection operator bias probability 0.25

ν Elite population size 25

ξ Fail percent for the LS procedure 0.1

ϵ Size of the Connectivity measure neighborhood 10

k Output partition number of clusters No. Classes (Table 1)

We compare our proposed method with five state of the art

methods described below. Table 4 summarizes parameter setting.

MOCK: This method is based on the PESA-II multiobjective op-

timization strategy, whose selection operator is based on crowding

[8]. MOCK optimizes compactness and connectedness, and it is

extended to the CC problem by adding the unsatisfied number of

constraints to the objective functions. It initializes the population

with K-means and minimum spanning trees based methods [16].

COP-kmeans: This method introduces a modification to the

assignment rule of instances to clusters of the K-means algorithm so

that an instance can be assigned to a cluster only if the assignment

does not violate any constraint [38].

LCVQE: The Linear Constrained Vector Quantization Error al-

gorithm introduces a modification of the cost function of CVQE to

make it less computationally complex [28].

TVClust: Two Views Clustering incorporate the constraints into

the clustering problem by making a soft interpretation of them. The

authors model dataset and constraints in different ways, perform

clustering methods and try to find a consensus between them [19].

RDPM: Relation Dirichlet Process - Means is a deterministic

derivation of the TVClust model. This method can be viewed as an

extension of K-means that includes side information (constraints)

and has the property that the number of clusters (k) does not need

to be specified.[19].
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Table 4: Parameters setup used for previous proposals.

Method name Parameters name and values

MOCK

internal_population_size = 10

external_population_size = 100

grid_size = 16

neighborhood_size = 10

COPKM

max_iter = 300

tolerance = 1 ∗ 10−4

init_mode = ‘‘rand’’

LCVQE
max_iter = 300;

initial_centroids = ∅

RDPM

max_iter = 300;

ξ0 = 0.1; ξrate = 1

λ is calculated on the basis of the

mean distances in the dataset.

TVClust
max_iter = 300; α0 = 1.2

stop_threshold = 5 ∗ 10−4

Parameter values have been assigned following the guidelines

of the original creators of the different proposals. Given that the

purpose of this work is to draw a fair comparison between the algo-

rithms and assess their robustness in a common environment with

multiple datasets, we have not included a tuning step to maximize

any particular performance metric.

5 EXPERIMENTAL RESULTS

In this section we present experimental results for all datasets

and constraint sets presented in Section 4. Note that some of the

previous proposals are not deterministic algorithms, so the results

may vary between runs. To lessen the effect this may cause we

present average results of 25 runs in our tables. Please note that

when COPKM is not able to produce an output partition we assign

to that particular run the worst possible benchmark values. Table 5

shows the results obtained with the methodology described before.

Since multiobjective optimization methods return a PF as the

solution and not a single individual, we need to choose the one that

best meets our requirements. This is typically done by a problem-

specific method. As our goal is to prove that ME-MOEA/D is able

to provide quality results for the CC problem, we will make use

of the known labels for each dataset to select the best partition

from the PF in each case; this is represented in result tables as ARI*

and Unsat*. However, we cannot consider this rigorous enough in

terms of real-world applications, so we also use the simplest PF

selection method: choose the individual whose Euclidean distance

to the vector of ideal values is the smallest.

In Table 5, results for the CS10 constraint sets are firstly pre-

sented. We can see how ME-MOEA/D is able to provide better

average results than the other methods, even with the lowest level

of constraint-based information. It is worth noting how MOCK is

able to provide better results in terms of the solution closest to the

ideal objective values. Results obtained for COPKM should also be

highlighted, given that it is able to produce partitions close to the

ground-truth, at the expense of not being able to produce results

for the majority of the cases. It is for the CS15 constraint sets that

we start to see major differences between ME-MOEA/D and MOCK

in terms of ability to find partitions closer to the ground-truth. ME-

MOEA/D produces peak performance of almost twice the quality of

MOCK, while in real-world performance both methods are similar.

We also see how ME-MOEA/D is able to scale the quality of the

results with respect to the amount of constraint-based information

provided, which is indicative of a proper constraint-integration

scheme. COPKM continues to produce very high-quality results

in most cases in which it is able to deliver an output partition.

Finally, for the CS20 constraint sets, we continue to observe the

trend already present in the previous table: ME-MOEA/D outscales

MOCK in terms of Best ARI. Nonetheless, in this case ME-MOEA/D

is also capable of producing better real-world results. Again, this is

indicative of a good constraint-integration scheme.
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(a) MOCK vs ME-MOEA/D
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(b) COPKM vs ME-MOEA/D
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(d) RDPM vs ME-MOEA/D
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(e) TVClust vs ME-MOEA/D

Figure 1: Heatmaps for the comparison ofME-MOEA/Dwith

previous proposals.

6 STATISTICAL ANALYSIS OF RESULTS

One of the major advantages of the Bayesian sign test is that we can

obtain a very illustrative visual representation of its results. We can

produce a representation of the triplet set in the form of a heatmap,

where each triplet constitutes one point whose location is given

by barycentric coordinates. Figure 1 shows heatmaps comparing

ARI results obtained by our proposal and the rest of the methods

considered in this study. We take results produced by the proposed

method as the A set of results in Equation 10, and the set of results

obtained the other methods as B. Particularly, we compare the ARI

(or ARI* when available) measure, which is a measure to maximize.
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Table 5: Experimental results obtained for all constraint sets and all datasets

Constraint Level Dataset
ME-MOEA/D MOCK COPKM LCVQE RDPM TVClust

ARI* Unsat*(%) ARI Unsat(%) ARI* Unsat*(%) ARI Unsat(%) ARI Unsat(%) ARI Unsat(%) ARI Unsat(%) ARI Unsat(%)

CS10

Appendicitis 0.672 2.909 0.465 8.000 0.104 32.727 -0.024 36.364 - - 0.450 7.273 0.267 29.273 0.211 31.818

Breast Cancer 0.602 17.494 0.106 39.436 0.586 19.987 0.581 20.163 -0.604 80.000 0.917 3.446 0.502 24.373 0.016 44.524

Bupa 0.054 34.353 0.004 40.235 0.023 40.840 0.003 40.605 - - 0.149 32.134 -0.006 47.361 -0.009 48.874

Haberman 0.373 18.581 0.199 24.989 0.121 32.946 0.071 33.548 -0.807 90.000 0.019 34.108 0.088 41.806 0.332 22.430

Heart 0.058 38.974 0.019 38.348 0.025 41.652 0.001 40.228 - - 0.006 35.442 0.032 51.083 0.223 34.758

Ionosphere 0.535 18.254 0.196 34.317 0.272 30.127 0.224 31.143 - - 0.060 34.286 0.202 38.873 0.004 47.460

Iris 0.758 6.667 0.683 10.476 0.765 5.905 0.588 15.619 -0.105 50.000 0.769 2.857 0.567 19.333 0.511 15.524

Monk2 0.101 36.469 0.008 41.670 0.303 32.326 0.301 32.410 0.982 0.000 0.575 14.059 0.092 42.125 0.096 46.628

Newthyroid 0.432 21.472 0.160 37.749 0.562 20.346 0.515 22.597 - - 0.791 3.766 0.370 29.394 0.695 12.165

Pima 0.211 34.190 0.040 42.618 0.119 38.489 0.117 38.510 - - 0.034 46.036 0.075 44.874 0.803 9.686

Saheart 0.260 28.640 0.105 37.761 0.106 38.187 0.077 38.742 0.974 0.000 0.020 42.969 0.028 45.680 0.367 28.529

Sonar 0.037 33.810 0.000 38.667 0.069 37.238 0.005 38.476 - - 0.109 25.714 0.007 42.667 0.000 52.381

Soybean 0.279 8.000 0.023 42.000 0.604 2.000 0.440 14.000 0.613 0.000 0.551 9.000 0.635 13.000 0.000 60.000

Spectfheart 0.471 14.017 0.206 23.647 -0.035 37.892 -0.065 38.405 - - 0.014 31.624 -0.118 49.202 0.000 33.618

Wdbc 0.643 15.326 0.130 39.662 0.601 19.373 0.596 19.612 - - 0.917 3.759 0.502 24.875 0.011 46.842

Average 0.366 21.943 0.156 33.305 0.281 28.669 0.228 30.694 -0.529 74.666 0.358 21.764 0.216 36.261 0.217 35.682

CS15

Appendicitis 0.991 0.333 0.462 23.000 0.338 27.333 0.101 33.500 - - 0.379 14.167 0.335 29.333 0.261 35.500

Breast Cancer 0.808 8.788 0.364 29.472 0.567 20.706 0.567 20.706 1.000 0.000 0.979 1.231 0.502 23.803 0.096 41.869

Bupa 0.308 28.507 0.145 36.501 0.034 42.112 0.028 41.614 1.000 0.000 -0.002 46.591 -0.006 47.474 0.092 43.220

Haberman 0.599 16.097 0.333 25.758 0.110 36.309 0.103 36.058 1.000 0.000 0.001 43.652 0.079 48.329 0.973 0.966

Heart 0.446 22.561 0.253 31.829 0.094 39.951 0.075 40.122 1.000 0.000 0.053 45.244 0.030 48.512 0.435 28.024

Ionosphere 0.781 9.463 0.485 22.830 0.357 28.476 0.355 28.273 1.000 0.000 0.004 47.968 0.261 36.023 0.004 46.814

Iris 0.531 18.103 0.441 18.893 0.912 3.399 0.912 3.399 - - 0.941 0.791 0.543 22.372 0.524 17.470

Monk2 0.616 17.288 0.195 38.625 0.358 31.856 0.353 31.510 1.000 0.000 0.671 15.240 0.144 37.240 0.098 44.827

Newthyroid 0.600 15.114 0.288 33.712 0.634 16.818 0.634 16.818 - - 0.835 4.299 0.455 24.034 0.848 6.345

Pima 0.384 29.187 0.140 39.481 0.187 38.099 0.187 38.099 - - 0.022 48.036 0.075 44.423 0.803 9.676

Saheart 0.457 24.116 0.246 33.565 0.131 38.377 0.116 38.708 1.000 0.000 0.017 48.406 0.030 47.081 0.808 9.321

Sonar 0.502 18.468 0.222 31.573 0.181 34.758 0.162 34.879 - - 0.037 39.375 0.014 43.306 0.000 50.605

Soybean 0.675 5.714 0.271 28.571 0.654 10.714 0.652 10.714 0.656 0.000 0.550 5.000 0.593 11.786 0.000 78.571

Spectfheart 0.771 8.073 0.388 20.634 -0.002 40.171 -0.019 40.073 0.983 0.000 0.167 34.390 -0.116 50.049 0.000 33.780

Wdbc 0.831 8.202 0.503 24.306 0.593 19.962 0.592 19.934 1.000 0.000 0.931 3.557 0.502 24.897 0.019 46.435

Average 0.62 15.334 0.315 29.25 0.343 28.602 0.321 28.960 0.309 33.333 0.372 26.529 0.229 35.910 0.330 32.894

CS20

Appendicitis 0.983 0.519 0.801 7.013 0.321 29.004 0.255 29.004 - - 0.050 33.766 0.380 22.424 0.419 21.472

Breast Cancer 0.872 6.350 0.531 22.295 0.560 21.428 0.559 21.376 1.000 0.000 0.944 2.748 0.502 24.018 0.098 41.413

Bupa 0.596 18.193 0.219 36.837 0.058 42.600 0.058 42.600 1.000 0.000 -0.002 49.403 -0.006 49.642 0.093 44.625

Haberman 0.786 8.874 0.633 15.463 0.178 34.976 0.176 34.860 1.000 0.000 0.001 47.065 0.102 43.934 1.000 0.000

Heart 0.733 11.502 0.147 37.540 0.080 41.174 0.075 41.104 1.000 0.000 0.042 45.716 0.034 45.856 0.488 24.626

Ionosphere 0.858 6.406 0.653 16.193 0.380 28.700 0.379 28.676 1.000 0.000 -0.002 49.336 0.324 31.899 0.004 47.630

Iris 0.824 6.207 0.659 12.046 0.887 3.678 0.881 3.724 - - 0.941 2.299 0.597 19.954 0.573 19.517

Monk2 0.797 9.366 0.283 34.408 0.336 31.660 0.336 31.660 1.000 0.000 0.883 5.667 0.196 37.616 0.199 39.695

Newthyroid 0.677 12.890 0.536 20.111 0.650 15.083 0.650 15.083 - - 0.801 10.443 0.445 25.759 0.924 2.813

Pima 0.469 25.343 0.303 32.744 0.168 38.555 0.167 38.481 1.000 0.000 0.010 49.079 0.076 44.487 0.901 4.820

Saheart 0.587 18.784 0.350 30.061 0.107 40.482 0.104 40.468 1.000 0.000 0.009 49.673 0.030 46.697 0.808 9.187

Sonar 0.715 11.359 0.437 24.065 0.171 38.653 0.154 38.560 1.000 0.000 -0.004 49.593 0.043 41.777 0.000 49.361

Soybean 0.941 3.556 0.459 28.889 0.793 6.667 0.570 17.778 -0.609 80.000 0.560 8.889 0.641 18.444 0.000 73.333

Spectfheart 0.831 5.856 0.430 20.154 0.016 42.027 -0.021 42.236 1.000 0.000 -0.004 50.035 -0.123 52.075 0.000 32.565

Wdbc 0.873 5.965 0.442 26.415 0.588 20.466 0.588 20.466 1.000 0.000 0.972 1.553 0.522 24.468 0.097 41.630

Average 0.769 10.078 0.458 24.282 0.352 29.010 0.328 29.738 0.492 25.333 0.346 30.351 0.250 35.27 0.373 30.179

Figures 1a, 1d and 1e feature heatmaps comparing the results ob-

tained by ME-MOEA/D with those obtained by MOCK, RDPM and

TVClust respectively and with rope = [−0.01, 0.01]. We can draw

the same conclusion for all three of them: there exists clear statisti-

cal evidence in favor of ME-MOEA/D, given that the majority of

the triplets are represented in the right third of the triangle. In Fig-

ure 1c we see the heatmap comparing ME-MOEA/D with LCVQE;

similarly to the three diagrams mentioned before, this heatmap

presents statistical evidence in favor of ME-MOEA/D, although a

small number of triplets are represented in the left third of the trian-

gle, assigning a low (but existent) probability to LCVQE performing

better than ME-MOEA/D. Lastly, Figure 1b shows the comparison

of ME-MOEA/D with COPKM. In this case, the Bayesian sign test

does not give a clear advantage to any method, although it certainly

suggests that the two methods are never equivalent as no triplets

are represented in the top third. This can also be said of the other

four diagrams.

7 CONCLUSIONS

In this study we approach the CC problem from the point of view

of multiobjective optimization. We develop a memetic elitist evolu-

tionary algorithm based on decomposition to bias the exploration

of the solutions space towards quality solutions for the CC problem.

To achieve this, we take MOEA/D as the basis for our proposal.

We introduce memetic elitism into it by means of an LS procedure

applied to the elite of the population that only transfers its results to

the non-dominated solution archive. We also propose a selection op-

erator that takes into consideration the aforementioned archive, so

that the target function evaluations spent in the LS procedure help

the population to converge to a good spread of quality solutions.

We use Bayesian statistical tests to prove that the proposed

ME-MOEA/D method is capable of finding high-quality results

that in most cases outperform the current state-of-the-art and that

rival them in particular cases. We also prove the suitability of the

constraint-integration scheme by showing how the quality of the

results increases with the amount of constraint-based information.
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