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Abstract

Multilabel classification (MLC) is an increasingly widespread data mining technique. Its goal is to categorize
patterns in several non-exclusive groups, and it is applied in fields such as news categorization, image labeling
and music classification. Comparatively speaking, MLC is a more complex task than multiclass and binary
classification, since the classifier must learn the presence of various outputs at once from the same set of
predictive variables. The own nature of the data the classifier has to deal with implies a certain complexity
degree. How to measure this complexness level strictly from the data characteristics would be an interesting
objective. At the same time, the strategy used to partition the data also influences the sample patterns the
algorithm has at its disposal to train the classifier. In MLC random sampling is commonly used to accomplish
this task.

This paper introduces TCS (Theoretical Complexity Score), a new characterization metric aimed to assess
the intrinsic complexity of a multilabel dataset, as well as a novel stratified sampling method specifically
designed to fit the traits of multilabeled data. A detailed description of both proposals is provided, along
with empirical results of their suitability for their respective duties.



Introduction

Unlike multiclass and binary classification, where the classifier has to predict only one output, multilabel
classification (MLC) must learn the associations between the patterns’ features and several outputs at once.
Each output indicates if a certain label is relevant to the data sample or not, thus the algorithms have to work
with a set of binary predictions. Nowadays MLC is being applied to automate tag suggestion [CRdJH15b],
categorize text documents [KY04], label incoming images [DBdFF02], etc. A introduction to MLC and a
recent review on MLC techniques and related topics can be found in [GV15] and [GV14], respectively.

Most of the aforementioned tasks involve working with large multilabel datasets (MLDs) having disparate
numbers of input features, instances, labels, combinations of labels, etc. Undoubtedly some of these traits,
such as the number of instances, determine at some extent the time necessary to train a classifier. Beyond
this fact, it would be desirable to know in advance the difficulties a certain MLD can present and how its
complexity can affect the classifier performance.

A second circumstance which potentially affects MLC algorithms performance is the way MLDs have been
partitioned. There are MLDs containing only a few samples, sometimes only one, as representatives of rare
labels. Random sampling, which is the mainstream strategy used in the multilabel field, can throw these few
samples all on either the training or the test partition. Both cases will probably decrease the performance of
the classifier.

The main aim of this paper is to study how the complexity of MLDs and the sampling strategy impacts
classification results. For doing so, two proposals are introduced:

• A new characterization metric, called TCS (Theoretical Complexity Score), will allow to know the
complexity of an MLD in advance, prior to use it to train a classifier. It is computed from the basic
MLD traits.

• A novel stratified sampling method for partitioning datasets, aiming to improve label distribution
among training and test partitions, thus providing the classifier a fairer representation of each label. It
is built upon an stratification strategy, grouping instances containing labels with similar frequencies.

This paper is structured as follows. Section explains how different complexity factors influence classifi-
cation results and introduces the TCS metric. In Section the problems of random sampling are described,
and a new stratified sampling method is presented. The suitability of these two proposals is experimentally
tested in Section . Lastly, in Section some conclusions are drawn.

Assessing a Multilabel Dataset Complexity

Data complexity [HB02] is an intensively studied aspect in different fields, including classification. How to
measure it and its influence in specific problems, such as imbalanced [LFGH11] learning and noise filtering
[SLH13], have been already faced in traditional classification. Regarding MLC, some studies related to
imbalance [CRdJH15a] measurement and other complexity facts, such as the concurrence among frequent
and infrequent labels [CRdJH14], have been also published.

The interest here is to determine an intrinsic and easily interpretable complexity metric for MLDs. In
this context, complexity has to be understood as the set of traits of the MLD that will make the learned
model both more ineffective and inefficient.
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Factors Influencing the Complexity of MLDs

In order to design such a metric firstly the main traits of any MLD and its implications in learning a MLC
model have to be analyzed. The considered factors are the following:

• Number of data instances: The number of rows in an MLD determine the amount of available
patterns to train and then test any model. While it is true that a larger quantity of data samples
also implies more time devoted to training, having more instances does not necessarily means that the
resulting model will be more complex. In fact, training a classifier with enough representative patterns
is usually associated to a better performance.

• Number of input features: In machine learning the curse of dimensionality [Bel56] is a very well-
known problem. As the number of input features growths, so does the dimensions of the space where the
patterns are located. Working in a high-dimensional space makes more difficult tasks such as measuring
distances among patterns and finding analytical solutions. Most MLDs have a large number of features,
thus it is a factor to be taken into account.

• Number of labels: In traditional classification the algorithms only have one output to learn, whether
it is binary or multiclass. By contrast, MLDs have hundreds or thousands of labels. The larger is the
number of labels the more complex would be the model to generate. There are many MLC methods
based on binarization techniques [GS04, HFCB08, FHLMB08, RPHF11], and the number of labels has
a direct impact in both the time used to train each binary classifier and the complexity of the overall
algorithm. This, no doubt, is another factor to consider.

• Number of labelsets: The labels in an MLD appear producing different combinations, usually known
as labelsets. The number of distinct labelsets is another aspect to bear in mind, since there are
many MLC methods [BLSB04, TKV08, Rea08, TV07] based on training multiclass classifiers using the
labelsets as class identifiers. Some of them produce simpler subsets of labels through pruning, random
combinations and clustering approaches. In general, the larger is the amount of different combinations
the more complex will be the final solution.

Theoretical Complexity Score

Building on the premises just enumerated, the proposed TCS metric is computed as indicated in (1). Let
f be the number of input features, k the number of labels and ls the number of distinct labelsets. The
logarithm of the product of these three factors will provide a theoretical complexity score, based only on the
basic traits of the MLD1 and easier to interpret than the raw product.

TCS(D) = log(f × k × ls) (1)

The main goals in defining this metric, in addition to assess the complexity of an MLD, were ease of
computation and interpretation, providing a straightforward measurement.

If there were an extremely simple MLD, having only one input attribute, two labels (on the contrary it
would not be multilabel), and four different labelsets (the number of combinations two labels can produce),
its TCS value would be log(1 × 2 × 4) ≈ 2. Table 1 shows the number of attributes, labels, labelsets and
TCS for twenty MLDs commonly used on the literature, ordered according to their TCS value. As can

1In practice there would be other factors also influencing the classifiers performance, such as data sparseness, imbalance
levels, concurrence among rare and frequent labels, etc.
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Table 1: MLDs ordered according to their theoretical complexity score

Dataset TCS Attributes Labels Labelsets

emotions 9.364 72 6 27
scene 10.183 294 6 15
yeast 12.562 103 14 198
genbase 13.840 1 186 27 32
cal500 15.597 68 174 502
medical 15.629 1 449 45 94
enron 17.503 1 001 53 753
reuters 17.548 500 103 811
mediamill 18.191 120 101 6 555
corel16k001 19.722 500 153 4 803
corel5k 20.200 499 374 3 175
stackex-cs 20.532 635 274 4 749
bibtex 20.541 1 836 159 2 856
tmc2007 21.093 49 060 22 1 341
eurlex-sm 21.646 5 000 201 2 504
eurlex-dc 21.925 5 000 412 1 615
rcv1subset1 22.313 47 236 101 1 028
delicious 22.773 500 983 15 806
bookmarks 22.848 2 150 208 18 716
eurlex-ev 26.519 5 000 3 993 16 467

be seen emotions and scene, two of the most popular MLDs, are the simplest ones. The two MLDs from
genetics/proteins field, genbase and yeast, are more complex. Multimedia datasets, such as mediamill and
corel5k, are located at the middle of the table. Some of the MLDs coming from text media, such as delicious,
bookmarks, EURLex, etc., appear as the most complex ones.

Sampling Multilabel Datasets

Almost all studies and proposals in the multilabel field imply some classification experimentation. Hold out,
2×5 and 10 folds cross validation are among the most common schemes, always with the same strategy to
chose the patterns included in train and test partitions, random sampling. Despite the fact that some other
sampling strategies [STV11] have been described for some time, the random approach is still the most used
option.

Random sampling does a good work in selecting training and test patterns when most labels have enough
representation in the MLD. However, sometimes it could be a risky strategy. That some labels have only one
or two patterns representing them in the MLD is quite usual. Random sampling can place all of them either
in the training or the test partition. To avoid this problem a stratified sampling approach can be used.
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Stratified Sampling of MLDs

Stratified sampling is a usual technique in cross validation [RTL09] for traditional classification. Since only
one class is assigned to each instance, it is possible to compute the distribution of each class in the whole
dataset and then draw the equivalent proportion of samples for training and testing. On the contrary, samples
in an MLD are associated to several labels at once. If one instance is chosen for the train partition because it
holds a certain label, it must be taken into account that some other labels are also included in the operation
since they jointly appear with the selected one.

In [STV11] a stratified iterative method for sampling MLDs is proposed. It goes label by label through
the MLDs, choosing individual samples and updating a set of counters. Due to its iterative nature it is
a slow method when compared with random sampling, specially with MLDs having thousands of labels.
Nonetheless, the authors stated that it was able to improve the classifier performance while dealing with
some MLDs.

Stratified Random Sampling Method

The method outlined in Algorithm 1 is a new proposal to partition MLDs. It follows a stratified random
sampling approach, but unlike the one in [STV11] it is not iterative by label.

Algorithm 1 Partitioning method based on stratified random sampling

1: function stratified.kfolds(MLD D, Integer nfolds)
2: for each instance i in D do
3: Diw ←

∏
freq(l ∈ Di) . Weight for each instance

4: end for
5: D ← SortBy(Dw) . Sort instances according to their weight
6: . Group samples with similar weight in separate strata
7: for i = 1 to nfolds do
8: stratai ← D|D|/nfolds∗(i−1) −D|D|/nfolds∗i
9: end for

10: for i = 1 to nfolds do . Generate nfolds folds
11: for j = 1 to nfolds do . Taking part of the samples in each stratum
12: trainfoldi ⇔ drawRandomly(strataj , |D|/nfolds× (nfolds− 1))
13: testfoldi ⇔ strataj − trainfoldj . Remainder samples in stratum
14: end for
15: end for
16: return (trainfold, testfold)
17: end function

In line 3 a weight is computed for each instance in the MLD. It is obtained as the product of the relative
frequencies of active labels in the data sample. If one or more rare labels appear in it, the score will be very
low. On the contrary, the occurrence of one or more common labels will produce a higher value. The number
of active labels also influences this score. The larger is the set of labels in the instance the lower will be the
score. The goal is to group instances with a similar label distribution relying in a simple procedure.

Once the instances have been ordered according to their weight (line 5), they are divided into as many
strata as folds have been requested. Each training partition gets a portion of each stratum proportional to
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the number of samples in D and the number of folds. The remainder samples in the stratum are given to the
test partition. The samples in each stratum are randomly picked.

Experimentation

Aiming to validate the usefulness of the two proposals made in the previous sections, five MLDs with diverse
TCS values have been selected from Table 1. Those are emotions, yeast, enron, stackex-cs and delicious. All
of them can be downloaded from the R Ultimate Multilabel Dataset Repository [CCR+16], and they can be
partitioned randomly or using the stratified strategy described in Section by means of the mldr.datasets2 R
package.

The datasets were partitioned using 10 fcv, once randomly and once with stratified random sampling.
These partitions were given as input to tree multilabel classifiers, one based on binarization (BR [GS04]),
one based on label combinations (LP [BLSB04]), and one on lazy learning adapted to multilabel data (ML-
kNN [ZZ07]). From the results produced by the classifiers three general performance metrics, Accuracy (2),
Precision (3) and Recall (4) have been computed to analyze the meaningfulness of the TCS metric. Another
two more specific metrics, MacroPrecision and MacroRecall, have been obtained to compare the two sampling
strategies. The macro-averaging strategy (5) allows the calculation of any standard performance metric label
by label, then averaging to obtain the final measure. In these equations n is the number of instances in in
the MLD, Yi the real labelset associated to i-th instance, Zi the predicted one, k the number of labels in
L, and TP, FP, TN and FN stand for True Positives, False Positives, True Negatives and False Negatives,
respectively.

Accuracy =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(2)

Precision =
1

n

n∑
i=1

|Yi ∩ Zi|
|Zi|

(3)

Recall =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi|

(4)

MacroMet =
1

k

∑
l∈L

EvalMet(TPl,FPl,TNl,FNl) (5)

Influence of Complexity in Classifier Performance

To analyze how the intrinsic complexity of each MLD influences the classifiers performance, Figures 1 to 3
show for each classifier the Accuracy, Precision and Recall values along with TCS. The x-axis corresponds to
the five MLDs ordered according to their complexity.

From these plots observation that higher TCS values are correlated to worse performances can be easily
deducted. For the LP algorithm the three evaluation metrics show a similar behavior, whereas for BR and
ML-kNN Precision seems to be less affected than Recall and Accuracy. To formally analyze this relationship,
a Pearson correlation test was applied over the TCS and performance values for each metric and algorithm.
The obtained results are the shown in Table 2. As can be seen, with the exception of Precision and BR, all

2https://cran.r-project.org/web/packages/mldr.datasets/index.html
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Figure 1: Performance measures with respect to TCS values for the BR algorithm.

the results are above 0.9 in absolute value, meaning that a strong correlation exists. The negative values
imply an inverse relation, thus the higher is TCS the worse would be the result.

Table 2: Pearson correlation test results
Algorithm Accuracy Precision Recall
BR -0,91 -0,67 -0,93
LP -0,95 -0,94 -0,93
ML-kNN -0,96 -0,99 -0,95

Influence of Sampling Strategy in Classifier Performance

Once the partitions for each MLD using the two sampling strategies are generated, it would be useful to
know how potentially problematic cases affect each method. As mentioned above, some MLDs contain labels
that could be considered as rare, since they only appear once or twice in the whole dataset. Using a 10 fcv
scheme, it is easy that these singular cases fall down in the train partition almost always, leaving the test
set with poor or null representation of these labels. The own sampling method guarantees that at least once
they will appear in the test partition.

The plots in Fig. 4 show the amount of labels with one or none occurrences in the test set produced
by each strategy. Here ”Random” refers to the classical random approach and ”Stratified” to the proposed
stratified random sampling. The emotions MLD does not have any case, thus his plot would be empty.
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Figure 2: Performance measures with respect to TCS values for the LP algorithm.

Looking at delicious, for instance, it can be verified that for folds 1, 3, 8 and 9 the random sampling clearly
produces more problematic cases than the stratified approach. Only for fold 10 the result is definitely worse
for the stratified strategy. With stackex-cs the differences appear to be smaller due to the y-axis scale. In
more than half of the folds the stratified strategy worked better than the random one. The yeast MLD is
not affected by the described problem as much as the other ones. There are two folds in which the random
approach produced one problematic case, against only one for the proposed stratified method. Lastly, enron
has the most mixed situation, with large and small differences in both ways.

The results produced by the classifiers were, in general, better for the stratified strategy in those partitions
where it produced less problematic cases. The same was applicable for the random approach. Since the results
obtained from cross validation are always average values, these differences tend to compensate among them.
These final evaluation measures are the shown in Table 3. Best values are highlighted in bold.

Overall there is a tie between the two strategies. Although there are MLDs working better with the
stratified one, such as yeast, and others with the random alternative, such as stackex-cs, the remainder
MLDs reflect a mixed behavior. Even though there are some noticeable differences between the results
produced by the two strategies, most of them are in the order of a few thousandths.

Conclusions

The performance of a multilabel classifier is influenced by a plethora of circumstances, starting with the own
model goodness, the learning process and the traits (imbalance, missing values, outliers, label concurrence,
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Figure 3: Performance measures with respect to TCS values for the ML-kNN algorithm.

etc.) of the data used to train it. We hypothesized that two key aspects could be the inherent complexity of
the data and the strategy used to partition the MLDs, and described two useful tools to face them.

With the proposed TCS metric the theoretical complexity of any MLD can be quickly and easily computed.
As has been demonstrated with experimental results, a clear correlation between the TCS level and the
performance of the tested MLC algorithms can be established. Therefore, this metric could be used to know
in advance if an MLD would obtain better or worse classification results than others depending on their TCS
values.

Regarding the sampling strategies to partition the datasets, the most used approach in MLC is the random
way. It can produce some problems with certain MLDs, as has been explained, that could be solved with an
stratified strategy. Such a method has been proposed, and its behavior has been compared with the standard
random sampling. Although it clearly improved the balanced presence of rare labels among folds in some
cases, the classifiers performance did not show fair overall differences. A further more extensive analysis,
including additional MLDs, algorithms and sampling strategies, will be needed to determine which could be
the best way for MLD partitioning.

Acknowledgments: This work was partially supported by the Spanish Ministry of Science and Tech-
nology under projects TIN2014-57251-P and TIN2012-33856, and the Andalusian regional projects P10-TIC-
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Figure 4: Occurrences of problematic cases depending on the sampling strategy.
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Table 3: Performance measures for each MLD, algorithm and sampling strategy

Macro Precision Macro Recall
Dataset Algorithm Random Stratified Random Stratified

delicious BR 0.4882 0.4919 0.0696 0.0705
LP 0.1113 0.1114 0.1101 0.1095
ML-kNN 0.6385 0.6134 0.0433 0.0420

emotions BR 0.5961 0.5997 0.5578 0.5832
LP 0.5761 0.5573 0.5565 0.5631
ML-kNN 0.7439 0.7122 0.6051 0.5837

enron BR 0.4556 0.4780 0.1684 0.1667
LP 0.1855 0.1696 0.1657 0.1536
ML-kNN 0.5942 0.6266 0.0880 0.0899

stackex-cs BR 0.4026 0.3864 0.1160 0.1156
LP 0.0964 0.0937 0.0911 0.0847
ML-kNN 0.6242 0.5876 0.0200 0.0184

yeast BR 0.4425 0.4576 0.3817 0.3971
LP 0.3764 0.3784 0.3762 0.3814
ML-kNN 0.6783 0.6803 0.3503 0.3515
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