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Abstract

Nowadays, the growth of available data, known as big data, and machine learning techniques are changing our lives. The
extraction of insights related to the underlying phenomena in data is key in order to improve decision-making processes.
These underlying phenomena are described in emerging pattern mining by means of the description of the discriminative
characteristics between the outputs of interest, which is a very important characteristic in machine learning. However,
emerging pattern mining algorithms for big data environments have not been widely developed yet. This paper presents
the first multi-objective evolutionary algorithm for emerging pattern mining in big data environments called BD-EFEP.
BD-EFEP implements novelties for emerging pattern mining such as the MapReduce approach to improve the efficiency
of the evaluation of the individuals, or the use of a token-competition-based procedure in order to boost the extraction of
simple, general and reliable emerging pattern models. The experimental study performed using datasets with high number
of examples shows the advantages of the algorithm proposed for the emerging pattern mining task in big data problems.
Results show that the approach used by BD-EFEP opens new research lines for the extraction of high descriptive emerging

patterns in big data environments.

Keywords Emerging pattern mining - Evolutionary algorithms - Fuzzy systems - Big data

Introduction

The quick progress in the development of information tech-
nologies has led to an exponential growth of the stored infor-
mation due to the Internet, mobile devices, social networks,
sensor networks, and so on. This kind of data is widely known
as big data [97]. The traditional definition of big data was
defined by Gartner [8] and it is defined as high volumes of
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data, arriving at high velocity and/or from a high variety of
sources in the systems. These big data contain valuable knowl-
edge for enterprises in order to improve their decision-making
processes [59]. In addition, thanks to the development of
cloud computing technologies [37] and machine learning
frameworks and methods, big data analytics is nowadays a
growing trend on enterprises [95] and academia [1].

There is a plethora of bio-inspired optimisation algo-
rithms which are able to extract knowledge by means of
the optimisation of some function of interest. Examples
of this kind of methods are evolutionary algorithms (EA)
[38], differential evolution [89], nature-inspired algorithms
[88], amongst others. These algorithms were very success-
ful throughout the literature [73] in many domain fields,
where cognitive fields such as image recognition [17] or
disease identification [2] are highlighted. This success is
mainly produced due to their ability for the extraction of
high-quality knowledge (the optimal solution is not guaran-
teed by these methods) on hard domains, in a reasonable
amount of time, without the inclusion of expert knowledge
within the learning process. All of these characteristics are
well-suited for extraction of knowledge in big data.

The traditional machine learning algorithms were not
designed to meet the requirements of these massive datasets.
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For example, most of these algorithms assume that the
whole dataset can fit in memory. Therefore, the processing
of big data imposes new challenges [68]. In this way, one
of the most popular processing paradigms is MapReduce
[21] and their open-source frameworks Hadoop [87] and
Spark [102]. Actually, there are evolutionary algorithms
developed under the MapReduce paradigm for different data
mining tasks such as discretisation [82], feature selection
[78], association rules mining [76, 77], subgroup discovery
[79] and emerging pattern mining [45], amongst others [85].

One of the most interesting capacities of machine
learning methods is to distinguish between the different
classes of interest in a given problem. In many domains,
these capabilities must be easy to understand by the experts
in order to provide a justification of their decisions [69].
Emerging pattern mining (EPM) [28, 44] is a machine
learning task whose main objective is the description, by
means of easy-to-understand patterns, of the discriminative
characteristics between one class against the remaining
ones. Using these patterns, the task is able to extract insights
about the underlying phenomena in data that can be easily
analysed by the experts. Therefore, the task can help in
decision-making processes because experts can know about
the underlying nature of their data. So a better justification
of their decision can be provided. Actually, EPM have
been successfully applied in several tasks such as disease
detection [98], bioinformatics [70, 74] or hotel management
[61], amongst others [46].

Throughout the literature, researchers have been looking
for more efficient ways for extracting the most discrimina-
tive patterns. In this way, subsets of interesting emerging
patterns (EPs) and methods for their efficient extraction
have been proposed. Also, several approaches have been
proposed [44] such as border-based [28, 62], tree-based [6,
32, 33, 64, 92], decision-tree-based [40, 42, 93] and evo-
lutionary fuzzy systems (EFSs) [43, 46]. Amongst other
approaches, the use of EFSs is a recent and successful
approach for the extraction of interpretable EPM models.
Despite the benefits of the extraction of EPs, to the best of
our knowledge, only a few efforts have been employed in
the development of scalable methods for the extraction of
emerging patterns in big data [45].

This paper presents a big data approach for the extraction of
fuzzy emerging patterns (BD-EFEP). It is a multi-objective
evolutionary algorithm that employs a competitive-coopera-
tive schema where individuals compete but they also coop-
erate in order to accurately describe the greatest possible
area of the space of examples. The algorithm also uses the
MapReduce approach [22] in the evaluation of the individu-
als in the population. This approach allows us to efficiently
process big amounts of data by means of a parallel processing.

It follows a global MapReduce approach, which means that
the results extracted will be the same regardless the num-
ber of partitions chosen. In addition, the algorithm uses a
post-processing filter based on confidence, and a competi-
tive scheme similar to token competition (TC) [60]. These
characteristics produce high descriptive patterns in big data
environments for EPM. The source code of BD-EFEP is
publicly available at GitHub (https://github.com/SIMIDAT/
bd-efep) under the GNU General Public License.

The paper is organised as follows. Section “Background”
presents the background of the main concepts used in
this paper. Section “The BD-EFEP Algorithm” presents
the BD-EFEP algorithm and its main characteristics.
Section “Experimental Study” shows details of how the
experimental study was carried out, the results of the exper-
imental study and their analysis. Finally, “Conclusions”
presents the conclusions of this work.

Background

A brief description of the main concepts related to the
proposal introduced in this paper is presented in this section.
First, the EPM task and its main characteristics are described in
“Emerging Pattern Mining”. Next, “Evolutionary Fuzzy
Systems” summarises the topic of EFSs. Section “Big data”
briefly introduces the MapReduce paradigm. Finally,
“Evolutionary Fuzzy Systems in Big data” summarises the
main developments of EFS and EAs for big data.

Emerging Pattern Mining

The emerging pattern mining (EPM) [28] is a data mining
task whose main aim is to find patterns whose supports
change significantly from one dataset to another or from one
class with respect to the remaining ones of a single problem.

Formally, let V = {vy, va, ..., v,} be the set of variables
of the problem. Usually, one of these variables is a
variable of interest, which will be noted as v.. Let X; =
{xi1, xi2, ...xin} be the different categorical values or the
numeric domain of the variable v;. If there is a variable of
interest v.., we refer to the values of X as classes. Let Rel =
{=, #, €, ¢, >, <, >, <} be a set of relational connectors.
In addition, let E = {(v1, x1;), (v2, X2;), ..., (Un, Xpnj)} be
an example. A set D of examples is defined as a dataset.

A selector [71] is defined as a triple (v;, r, x;j) where
vi € V,r € Rel and x;; € X;. Let I = {iy, i2, ..., iy} be the
set of all possible selectors. A logical complex (l-complex)
L [71] is a type of pattern formed by conjunctions of
selectors. Therefore, an example E contains the 1-complex
or the 1-complex covers E if and only if all the relations of
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the elements of L are satisfied by E. An emerging pattern
(EP) P is al-complex whose growth rate (GR) [28] is higher
than a given threshold p > 1. The GR is defined as in Eq. 1.

0, If Supp,(P) = Supp,(P) =0,
GR(P) = 0o,  If Supp,(P) #0A Supp,(P) =0, (1)

Supp, (F) another case
Supp, (P)’

where Suppp,(P) is the support of the pattern P in the

dataset i. These supports are calculated as Supp, (P) =

tp. (P H
CO”TDT{I‘( ) where countp, (P) is the number of examples

covered by P on dataset i and |D;| is the number of
examples in dataset i. It is important to remark that EPs

P1 = {(Odor = none) A (G.Size = broad) N (Ring.Num = one)} — Edible
P, = {(Bruises = no) A (G.Spacing = close) A (V.col = white)} — Poisonous

are usually labelled in order to determine what is D; and
D;. In this way, if EPM is employed to find discriminative
differences between classes, D is the dataset formed by
the examples that belongs to the class labelled in the EP.
Analogously, D; is the dataset formed by the examples of
the remaining classes.

As an illustrative example, let suppose we are looking
for the discriminative characteristics between edible and
poisonous mushrooms, so we have one dataset with two
classes for the variable of interest. These two EPs were
extracted from the Mushroom dataset available at the UCI
repository [27]:

@

The results extracted for each pattern are presented in
Table 1. As can be observed, P; only describe elements for
the class “edible”, so its GR = co. On the other hand, the
GR of P, is equal to 21.4 which means that mushrooms
with those characteristics are 21.4 times more likely to be
poisonous than edible. In this way, both patterns are easy to
understand and they describe very well the discriminative
characteristics between classes.

The EPM is a descriptive task framed within the
supervised descriptive rule discovery (SDRD) framework
[58]. EPM can be used for different objectives, such as
the description of discriminative characteristics between
classes of a single dataset, the description of emerging
behaviour in timestamped datasets, or the detection of
differences amongst variables. This study is focused on the
first objective, in order to ease the understanding of the
differentiating characteristics between classes of a data set.

Different EPM algorithms have been developed up to
date. These algorithms can be classified according to the
approach employed for mining the EPs. Four approaches
are highlighted in EPM: border-based [28, 62], tree-based
[6, 32, 33, 64, 92], decision-tree-based [40, 42, 93] and
EFSs [43, 46]. Details of these approaches together with
an analysis of its descriptive characteristics are shown in
[44]. As can be observed in these works, although EPM is
framed as a descriptive task within SDRD [58], the majority

Table 1 Results obtained for P; and P, in the Mushroom dataset

EP SupPoi.mnous SupEdihle GR
P, 0.000 0.639 o0
P 0.814 0.038 214
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of the approaches in EPM are focused on classification.
This means that, despite the good capabilities for the
description of the emerging behaviour or the discriminative
characteristics of the dataset, most EPM algorithms try
to improve the accuracy of the results, regardless of the
descriptive capabilities of the extracted patterns. This fact
can be observed across the literature in several reviews
for the task [41, 80] where methods for mining EPs are
described focused on supervised classification. Moreover,
algorithms presented in [6, 32, 33, 40, 42, 64, 92, 93]
are focused on classification. Finally, works presented in
[65-67] are focused on classification with EPM techniques
on imbalanced data. In fact, these models usually contain
a high number of very specific patterns in order to
obtain the best classification accuracy. Additionally, in
order to perform a classification, patterns usually present
dependencies amongst them in order to determine the class
label of unseen examples. This makes harder to understand
the underlying phenomena in data. As an example, the
CAEP method [29], which is the most popular classification
method for EPM, performs a prediction of the new example
by means of an aggregation by class of the support of
all the patterns that covers the new example. After that,
it assigns the class label of the most supported class. As
can be observed, all the patterns that cover the example
take part within the prediction process. All these facts
produce a very important effort to the experts as they need
to perform an extensive analysis in order to extract some
useful insights. However, EPM tries to describe emerging
behaviour or discriminative characteristics, so patterns
should be analysed as independent pieces of knowledge
in order to achieve this aim. Therefore, knowledge in
EPM should be simple, in terms of number of patterns
and variables, able to describe a high number of positive
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examples and with low error rate in order to provide an easy,
robust way for the justification of their decisions. Therefore,
it is not necessary to find patterns with the lowest error rate;
patterns with a low one but simpler are desirable in order to
find an easy description of data.

Quality Measures for Emerging Pattern Mining

The quality measures used in EPM are defined to quantify
the interest of a pattern. However, there is no consensus
about how to determine interest in the SDRD context.
In data mining, interest can be defined as a concept that
emphasises conciseness, coverage, reliability, peculiarity,
diversity, novelty, surprisingness, utility and actionability
[47]. According to this, and following the recommendations
proposed in [44], measures for EPM should be focused,
in most of the cases, on reliability, novelty, coverage and
conciseness. All these concepts are represented by measures
that can be calculated throughout a contingency table that
takes into account two concepts: first, if the EP covers an
example; and second, if the example belongs to the class
determined by the EP.

WRAcc(P) =

403
Table 2 Contingency table of a pattern
Class No class
Covered tp fr
Not covered fn tn

Table 2 presents such a contingency table, where the
values are tp, the number of correctly covered examples,
i.e., examples covered that belong to the class determined
by the EP; fp, the number of examples incorrectly covered;
fn, the number of incorrectly non-covered examples and
tn, the number of correctly non-covered examples.

Using this contingency table, the most used quality
measures for EPM are:

— Weighted Relative Accuracy (WRAcc). It estimate the
trade-off between the accuracy gain of the pattern with
respect to its coverage. It is a hybrid measure that joins
novelty, reliability and coverage [13]. It is computed as:

tp+ fn

tp+ fp < tp
tp+ fn+ fp+tn \tp+ fp

) (3)
tp+ fn+ fp+itn

The domain of this value depends on the percentage
of positive class examples. Thus, it is necessary to

T

WRAcc(P) — (1 _ M) (O _ %)

perform a normalisation of the measure in order to
perform comparisons. This normalisation is presented
below [13]:

WRAcc_Normalised(P) =

=) - (=) (0-47)

“

where Pos =tp+ fnand T =tp+ fp+tn+ fn.

— Growth rate (GR). It defines the EPs. It computes
the ratio of support between classes. It is a reliability
measure, computed as [28]:

GR(P):lp(fp—-I-ln) 5)

fp@ap+ fn)
— Confidence (CONF). It calculates the accuracy of the
pattern with respect to the examples it covers. So, itis a
precision measure computed as [34]:

1p
tp+ fp

— True Positive Rate (TPR). It is related to coverage. It
quantifies the number of correctly covered examples
with respect to the total number of positive examples
[56]. It is calculated as:

Conf(P) = (6)

TPR(P) = —F )

tp+ fn

False Positive Rate (FPR). It quantifies the number of
incorrectly covered examples with respect to the total
amount of negative examples [39]. Unlike the previous
measures, the objective is to minimise the FPR value of
the obtained patterns. It is computed as:

fp
fp+tn

— Strength. It quantifies the relation between the GR of
the pattern and its support in both classes. Therefore, a
pattern with high strength indicates that the pattern is
more likely to represent the real underlying phenomena
[80]. It is measured as:

2
p
(tp+fn)

Strength(P) = TR,

tp+fn fp+tn

FPR(P) = ¢))

(€))

—  Chi-squared ( xz). The value of this statistical test mea-
sures as null hypothesis the non-existence of significant

@ Springer
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Table 3 Expected contingency table for measuring the x> measure

Class No class

(tp+fn>T(tP+fp)
(tp+ fn)(fn+tn)
T

(fp+tn)T(tp+fn)
(fp+tn)(fn+tn)
T

Covered
Not covered

differences between the proportions of positive and neg-
ative, covered and not-covered examples. In this way,
a significant value, i.e., greater than 0.95, means that
there is significant differences between these elements
and, therefore, the pattern is interesting. The value is
computed as follows [7]:
2 2 2

Py=y 3" (O’E—E’) (10)
i=1 j=1 Y
where O is the contingency matrix presented in Table 2,
and E is the expected contingency table. This table is
calculated as in Table 3. Using CDF (Xz(P), ne — 1)
we calculate the significance value, where CDF is the
cumulative distribution function of the x? distribution
with n. — 1 degrees of freedom, where n, means the
number of classes.

Evolutionary Fuzzy Systems

An EFS [49] is a hybridisation of fuzzy systems [99]
augmented with a learning process based in an evolutionary
algorithm (EA) [53]. Fuzzy systems are one of the most
important areas for the use of fuzzy sets theory [100],
characterised by their ability to handle imprecision and
uncertainty, and to describe the behaviour of complex
systems. The most common fuzzy systems consist of a
collection of logical fuzzy rules, or patterns, and are known
as fuzzy rule-based systems (FRBSs). It is important to
remark that rules and patterns are similar concepts, so rule-
based systems can be used for the extraction of patterns.
This kind of systems has been widely applied in finance,
control, engineering and medicine [3, 5, 15, 46, 51, 75,
86], amongst others, as they provide a comprehensible
representation of the knowledge extracted and a good
approach for handling continuous variables. The use of
fuzzy linguistic labels [99] for the representation of
numeric variables is easier to understand than a discretised
representation [52] and it prevents the loss of information
produced in a discretisation process.

On the other hand, evolutionary computation, including
EAs [48, 50], genetic programming [57] and evolutionary
programming [38], amongst others, does not only contribute
their ability to deal with large search spaces and to find
near-optimal solutions without a precise description of
the problem, but is also able to incorporate knowledge
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into the search process. For example, the incorporation
of knowledge in FRBSs can be performed through the
parameters of the fuzzy membership functions, in the form
of linguistic variables, in the way individuals are codified or
in the definitions of the genetic operators.

EFSs have been widely used for other SDRD tasks such
as subgroup discovery [11, 15, 55]. The models extracted
were very helpful for experts in many real-world fields
such as medicine [9, 12, 15], web usage mining [14] or
photovoltaic technology [10], amongst others. In fact, the
first SDRD model for big data environments was developed
for subgroup discovery: the MEFASD-BD algorithm [79],
which is based on a local MapReduce approach where the
NMEEF-SD algorithm [11] is executed in the map phase
and the reduce phase produce the final result set by means
of token competition [60].

Within the learning procedure of an EFS, two strategies
could be used for encoding the individuals of the population
[19]:

—  “Chromosome = set of rules”. Also known as Pittsburgh
approach, in which each individual represents a set of
rules [26].

—  “Chromosome = rule”. An individual represents a single
rule, and the complete rule set is obtained by the com-
bination of several individuals. These can be combined
using three generic approaches: Michigan [16], iter-
ative rule learning (IRL) [20] and the “‘cooperative-
competitive” approach [96].

Currently, there are two proposals developed using EFSs
to address the EPM task: the EVAEP algorithm [46], and
the MOEA-EFEP algorithm [43]. The former is an EFS
method based on a mono-objective EA which follows the
“chromosome = rule” approach within an IRL process
for the extraction of the best pattern at the end of the
evolutionary process. The stop criterion of the iterative
process is that the pattern extracted is not an EP, or it does
not cover new examples by any of the patterns extracted
so far. A MapReduce adaptation of this mono-objective
algorithm, called EvAEFP-Spark [45], has been developed
in which the evaluation of the individuals is performed
in parallel and the evolutionary process is carried out in
the master node. MOEA-EFEP is a multi-objective EA
that follows the “chromosome = rule” approach based
on a cooperative-competitive schema. This population
cooperates in order the get global optima due to the use of
an elite population with the best WRAcc and competes by
means of the use of the token competition procedure.

Big data

We are living in the information era because of the
increasing and the improvement of technologies. We are
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surrounded by devices that constantly generate data. These
data contain valuable information that can be employed for
the improvement of everyday lives. These huge amounts of
data are commonly called as big data. The term big data was
defined by Gartner [8] as big volumes of data, arriving at high
velocity from a variety of sources. These characteristics
imposes us several difficulties for the extraction of
knowledge. Firstly, traditional data mining algorithms are
not able to handle big data as they usually assume the whole
dataset fits in main memory. Secondly, many algorithms
cannot extract knowledge fast enough to process data as
it arrives. Finally, the variety of sources produces a huge
heterogeneity of formats that must be normalised.

MapReduce [22, 23] is one of the most popular pro-
gramming paradigms to deal with big data, mainly with the
volume of data and the velocity of arrival. It is a functional,
distributed programming framework following the divide-
and-conquer paradigm for processing massive amounts of
data. One of its main advantages is that algorithms can be
easily executed under distributed computing centres as it
contains all necessary communications and parallelisation
mechanisms. Actually, one of the main reasons of the suc-
cess of MapReduce is due to all the mechanisms that make
possible the parallel computation of tasks, such as distri-
bution of jobs and data, replication mechanisms, hardware
and software failure treatments, and so on, are completely
transparent to the programmer. So they can focus on pro-
gramming their algorithms.

Basically, MapReduce contains two primary functions:
the map and the reduce. These functions must be designed
by the user. In a nutshell, the map function processes the
data in parallel, extracting some intermediate results. After
that, the reduce function aggregates these results in order to
produce the final output. An extended definition of each of
these phases is described below [81]:

— Map phase. The master node splits the input data into
several partitions. Each of this partition is identified
by a key-value pair (< k,v >) and it is sent to each
node in the cluster maximising the data locality in order
to minimise data transfer. After that, the processing of
each pair is carried out concurrently on the nodes of the
cluster. During this processing, the input pair < k, v >
is processed by the map function developed by the
user. The result of this function is another < k', v’ >
pair with intermediate data. After that, these pairs are
shuffled and ordered by key and will be the input to the
reduce function.

— Reduce phase. This function is the responsible of
aggregating the outputs of the map function. Once
all maps have finished, they are sent to the reducers
where the key-value pairs are sorted and merged by
key. After that, the reduce function, developed by the
user, is executed for every k' key, where all the values

are aggregated. Therefore, the reduce function returns a
new (< k', v” >) pair with the final output for each key.

One of the main drawbacks of the MapReduce paradigm
is its performance regarding to iterative jobs [63] because
of the overload produced from reloading the whole job
from disk. In this way, alternative solutions have been
developed in order to avoid this issue. Nowadays, one of the
most popular frameworks that implements the MapReduce
paradigm is Apache Spark [101]. Spark uses a structure
called resilient distributed datasets (RDD) to keep data
objects in main memory, together with transformations
and actions that are performed over the RDD in parallel.
The main advantage of RDDs is the ability to persist the
intermediate results produced across several map processes
in main memory, so iterative algorithms can be carried out
avoiding the re-execution of the whole MapReduce process.
In this way, as BD-EFEP is an EA, which is mainly an
iterative process, the Spark framework is employed for the
development of the method.

Evolutionary Fuzzy Systems in Big data

The advantages of fuzzy systems, in particular FRBSs, in
big data are relevant for the community because of its
robustness against scalability issues [35, 36]. Across the
literature, two main approaches for the development of big
data algorithms have been proposed:

— Alocal approach. It is based on the execution within the
map phase of a baseline FRBS, and then extract insights
according to the data of each map. After that, the reduce
phase removes redundant or non-relevant knowledge.

— A global approach. The whole algorithm, or one
of its most computationally expensive tasks can be
executed in parallel because of their nature. This kind
of algorithms are characterised because of their ability
for the extraction of the same results independently of
the number of maps used in the process.

Throughout the literature we can find applications of
FRBSs in big data for several data mining tasks. In [78], it
is presented an EA for feature selection in big data based
on the CHC algorithm [31] using a local approach. This
method executes CHC on each partition within the map
phase, where a binary vector of selected features is returned.
Then, the reduce phase averages the number of times the
feature is selected on each map. For the classification task in
big data, the FRBS presented in [83] was the first approach
for the task. It is based on a local approach. It executes the
Chi et al. [18] algorithm on each partition, extracting fuzzy
rules for the data of the partition. The reduce phase collects
all rules and modify the weights accordingly. Recently, in
[30] a global approach of the Chi et al. method is presented
where the quality of the classification is improved with
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respect to the local approach and the average runtime is
improved as well. In [84], a genetic algorithm for the
extraction of Takagi-Sugeno-Kang (TSK) rules [90] based
on a local approach is presented for the regression task. This
method performs a previous fuzzyfication of the variables,
and then it executes the F-RULER algorithm [84] on each
partition, where TSK rules on each partition are extracted.
Then the reduce phase aggregates all the rules extracted
in order to obtain the final rule base. In [77] a genetic
programming algorithm following a global approach is
proposed for the extraction of rare association rules. In this
method, the evolutionary process is sequentially executed
until the evaluation of the individuals. In this part, the
map phase calculates the support of each individual on
each partition. Then, the reduce phase aggregates all the
supports of the individual. For the subgroup discovery task,
[79] presents an EA based on a local approach for the
extraction of subgroups. The method executes in the map
phase the NMEEF-SD algorithm [11], where subgroups are
extracted from each partition. Then, on the reduce phase
the final subgroups are aggregated by means of a token
competition procedure [60]. Finally, for EPM, the EvAEFP-
Spark algorithm is presented in [45]. This method is an EA
following a global approach where only the evaluation of the
individuals is executed in parallel on each partition. After
that, all values calculated on each map are aggregated in the
reduce phase.

As can be observed, the majority of the proposed FRBS
for big data follows a local approach. Although local
approaches are usually much faster than global ones because
of they tend to have less MapReduce processes than global
approaches, local approaches are more likely to suffer from
data-division problems such as the increasing of small
disjuncts, skewed class distribution, lack of training data
or the extraction of less accurate models [36]. In exchange
for avoiding these problems, global approaches usually
spend a much higher amount of time due to the larger
amount of MapReduce procedures launched throughout
their mining processes. Nevertheless, cloud computing
technologies allow us an easy deployment of very large
clusters where the trade-off between quality and execution
time would be better for global approaches.

The BD-EFEP Algorithm

BD-EFEP is the first MOEA focused on EPM for big
data problems. It contains specific operators in order to
deal with the extraction of high descriptive EPs. The main
objective of BD-EFEP is the extraction of patterns with high
discriminative capacity in order to describe the underlying
phenomena of a problem. This knowledge should be as
comprehensible as possible to be useful for the experts.

@ Springer

These restrictions means that the patterns extracted should
be general, simple and with a proper level of reliability.
Therefore, the extraction of EPs in BD-EFEP can be defined
as a multi-objective problem. In this way, a multi-objective
evolutionary algorithm (MOEA) is a well-suited approach for
this kind of problems. So BD-EFEP uses a MOEA approach
in order to extract all the patterns in the Pareto front [24] in
order to get good balance in the quality measures analysed.

The BD-EFEP algorithm proposes specific operators
oriented towards the extraction of highly descriptive EPs.
These operators try to find general, simple and reliable
fuzzy or crisp patterns, depending on the type of variables
of the problem. It also provides mechanisms to extract
knowledge from big data environments within an affordable
time. This is a key advantage of the proposal because the
extraction of EPs is a very hard problem when the volume
of data is huge, in particular with respect to the number
of variables [94]. Despite the relevance of the knowledge
extracted by EPM algorithms, the research of mining
methods focused on big data environments has not been
widely explored. Actually, to the best of our knowledge, it
only exists another algorithm that can extract EPs from big
data environments, the EVAEFP-Spark algorithm [45].

The representation of EPs can be easily codified within
rule-based systems. It is important to remark that in this
context we can use the term pattern or rule interchangeably.
The representation employed within these systems is very
close to the way the experts extracts and analyse this kind os
knowledge. Therefore, rule-based systems are very suitable
for the extraction of EPs. Moreover, as patterns extracted in
EPM are considered as independent pieces of knowledge,
BD-EFEP employs a “chromosome = rule” representation
where both the antecedent and consequent parts of the
pattern are included in each individual of the population.
This representation is focused on the optimisation of each
potential pattern as independent solutions, so the approach
is well-suited for the task. Moreover, the representation
of the consequent part within the chromosome allows the
extraction of patterns for all the classes in a single execution
of the algorithm. This is an advantage with respect to other
EPM algorithms throughout the literature, that must be
executed once for each class.

BD-EFEP uses a TC-based competitive scheme. It
produces a competition between chromosomes in order
to keep the best ones. In this procedure are considered
the trade-off between generality and reliability of each
individual, together with the description of knowledge not
described by stronger individuals. In fact, the objective
of the TC-based procedure is to keep the minimum set
of patterns that can describe all the data. The novelty of
this procedure is that patterns are kept according to their
coverage and not by their GR, which it normally leads to the
extraction of very specific patterns.
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The generalisation of the individuals is promoted in the
evolutionary process by the use of mutation and oriented
initialisation operators that promote the generation of high
coverage patterns.

Diversity is promoted by the crowding-distance-based
niching technique of the NSGA-II algorithm [25] and a reset
procedure when the population reaches a local optimum.

Finally, the precision of the patterns is improved by the
use of a confidence-based post-processing filter. The main
idea of this component used for EPM is to find a trade-
off between the generality and precision of the patterns
obtained.

The main features of the BD-EFEP algorithm with
respect to the classical EPM methods are described below:

— It is a MOEA-based algorithm that allows the opti-
mization of different interest measures at the same
time.

— The generality of patterns is improved by means of
mutation and oriented initialisation operators. They
produce patterns with high generality also promoting
them along the execution of the evolutionary process.
This produces a more general pattern model with less
overfitting.

— A reset mechanism is applied in order to prevent falling
into local optima.

— A competitive approach by means of a TC-based
procedure is applied in order to keep high quality
patterns with high coverage level. This procedure
allows the extraction of a reduced set of patterns with
high coverage and high descriptive capacity.

— The use of a MapReduce approach in the evaluation of
the individuals in order to be more efficient in big data
environments. The evaluation procedure is the most
expensive element of BD-EFEP.

In the following subsections, the details of the BD-EFEP
algorithm are presented. First, the pattern representation
proposed is described in “Pattern Representation”. Next,
the details of the operational scheme of the algorithm are
shown in “Operational Scheme”. A brief description of the
genetic operators is presented in “Genetic Operators”, the
reset operator is shown in “Reset Procedure” and the TC-
based procedure is outlined in “Token-Competition-Based
Procedure”. Finally, the MapReduce approach used is
shown in “Evaluation with MapReduce”.

Pattern Representation

The patterns obtained by BD-EFEP use fuzzy logic to
represent continuous variables. These are represented by
means of linguistic labels (LLs), allowing the use of
datasets without a previous discretisation of the continuous
variables. In addition, the knowledge obtained when using

LLs is more interpretable than that of other representations
[52]. The continuous variables are therefore considered as
linguistic variables using a set of LLs. Each fuzzy set
corresponding to each LL can be specified by the user or by
means of an uniform partition with triangular membership
functions. The latter option is useful when expert knowledge
is not available.

The BD-EFEP algorithm represents the patterns in
canonical form, where the antecedent part is formed by
conjunctions of variable-value pairs and the consequent part
is a class, that is, a value of the target variable.

In Fig. 1 an example of a chromosome in BD-EFEP is
shown. A chromosome is represented as an integer vector
whose length is equal to the number of variables of the
problem, including the target variable. For the antecedent
part of the pattern, these values represent the ith value of a
discrete variable, or the ith LL in case of a numeric variable.
It is important to remark that a value of zero means that the
variable does not participate in the antecedent part of the
pattern. For the consequent part of the pattern, the integer
value used codifies the class, i.e. the value of the discrete
target variable.

This representation makes it possible to obtain patterns
for all the classes of the variable of interest in a single
execution due to the introduction of the class value in
the representation of the chromosome. This is even more
relevant in big data environments, where the execution of an
algorithm has a high cost.

The evaluation of each chromosome follows a MapRe-
duce approach,explained in detail in Section 2. In a nutshell,
the quality measures associated to a chromosome are cal-
culated by means of its contingency table. This table is
filled according to whether the underlying pattern that rep-
resents the chromosome covers a given example or not.
Considering:

- {Xm/m = 1,..,ny} a set of variables that can be
categorical or numeric, where n, is the number of
variables,

— {Classj/j = 1,..,n.} the set of values of the target
variable, where n. is the number of classes, and

k k
- {Ek = (el,ez,...,

of examples, where Classf is the value of the target

e,’;U, Classf) /k = 1,..,nex} aset

Genotype
X1 | Xo | X3 | X4 | Class
1 ] 3 0 1
Phenotype

(X1 € Low) A (X3 = Sports) — (Class = Positive)

Fig. 1 Representation of a fuzzy canonical pattern with continuous
and categorical variables in BD-EFEP
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variable for the example E* and Ney 1S the number of
examples of the problem,

an example EX is correctly covered by a pattern R; if and
only if:

APC(E*, R) > 0 A Classf = Class; 11

where the Antecedent Part Compatibility (APC) value
indicates the degree of compatibility of the examples with
respect to the antecedent part of the pattern. Therefore, EX
is covered by the pattern P; if EX has a membership degree
greater than zero in the fuzzy subspace delimited by the

Fig.2 Operational scheme of
the BD-EFEP algorithm

antecedent part of the pattern. This value is calculated as in
Eq. 12,
APC(E, P) =T (b (ef, LL]) . bid, (e

ny?

LL,J;U)) (12)
where:

LL,’;U is the LL number j of the variable n,. This is the
LL assigned to the pattern represented by the individual.
T is the selected f-norm to represent the fuzzy AND
operator, i.e., the fuzzy intersection. In this case, the
minimum t-norm is selected.

bd,, e,’iv, LL{,U> is a function that assigns the belong-

ing degree of the example to LL{;U by means of the
application of the maximum ¢-conorm. If this t-conorm

1
Split the dataset and
send partitions to workers

2
Generate and evaluate
initial population (P)
Map Reduce
Evaluation
3 tp fp fn tn
Generate Offspring L2030
. ———{i2: 0005
population (Q;) by means 52102
of genetic operators Qt EEE
il: 0311
22111
Qt i3: 300 2
tp fp fn tn
4 . i1: 8471
Evaluate Q. using the 241114
proposed MapReduce schema Qt 202806
tpfpfntn Population
1: 4100 Evaluated
222003
i3: 1130
5 Qt tp fp fn tn
030
Join P, and Q; 12050
and performs the NSGA-II 50032
fast front sortlng Splitted Partial confusion

data matrices

Reset
criterion
reached?

Fill Pt+1 by fronts
and crowding distance

7
Remove duplicates in F.
Remaining individuals to fill Py,

6

are randomly initialised

Stopping
criterion
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matches the belonging degree of LL;, , then this value
is returned, otherwise, a value of zero is returned. More
details are presented in Eq. 13.

[k k kyy [k

bd(el’.‘, LL{) _ ) Hend (ei)’ 1f max{“LL} (ei) , "-’“LLf,nv (ei)} =Hpr (ei) (13)
0, another case

where . (el’,f) is the degree of membership of the TC-based procedure is applied in P; in order to remove

redundant patterns. After that, the confidence-based
filter is applied to the resulting population and the final
pattern set obtained is returned. It is important to remark
that this filter keeps at least one pattern per class, even if
it does not reach the confidence threshold. This allows
to get patterns describing all the classes of the target
variable.

example ¢* in the LL number j for the variable i. For
categorical variables, this value is one if ef.‘ = X; or zero
otherwise.

Operational Scheme
The operational scheme of BD-EFEP is shown in Fig. 2. In

addition, pseudo-codes of the map and the reduce functions
are shown in Algorithm 1 and Algorithm 2 respectively. The ~ Algorithm 1 Map function of BD-EFEP

algorithm works as follows: Require: Q, a population of individuals.

1. Following the MapReduce approach, data are split into tpji, tnji, fpjis f nji <= 0 o .
partitions which are sent to the worker nodes in the for all examples E in the map and individuals R in Q; do
cluster. if APC(Eg, R;) > 0 then

2. In the driver or main node, the EA starts with the if Class(Ey) == Class(R;) then
generation of the initial population (P;) by means of the tpji < tpji +1
oriented initialisation operator. else

3. The offspring population (Q;) is generated by means of f pji < frji+1
the application of the genetic operators, where the size end if

else

of Q, is the same as P;.

4. When Q; is generated, the population is evaluated follow- if Class(Ey) == Class(R;) then

ing the MapReduce approach proposed in “Evaluation fnji < fnji+1
with MapReduce”. else
5. P, and Q, are joined into a new population R,. tnji < tnji +1
Then, the fast sorting procedure based in the crowding end if
distance of NSGA-II is applied over R;. This operator end if
end for

sorts the individuals according to their dominance level
in different fronts (F;), i.e., the individuals in the Pareto return 1pji, tnji, fpji, fnji

front (Fp) are not dominated by any other individual, F;

contains individuals dominated by only one individual,  Algorithm 2 Reduce function of BD-EFEP
and so on.

6. If the reset criterion is not reached, the population for
the next generation (P;) is filled by introducing the
different fronts in order. If the number of individuals
in F; is bigger than the number of the remaining
individuals to be introduced in P;4 1, the chromosomes
of F; are sorted by crowding distance and then
introduced in order until P,y is filled.

7. If the reset criterion is reached, the reset procedure is
applied.

8. Finally, the stop criterion is checked. The algorithm
stops when the specified number of evaluations are
reached. Once the evolutionary process has finished, a

Require: M,. A set of contingency tables returned from
the Map function.
tpi,tni, fpi, fni <=0
for j = 1to p do
fori =1 to NumlIndividuals do
Ipi < 1tp; +1pm;
fpi < fpi+ frm;
th; < tn; + tnM_].l.
fni < fni+ fnu;,
end for
end for
return tp;, tn;, fpi, fn;
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Genetic Operators

The genetic operators used in the BD-EFEP algorithm are
described below:

— Oriented initialisation operator. According to the num-
ber of individuals specified by the user, 75% of such
individuals are generated with at most 25% of variables
randomly initialised. The remaining 25% of the individ-
uals are randomly generated. This is done in order to
provide a set of rules with high diversity and generality
at the begining of the evoluationary process, which is key.

— Binary tournament selection [72]. Two individuals of
the population are randomly selected. The one with the
best crowding distance is added in the offspring popula-
tion. The use of crowding distance is for the improve-
ment of the diversity in the population. In addition, this
operator is selected because it produces the least selec-
tive pressure in order to avoid a premature convergence.

—  Multi-point crossover [50]. Two parents with the same
class and two random points of these individuals are
selected. The chunk amongst these two points is inter-
changed. The result is added into the offspring population.
This operator have been widely employed across the
literature because of its good exploitation capabilities.

— Oriented mutation operator. It removes a variable that
already participates in the pattern or otherwise it sets
a random value for that variable. Each possibility can
be applied with the same probability. It is key as it
produces high diversity and it keeps the individuals in
the population with a low number of variables, which is
one of the main aims of the algorithm.

Reset Procedure

BD-EFEP uses a reset procedure in order to avoid falling
into local maxima. This procedure is applied when the reset
criterion is reached. This criterion is triggered when the
population does not evolve for at least a 10% of the total
evaluations. The population does not evolve if it does not
cover examples not covered up to date.

The reinitialisation procedure first introduces those non-
duplicated individuals of Fp in the new population of
the next generation (P;y1). This allows us to keep the
best individuals found up to the moment. After that, the
remaining individuals in P,y are randomly generated by
means of the oriented initialisation procedure in order to
find another promising area of the search space.

Token-Competition-Based Procedure
BD-EFEP uses a competitive schema where individuals

must compete amongst them in order to survive. In this
way, BD-EFEP employs a TC-based procedure [60] for the

@ Springer

extraction of a set of patterns that improves the diversity, in
terms of coverage of the examples of the dataset, and the
reduction of redundant patterns. The TC-based procedure
proposed in BD-EFEP works pretty similar to the original
one. Let suppose that for each example EX, we have a token
Ty that can be true or false. Initially, all T} are set to true.
In addition, we have a counter C; = 0 for each individual
I; in the population. The TC-based procedure of BD-EFEP
initially sorts the population by WRAcc. This promotes
the extraction of patterns with a high generality-reliability
trade-off, as well as patterns with high GR as these measures
are related [13]. Then, for each individual /;, the tokens of
the correctly covered examples, i.e., the covered examples
that belongs to the class determined by the pattern, are set to
false if and only if T; = true. Then, C; is updated with the
number of tokens set to false by the pattern. This procedure
is repeated for all individuals in the population. Finally,
those I; with C; = 0 are removed from the population.

Evaluation with MapReduce

The most expensive task in BD-EFEP is the evaluation of
the individuals. This is because the quality measures used
as objectives in BD-EFEP are based in the values provided
by a contingency table. This table counts the number of
examples correctly/incorrectly covered/non-covered by a
given pattern in the whole dataset. An example of such table
is shown in Table 2. Therefore, it is necessary to traverse
the dataset once for each non-evaluated individual for each
generation of the evolutionary process in order to calculate
the objective measures. In big data environments, to traverse
the whole dataset implies a huge computational cost.

Therefore, the evaluation procedure has been developed
following a MapReduce approach in order to improve the
efficiency. The process is graphically presented as part of Fig. 2
within step four, and pseudo-codes of these procedures are
presented in Algorithm 1 and 2 respectively. The description
of the map and reduce phases is presented below:

— Map. On each generation of the evolutionary process,
the map phase sends i non-evaluated individuals to
each partition. Let the number of partitions be k. Then,
each worker node generates a set of partial contingency
tables My, according to the data it owns.

— Reduce. On the reduce phase the complete contingency
table M; for an individual i is created. It collects all
the sets of contingency tables from the worker nodes
and calculates M; = Z]j: | Mj;. After that, the quality
measures used as objectives are calculated for each
individual and returned to the master node in order to
continue with the evolutionary process.

As stated in [54], the NSGA-II approach does not
perform well when the number of objectives is high.
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Therefore, it is necessary to choose a reduced set of  Table4 Properties of the datasets used in the experiments
objectives that should l,mp rove the ,W},mle set' Of, quality Name # Instances  # Variables (R/I/N) Size (GB) # Classes
measures used to determine the descriptive quality in EPM.
The objectives used in BD-EFEP are the FPR, described Census 299284 41 (1/12/28) 0.151 3
in Eq. 8 and the Jaccard index (Jacc) [91], calculated as in kddcup 494020 41 (26/0/15) 0.049 23
Eq. 14. rlep 5749132 11 (11/0/0) 0.452 2
tp susy 5000000 18 (18/0/0) 1.503 2

Jace(R) = ————— (14)  higgs 11000000 28 (28/0/0) 4772 2

tp+fp+fn hepmass 10500000 29 (29/0/0) 4.886 2

Jacc measures the similarity between two sets. In BD-
EFEP, these sets are the set of examples that belongs to
the class determined by the pattern and the set of examples
covered by the pattern respectively. The use of this objective
allows to get patterns with a good trade-off between the
generality and reliability of the pattern. In addition, it is
the measure that presents the best behaviour for imbalanced
datasets, independently of the imbalance ratio [65]. The
use FPR as an objective boost the extraction of patterns
with a great balance between coverage and precision. BD-
EFEP contains several mechanisms to improve coverage.
Therefore, the use of FPR, which is a reliability measure,
allows the algorithm to keep those reliable patterns within
the evolutionary process.

Experimental Study

In this section, the experimental study performed is
presented. The main aim is the determination of the quality
of the BD-EFEP algorithm with respect to other approaches
for the extraction of EPs within big data environments. To
do so, the experimental framework is first presented, where
the details of the study carried out are described. Next, a
comparison of the quality of the results of the different
algorithms is carried out. Finally, a scalability and time
comparison for the methods used is presented.

Experimental Framework

The experimental framework used to evaluate the quality of
BD-EFEP is outlined in this section. First, the datasets used
in the experimental study and their main characteristics are
presented. Next, the algorithms used and their configuration
are outlined. Then, the quality measures used to analyse the
quality of the results are shown. Finally, the run environment
for the executions of the experiments is shown.

— Datasets. The study was carried out using a set of
6 well-known large-scale real datasets from the UCI
repository [4]. The properties of these datasets are
presented in Table 4, where the number of examples
(# Instances), the number of variables (# Variables),
separated in real, integer and nominal (R/I/N), the size

of the datasets in gigabytes (GB), and the number of
classes (# Classes) are shown.

— Algorithm and parameters. The algorithms employed in
this experimental study, together with their parameters
configuration, are presented in Table 5. Classical EPM
algorithms were not able to extract knowledge from
these big datasets. Only those algorithms developed
to deal with big data environments, EvAEFP-Spark
[45] and the algorithm introduced in this paper, BD-
EFEP, could be applied to these datasets. This is
the reason why this comparison only includes these
two algorithms. The parameters used for EvAEFP-
Spark has been taken from [45]. The parameters used
for BD-EFEP where chosen in order to perform a
comparison as fair as possible with EvAEFP-Spark.
This is the reason for choosing 10000 evaluations for
the stop condition and three LLs for each fuzzy variable.
The remaining parameters were selected following the
recommendations of previous SDRD works based on
the NSGA-II approach such as NMEEF-SD [11] and
MOEA-EFEP [43]. Actually, a low population size
allows us a fast execution, while the use of a high
mutation probability allows us a better exploration of
other areas of the search space that could be interesting.

— Quality measures. The quality measures used to
determine the quality of the knowledge extracted by the
algorithms are those presented in “Quality Measures
for Emerging Pattern Mining” due to they are the most
common quality measures used in EPM to determine
the quality of the descriptions obtained. In addition,
the average number of patterns (n p) and the average
number of variables of each pattern (n,) are analysed
in order to measure the complexity of the model. EPM
tries to determine the underlying phenomena that causes
the discriminative characteristics in data. Therefore, it is
necessary to evaluate the results extracted with respect
to unseen instances of the problem in order to assert that
the knowledge extracted truly belongs to the underlying
phenomena that generates the data. Traditional data
splitting procedures such as hold-out or cross-validation
are used in order to assert the veracity of the knowledge
extracted independently of the data partition employed.
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Table 5 Algorithms and their parameters used in this experimental A8 FIFESSIFH s
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Algorithm Parameters ﬁ § 5 CE § E § g § g g E S a §
[ S oSS SIS SO S 3
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— np. The number of patterns obtained by each big
data algorithm is low. This reduces significantly the
complexity of the model and ease the analysis. It is
remarkable that the number of patterns obtained by
BD-EFEP is usually much higher than those obtained
in EVAEFP-Spark. In addition, the variability in the
number of patterns extracted is higher as well, so
EvAEFP-Spark is more robust in terms of the extraction
a lower number of patterns.

— ny. The results obtained by BD-EFEP contain a
significantly smaller number of variables than in the
case of EVAEFP-Spark. Moreover, the variation of
the results is lower in BD-EFEP than in EvAEFP-
Spark, so patterns are more likely to remain with low
number of variables. This is due to the use of the
oriented initialisation and the TC-based procedures, that
promote the extraction of more general patterns with
less variables taking part.

— WRACC. The patterns extracted by the EVAEFP-Spark
algorithm present a higher interest value than the ones
extracted by BD-EFEP. This fact can be produced
because of the use of optimisation objectives focused on
reliability in BD-EFEP which penalises the extraction
of more general patterns that have a great influence for
achieving a higher WRAcc value.

— TPR and FPR. The results of these two measures
are analysed at the same time in order to facilitate
its understanding. In general, both algorithms obtain
very high TPR values which means that examples of
positive class are well-covered. The difference between
TPR and FPR means that the knowledge extracted
contains a good trade-off between generality and
reliability. The comparison of these algorithms show
that BD-EFEP obtains better results than EvAEFP-
Spark for FPR, but not for TPR. However, the trade-
off generality/reliability is better in BD-EFEP than in
EvAEFP-Spark, as the difference between TPR and
FPR is higher. This is a consequence of the good
synergy between the mechanisms focused in precision
used in BD-EFEP and the ones focused in generality
and diversity. Additionally, this mechanisms allow a
better robustness in the results with respect to EVAEFP-
Spark as its standard deviation is significantly less.

— CONF. BD-EFEP obtains, in general, higher values
in confidence than EVAEFP-Spark. The variation in
the confidence of BD-EFEP patterns is higher than in
EvAEFP-Spark, but it is not significantly high with
respect to EVAEFP-Spark. This can be explained by
the use in BD-EFEP of objectives composed of quality
measures focused on the extraction of precise patterns,
and also by the use of the post-processing filter based on
confidence. Therefore, it can be observed that patterns

obtained by BD-EFEP are much more reliable than that
extracted by EVAEFP-Spark.

— GR. In this measure, the average results obtained by
BD-EFEP are significantly higher than those obtained
in EVAEFP-Spark at the cost of a higher variability.
This result can be a produced by the use of the
oriented initialisation and mutation operators in BD-
EFEP, together with the optimisation objectives that
promote the extraction of patterns with less FPR, so
they are more precise and therefore, it is more likely to
extract patterns with a GR greater than one.

— Strength. The results extracted for this measure are
pretty similar to those extracted by TPR. Actually, the
results extracted by EvVAEFP-Spark presents a higher
generality than those extracted by BD-EFEP. This fact
can be produced because of the mechanisms used
focused on reliability in BD-EFEP that can extract
patterns more adjusted to training data so they are more
difficult to generalise.

—  x?. Patterns extracted by BD-EFEP presents a slightly
higher x? value than those of EvAEFP-Spark. However,
the result is more variable than in EvAEFP-Spark.
These means that patterns extracted by BD-EFEP
are slightly more interesting than those extracted by
EvAEFP-Spark. This can be produced by the use of
the mechanisms used for reliability, which produces the
extraction of patterns with more significant differences
between its coverage amongst the positive and negative
examples.

In EPM, reliable patterns are key as we are finding
the discriminative relationships between classes. According
to the results extracted, the pattern model of BD-EFEP
presents a better reliability than the one extracted by
EVAEFP-Spark, because of the FPR, CONF and GR values.
This is due to the use of the optimisation objectives mainly
focused on reliability and its final confidence filter. On
the other hand, the generality of the patterns is higher
in EVAEFP-Spark. As a side effect, we can observe that
WRACC is higher in EVAEFP-Spark than in BD-EFEP
because of this generality. However, the trade-off between
these aspects, which is a key point, is better in BD-EFEP.
One of the main drawbacks in BD-EFEP is that its pattern
model is more complex in terms of patterns, but it is
simpler with respect to the number of variables. However,
the more complex models, in BD-EFEP better guarantees
the description of the whole dataset is more guaranteed
than in EVAEFP-Spark because of its TC-based procedure.
Therefore, the use of more patterns is justified in order to
extract a better description of the data. As a conclusion, BD-
EFEP is a good alternative for the extraction of more reliable
EPs with a good trade-off between its generality.
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Scalability Analysis and Time Comparison

In this section, a scalability study for the BD-EFEP
algorithm is shown. In this study, BD-EFEP is executed
with different number of partitions in order to determine if a
greater parallelisation produces a decrease of the execution
times. The number of partitions used on each dataset are: 16,
32, 64, 128 and 256 partitions. BD-EFEP is also compared
against EVAEFP-Spark in order to determine whether BD-
EFEP is faster than EvVAEFP-Spark or not.

Table 7 presents the execution times of BD-EFEP and
EvAEFP-Spark. The best execution time for each dataset
is highlighted. A “not defined” result means an execution
time grater than 86400 s (24 h). The results show that the

Table 7 Average execution time, in seconds, of the EvAEFP-Spark
and BD-EFEP algorithms with different number of partitions

Dataset Partitions BD-EFEP EvAEFP-Spark
Census 16 245 2863

32 183 2522

64 149 2169

128 135 2100

256 136 2298
kddcup 16 384 13980

32 275 12472

64 230 11859

128 196 11960

256 206 12347
rlep 16 3208 3660

32 2730 2969

64 2564 2746

128 2535 2621

256 2765 2948
Susy 16 4097 11645

32 3336 10729

64 2882 10481

128 2772 9929

256 2766 10865
Higgs 16 8131 Not defined

32 8394 Not defined

64 7171 Not defined

128 6799 85900

256 6796 Not defined
Hepmass 16 7058 Not defined

32 7376 Not defined

64 6198 Not defined

128 5779 77618

256 5701 Not defined

The fastest execution time for each algorithm and dataset is
highlighted in bold
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execution time of BD-EFEP decreases when the number
of partitions used is increased. However, it is important to
remark that the decrease in the execution time is non-linear.
This is explained by the fact that the MapReduce process
is not applied over the whole evolutionary process. Despite
of this, the MapReduce approach used in BD-EFEP is able
to efficiently deal with bigger datasets if the number of
partitions used is big enough.

In addition to this, BD-EFEP significantly outperforms
the execution time of EVAEFP-Spark algorithm, regardless
of the number of partitions used. In fact, the big difference
is due, on the one hand, to the representation of the class in
the chromosomes, allowing to perform a single execution of
BD-EFEP to obtain results for all the classes. On the other
hand, the EvAEFP-Spark uses an iterative rule learning
approach which is very slow. Therefore, BD-EFEP is an
alternative allowing the extraction of descriptive knowledge
in less time than other alternatives for the extraction of EPs
within big data environments.

Conclusions

This paper presents the BD-EFEP algorithm, an EFS
whose objective is the extraction of EPs within big data
environments. BD-EFEP is a MOEA oriented towards
the extraction of high quality EPs, in order to get a
simple and interpretable set of patterns that describes
the discriminative characteristics of the data. For this
purpose, specific operators have been developed. BD-EFEP
is based in a “chromosome = rule” representation where
the consequent part of the pattern is represented in order
to extract patterns for all the classes in a single execution.
Within the ‘“chromosome = rule” approach, it follows
a competitive-cooperative schema. The patterns compete
amongst them but they cooperate in order to describe
accurate information about the greatest possible area of the
space. The generality of the patterns is achieved by means
of the mutation and oriented initialisation operators. The
diversity is promoted by the use of the NSGA-II crowding
distance operator. It also uses a TC-based competition and a
confidence-based filter in order to promote the precision of
the patterns. Finally, the algorithm performs the evaluation
of the individuals by means of a MapReduce-based global
approach in order to improve the efficiency in big data
environments without degrading the quality of the results
obtained. The MapReduce approach computes a partial
contingency table, obtained from the data available on each
partition. Then, all of these tables are joined in order to
get the complete contingency table where all the quality
measures can be calculated easily.

The suitability of BD-EFEP has been proven by means
of a comparison with other EPM approach focused in big
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data. As a conclusion, BD-EFEP obtains a set of patterns
with a significant improvement in reliability, which is key
in the extraction in EPM, together with a better trade-off
between the generality and the reliability of the results
extracted. This improvement produces the extraction of
a higher number of patterns than the other alternative.
Nevertheless, the number of patterns is low enough to be
easily analysed while the description of the whole dataset
is improved. These patterns usually define different areas of
data, so patterns extracted define the underlying phenomena
of the different zones of the search space, which is the main
objective of EPM. Finally, a comparison of the execution
time against EVAEFP-Spark shows a very good scalability
of the algorithm, where patterns are extracted significantly
faster in BD-EFEP than in the other approach. Therefore,
the proposed algorithm is a relevant alternative for the
extraction of high-quality EPs in big data environments.
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