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Abstract
Cybersecurity is often stagnant, fighting a silent war against new attacks while developing much more slowly than other
technologies. Due to the wide variety of attacks that we can find in technology, several branches of cybersecurity have also
appeared. Deep learning has recently emerged as the machine learning technology best suited to predicting these attacks. This
contribution presents a new hierarchical model based on deep learning able to handle accurately two different cybersecurity
threat detection tasks. First, it will determine whether a given connection is an attack or not, thus dealing with a binary
classification problem. Then, it will classify the malicious connections within a family of attacks. The proposed model offers
accurate results when compared with those of state-of-the-art proposals, especially in the second task tackled. This study
has been tested on three different datasets of real attack data, obtaining predictions with an accuracy of 99.92% on dataset
CIC-IDS2017, 98.39% on CIC-CSE-IDS2018 and 93.74% on CIC-DDoS2019.

Keywords Cybersecurity · Intrusion detection · Deep learning · Transformers · Hierarchical models

1 Introduction

As technologies develop, so do attacks that are based on these
technologies or that are specifically designed to target them.
As such, cybersecurity is of utmost importance in detecting
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attackers and defending against them. However, cybersecu-
rity is often overlooked to focus on improving efficiency or
efficacy [1]. As a consequence of the quick development of
the discipline, many new attacks cannot be detected by clas-
sic defense mechanisms. Efforts should focus on improving
these mechanisms so that they can overcomemodern threats.
For this purpose, paradigms such as classical machine learn-
ing andmore specifically deep learning canbeused to analyze
large amounts of data and design models to resolve these
issues [2].

A wide variety of disciplines are encompassed under
cybersecurity. In [3], the main branches of knowledge are
defined as user access authentication, network situation
awareness, abnormal traffic identification and dangerous
behaviormonitoring. Furthermore, dangerous behaviormon-
itoring is defined as the task typically performed by intrusion
detection systems (IDS), which will be the main focus of this
article.

As such, it is key to analyze the behavior of state-of-the-
art algorithms for intrusion detection that are supported by
classical machine learning and deep learning. Furthermore,
it is important to analyze if algorithms can discern not only
whether traffic is considered benign or malicious, but also
discriminate between different families of attacks based on

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-025-00398-5&domain=pdf
http://orcid.org/0009-0008-5949-8647


Progress in Artificial Intelligence

connection data, such as the number of packets sent, flags
active, etc.

Deep learning is being used in a number of activities, such
as the generation of content or the detection of certain pat-
terns on data [4, 5]. These new technologies may cause the
amount and complexity of cyberattacks to increase, but can
also be applied to mechanisms such as IDS, particularly to
increase their ability to detect new attacks (known as 0-day
attacks) [6]. By using deep learning applied to cybersecurity,
IDS may be able to keep up with these attacks, ensuring an
effective deployment of these systems that allows users to
manage the high number of alerts, ideally offering accurate
predictions that reduce the amount of false positives, which
are the greatest issue when it comes to IDS, as they need to
be manually reviewed by humans, consuming a vast amount
of time. This study contributes to the research on these top-
ics by experimenting with several machine learning and deep
learning algorithms in an attempt to determinewhich of them
are most effective when tackling intrusion detection, as well
as attempting to implement a hierarchical model that is able
to take advantage of the specific capabilities provided by the
models that offer the most accurate results.

With this purpose, a newHierarchical LearningModel for
IDS (HiLMIDS) is proposed. This model is based on both
classical machine learning methods and deep learning algo-
rithms fine-tuned to efficiently and accurately detect whether
a given connection is benign or malicious. As a first stage,
the system solves a binary problem in order to discriminate
between benign and malicious traffic. Furthermore, if a con-
nection is detected asmalicious, it is forwarded onto a second
stage, where the model can discriminate between several
families of attacks in order to predict which one the connec-
tion belongs to. A full experimental study with real attack
data from the years 2017 to 2019, including more than 25
kinds of attack and over 5.5million different instances of con-
nections throughout 3 different datasets, is included. These
datasets are commonly used to train state-of-the-art technolo-
gies, and as such allow for an easy comparison between our
model and those existing in the specialized literature.

The HiLMIDS model was compared to Random Forest
(RF), Multilayer Perceptron, Convolutional Neural Net-
works (CNN), RecurrentNeuralNetworks (RNN) andTrans-
former (TRANSF) models, improving their results by a large
margin (up to 30% in the case of the MLP when classifying
traffic as malicious or benign, and up to 70% inmore compli-
cated tasks, such as discriminating between different families
of attacks). It will also be compared to more complex models
in the specialized literature.

The remainder of the manuscript is structured as follows:
Section 2 includes information about the state-of-the-art of
deep learning applied to cybersecurity, Section 3 offers addi-
tional information about the proposed hierarchical model for
dangerous behaviormonitoring, Section 4 presents the exper-

imental framework upon which all models have been built,
Section 5 presents the experimental results and Section 6
concludes this paper.

2 Background

The state-of-the-art of artificial intelligence (AI)models used
in cybersecurity and their limitations will be presented in
Section 2.1. Afterwards, the four branches of knowledge of
cybersecurity will be presented in Section 2.2, as well as
several applications for each of them.

2.1 Advancedmodels for cybersecurity

Many of the state-of-the-art models used in cybersecurity are
based on AI. As such, they present some limitations that are
related to this paradigm. In order for AI to be trustworthy, it
must be both robust and easily explainable; however, among
the main issues lies the fact that most models return com-
pletely different results when the data they were trained with
are modified, even if very slightly [7]. As a consequence,
generative adversarial networks (GAN) can be used to cre-
ate examples of malicious traffic artificially which are not
detected as such [8, 9]. The most common models will be
analyzed hereunder:

• The Random Forest model [10] consists of an ensem-
ble (a model made out of several, simpler models) based
on tree-type models, such as C4.5 [11], to obtain a final
result.

• The Multilayer Perceptron [12] is the simplest neural
network. The basic structure of a perceptron is insuf-
ficient for solving particularly complex predictions. To
improve the results, several hidden layers are added, thus
forming a MLP.

• Convolutional Neural Networks [13] are one of the
most commonly used deep learningmodels,mainlywhen
working with multidimensional data. A first layer groups
all data in a given data structure - a tensor - which will
be forwarded to the convolution layer. There, a series of
mathematical transformations will take place, obtaining
a combination of input data as output.

• Recurrent Neural Networks [14] are able to remember
information of every element used during the training
(“tokens”) as they receive it, and use this extra infor-
mation when attempting to predict future tokens. They
often use techniques such as keeping a system state [15],
the usage of backpropagation through time [16] or long
short-term memory (LSTM) [17].

• Transformers are often used in complex tasks [18] as an
attention network that can be trained and used simulta-
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neously. Each element is placed upon an n-dimensional
space in which elements with a given correlation occupy
nearby places (embedding), which allows vector logic to
be applied regardless of data. The most common kind of
embedding is ELMo [19], which uses a structure similar
to two neural networks, one of which has forward prop-
agation while the other one has backward propagation,
creating a behavior akin to that of a bidirectional LSTM.

2.2 Main approaches in cybersecurity

In this section, the four branches of knowledge in cybersecu-
rity will be briefly explained. These branches are user access
authentication, network situation awareness, abnormal traffic
identification and dangerous behaviormonitoring.Moreover,
several applications will be revised for each branch.

User access authentication aims to develop ways to detect
camouflage maneuvers or users that attempt to impersonate
others, whilst also providing new methods for users to prove
that they are who they claim to be.

Developments include the use of neural networks to gather
additional information on passwords used for login [20], or
the use of RF for multiauthentication [21]. In [22], a deep
learning model that verifies users in two stages is proposed.
Some biometry-based methods are also proposed in [23].

Network situation awareness attempts to gather informa-
tion about the complete data and packet flows of a given
network, discerning a set of key parameters that define the
different possible network states.

Many models that attempt to solve this task apply AI-
based technologies, as seen in [24]. Some specific models
include CNN and Gated Recurrent Units (GRU), as seen in
[25].

Abnormal traffic identification encompasses all research
that attempts to detect attacks based around the injection of
large amounts of data onto a network causing a denial of
service (DoS).

Throughout time, several other attempts to detect abnor-
mal traffic appeared. Most of them applied CNN [26, 27],
oftentimes combined with other techniques such as wavelet
decomposition and RNN [28].

Dangerous behavior monitoring: the objective of this
branch, which will be the main focus of our research, is
the detection of attacks targeting a specific system and the
defense of its “lethal points”, defined as particularly vulner-
able elements of the system that are easier to exploit. Given
the amount of plausible attacks, there are two main paths of
research:

• Global models attempting to detect attacks regardless
of their family. These often involve deep learning tech-

niques combined with other models, such as SVM
[29], fuzzy logic [30], gradient boosting trees [31] and
blockchain technologies [32]. Specifically for malicious
network connections, the nearest-neighbor algorithm is
combined with SMOTE and hybrid neural networks in
[33] (SMOTE-ENN). Auto-Encoders are also often used
in anomaly-based IDS [34] (AE-2). Other methods, such
as Recurrent DL [35] or Deep Belief Networks [36]
are also common. In || [37], a Light Gradient Boosting
Machine (LGBM) is used to predict malicious connec-
tions in IoT environments. Lastly, the most predominant
algorithms make use of LSTM-based models, such as a
CNN that is supported by a LSTM (CNN-LSTM) [38] or
a LSTM trained by using GAN [39] (LSTM-GAN).

• Models for specific attacks. These models are based
around large amounts of stored data, and are often sup-
ported by platforms such as Hadoop or Spark. Therefore,
data must be analyzed and studied in order to tackle
issues correctly [40]. Several proposals, such as [41],
include full frameworks spanning several stages whilst
some simpler models make use of deep learning mod-
els, such as Transformers [42]. Some proposals focus
on DDoS attacks and make use of either DL techniques
such as Deep Neural Networks (DNN) or CNN-AE [43]
or contractive AUE [44].

3 A Hierarchical LearningModel for
Intrusion Detection Systems (HiLMIDS)

As discussed previously, cybersecurity mechanisms must be
kept up to date in order to keep up with the amount of new
attacks and specific exploits that keep appearing as technol-
ogy develops. Since classic paradigms have been proven to
offer worse results when it comes to the detection of newer
attacks, making use of newer technologies (such as deep
learning) to improve the scalability and functionality of pre-
vious mechanisms will be key to defend from attacks.

In order to detect attacks in a more efficient manner, a
hierarchical learning model is proposed. The structure of
the proposed model is depicted graphically in figure 1. As
described, the model is able to accurately detect both if a
given system is under attack, and the specific family to which
the attack belongs to.

The HiLMIDS model first receives data regarding differ-
ent traffic which was used to train both of the models used
in subsequent stages. This data is first processed to remove
noise and improve the training of the model. In order to min-
imize bias and properly assess each model, they were trained
and evaluated applying stratified cross validation, so that for
every iteration of the loop, the entire dataset was divided into
five subsets, referred to as folds, which contain a distribu-
tion of classes that is as similar as possible to the original
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Fig. 1 Structure of the proposed
hierarchical model

data. Four of these folds were used as the training set and the
remaining one was used as the test set.

This training process is used for both sub-models. The first
stage makes use of a RF-based algorithm which can filter all
connections discriminating between benign and malicious
ones regardless of the different kinds of attack. If all traffic is
classified as benign, the model will stop its execution. Only
malicious predictions are stored and then forwarded to the
second stage of analysis, where a TRANSF-basedmodel will
attempt to differentiate between different kinds of malicious
connections, attempting to determine the general family of
the attack (i.e DDoS) that the traffic belongs to. Both of these
models were chosen after testing them alongside all other
models mentioned in section 2.1 on all datasets that will be
relevant to this study, as they were the ones that provided the
highest accuracy for that specific task. Further details of the
experimental study and results can be found in sections 4 and
5.1, respectively.

Using such a model offers several advantages: First, it
allows us to make good use of the stronger points of each
model used. Furthermore, if a model is particularly suited
for a given task in the workflow, it can be relegated to doing
that task specifically, leaving the rest to another model.

Although models are used for either general attacks or
specific families, the two kinds are seldom seen working
together. Combining this strategy with newer classification
techniques, such as ensemble models or deep learning, the
objective is to find a new model that can match the results of
state-of-the-art models for each individual task whilst also
being able to perform both as a general model and a specific
one.

The detection based on two stages is also more efficient.
Binary problems are easier to solve, and as such, take less
time.As thefirst stage consists of detectingwhether a connec-
tion is benign or malicious, the model only needs to continue
running if the traffic is classified as malicious, which makes
it more efficient and less energy-consuming.

The two main models used for the proposed hierarchical
model are type of traffic and type of attack. Their specific
operation is described in sections 3.1 and 3.2, respectively.
Afterwards, the algorithm designed will be shown in section
3.3.

3.1 Type of traffic

A RF-based model [10] will be used during the first stage
of the hierarchy in order to discriminate between benign and
malicious traffic.

For each tree generated, a subset of all attributes is con-
sidered instead of the full set. After considering all trees, the
results are unified by using a weighted sum in which every
tree has an associated weight based on its relevancy to pre-
dictions during the training of the model, thus returning the
class deemed most appropriate. This allows for an accurate
first assessment that may detect malicious traffic even if the
attack is unknown, which is particularly important when it
comes to the detection of 0-day attacks, one of the main foci
of our system.

Since every tree considers different subsets of attributes
and the information is later combined, the results tend to
be more robust and the ill effects of both overfitting and
issues related to the large amount of attributes being worked
with are mitigated. The Random Forest model that was used
consisted in 100 J48 trees and used the gini index as the main
criterion considered in order to build each tree. Additionally,
for each node, up to nine features were considered (as it is the
square root of the total number of features). No maximum
depth was established for the trees. These hyperparameters
were selected by thorough experimentation and fine-tuning
in order to achieve a higher accuracy.

Furthermore, since in this stage the specific family of
attacks the connection might belong to is not considered,
RF is able to detect even 0-day attacks due to them sharing
certain characteristics with known attacks or being signifi-
cantly different to what is known about benign connections.
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Thus, a whitelist-like behavior is shown for the first stage:
any connection that shares little to no similarities to those
known as benign is considered malicious, which allows the
user to attempt to protect their system.

Lastly, this also makes it so that the different stages of the
model can be trainedmore easily. If a newattack is discovered
as such but its effects are not fully known, it can be given to
this first RF-based model exclusively, so that similar attacks
can be detected at this first stage.

3.2 Type of attack

For the second stage, a TRANSF-based algorithm will be
used in order to discriminate between the different families
of attack.

Large language models (LLM) such as TRANSF are
relatively recent, having just been proposed in 2017 [45].
As such, they have not been thoroughly tested in any of
the previously-discussed branches of knowledge related to
cybersecurity, since their original purpose was a different
one thus making them a novelty in this field.

However, it has been proven that TRANSF can be
used for a variety of tasks that are not limited to natu-
ral language processing [18], including the monitoring of
dangerous behavior. For the purpose of that specific task
and HiLMIDS, the best results were achieved with a modi-
fied BERT [46] (BERT-base-cased) from HuggingFace [47],
which was afterwards trained using K-fold validation as
described in section 3. This model was chosen due to it hav-
ing a large bibliography fromwhich to gather information, as
well as its simplicity of use due to HuggingFace methods. It
additionally allows for an easier way to process data, as users
can simply paste the string associated to one connection and
need not substantially change it.

For training, the model was fed a string that included all
relevant information of one singular connection, and was
asked to predict the family of the attack that was associ-
ated to that information. The learning rate of the model was
set to lr = 4 ∗ 10−4, the model ran for only one epoch in
order to avoid overfitting towards the majority classes, used
GELU as an activation function, included 12 hidden layers
and 768 cells per hidden layer. Additionally, each weight was
initialized with a standard deviation of 0.2.

The TRANSF-based model used is extremely accurate
when it comes to discerning different families of attack, and
can furthermore make predictions at high speeds. However,
the training process is slow. Nonetheless, since the training
must be carried out only when there is new data to extract
information from, this long training time is not a major draw-
back.

Through experimentation it has been proven that a
TRANSF-based model offers higher accuracy than Random-
Forest specifically when dealing when the classification of

attacks into several families, though it offers much worse
results when classifying connections as benign or attacks.
Therefore, since the RF-based model forwards only mali-
cious connections to the TRANSF, it can easily discern the
families of attacks while ignoring its main drawback.

3.3 Pseudocode

This section includes the pseudocode for the hierarchical
model proposed, as well as a detailed explanation of all the
functions it includes.

Algorithm 1: Workflow of the proposed hierarchical
model.
1 Input: <Dataset> traffic Result: Classified input traffic
2 rawData ← readVariables(traffic);
3 data ← preprocessing(rawData);
4 maliciousPredictions[];
5 attackPredictions[];
6 allPredictions[] ;
7 for element in data do
8 prediction ← trafficTypeModel(element);
9 allPredictions ← allPredictions.add(element + prediction);

10 if prediction is malicious then
11 maliciousPredictions ←

maliciousPredictions.add(element);
12

13 end
14 if maliciousPredictions is not empty then
15 for element in maliciousPredictions do
16 attackPrediction ← attackTypeModel(element);
17 attackPredictions ← attackPredictions.add(element +

attackPrediction);
18 end
19

20 show(allPredictions);
21 show(attackPredictions);

As seen in algorithm 1, upon receiving data correspond-
ing to web traffic, it is pre-processed. Most of the datasets are
highly imbalanced, with minority classes containing as few
as 11 examples whilst majority classes had over 1 million.
As such, in order to reduce the differences, undersampling
techniques were applied to majority classes in the multi-
class problem, reducing the amount of examples each had
by applying a distribution-based balance so that every class
was reduced based on the number of examples it originally
had. Themajority class for each dataset was reduced by 50%,
whilst all other classes were reduced less according to the
number of examples they presented.

While oversampling techniques were considered for
minority classes they were not applied since it would have
been necessary to create too many artificial examples, thus
introducing too much noise and reducing the overall qual-
ity of the results. No further pre-processing techniques were
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applied, as feature scaling may cause a loss of information
due to the ample variety of attributes, and any single attribute
may be relevant for distinguishing specific kinds of attack
though not useful for others. Each dataset may have under-
gone specific changes, which can be found in subsection 4.1.

The model can be trained afterwards. The hierarchical
model first uses the RF-based algorithm to discriminate
whether it is benign traffic or malicious traffic. Once the
model has analyzed all traffic, if there are no malicious
examples the program ends. Otherwise, the TRANSF-based
model, which is trained with data from several families of
attack, attempts to discriminate the specific kind of attack.
The predictions of the model are afterwards shown for the
users to see.

For the training of the models, data were split between
training and test subsets. The first of them was used to train
the model, whilst the second was used to check the accuracy
of its predictions. For certain models, the training process
took place throughout several epochs so that the model was
properly fitted to the data and its predictions improved.When
applicable, an inner loop that specifically included the train-
ing of the model was inserted.1

4 Experimental study

This section includes all relevant information regarding the
framework used during the experimentation. It additionally
includes the experimental results and the analysis and dis-
cussion of the results obtained.

4.1 Datasets

In this section, some of the datasets with relevant informa-
tion which will be used to train the models used will be
presented. These datasets have been widely used in state-
of-the-art researches.

The three datasets used are CIC-IDS2017, CIC-CSE-
IDS2018 and CIC-DDoS2019. They were created by the
Canadian Institute of Cybersecurity (CIC) using
CICFlowMeter [48] to extract specific data from a network,
including detailed flows, their duration, protocol used, etc.
For each connection, a label that marks it as either benign or
an attack (and which type of attack, if so) is also provided.
Since both CIC-IDS2017 and CIC-CSE-IDS2018 had sev-
eral known annotation issues, the datasets were manually
corrected according to known issues.

It should be noted that, as all the datasets were gath-
ered by using the same tool, they all provide roughly the
same information, which consists of a series of real num-

1 The source code for the algorithm can be found in the following link:
https://github.com/jmmartinezr/HiMIDS.

bers each representing a parameter such as information on
data flows, connection protocols, length of packages, flag
counts, statistical calculations on previous parameters, etc.
The CIC-CSE-IDS2018 additionally included a timestamp
for every connection, and data was organized based on times-
tamp. This meant that all attacks of a similar family shared
a similar timestamp, and as such, that attribute was removed
to ensure unbiased predictions. All other characteristics of
all the datasets were deemed potentially relevant in order to
make predictions and, as such, no other characteristics were
removed, leaving 78 characteristics as well as the class of
each example. Some elements in the dataset are the follow-
ing:

• 88, 773, 9, 4, 612, 2944, 306, 0, 68, 134.9333169,
1472, 0, 736, 849.8595962, 4600258.732, 16817.59379,
64.41666667, 148.698, 531, 1, 773, 96.625, 196.665,
580, 1, 675, 225, 348.901, 627, 1, 0, 0, 0, 0, 204, 104,
11642.94955, 5174.644243, 0, 1472, 254, 527.5207615,
278278.1538, 0, 0, 0, 1, 0, 0, 0, 0, 0, 273.5384615, 68,
736, 204, 0, 0, 0, 0, 0, 0, 9, 612, 4, 2944, 8192, 2053, 2,
20, 0, 0, 0, 0, 0, 0, 0, 0, BENIGN.

• 22, 13652185, 22, 33, 2008, 2745, 640, 0, 91.27272727,
138.182, 976, 0, 83.181, 217.2857356, 348.1493988,
4.0286, 252818.2407, 633086.5034, 2178689, 3,
11600000, 550887.1429, 869278.0704, 2232461, 839,
13700000, 426630.4063, 782897.5727, 2178689, 3, 0,
0, 0, 0, 712, 1064, 1.611463659, 2.417195489, 0, 976,
84.875, 186.8396554, 34909.05682, 0, 0, 0, 1, 0, 0, 0, 0,
1, 86.41818182, 91.27272727, 83.18181818, 712, 0, 0,
0, 0, 0, 0, 22, 2008, 33, 2745, 29200, 247, 16, 32, 0, 0, 0,
0,0, 0, 0, 0, SSH-Patator.

The CIC-IDS2017 has around 1.75 million examples
of benign traffic and around 500.000 attacks, CIC-CSE-
IDS2018 has over 2 million benign examples and around
1 million attacks, and CIC-DDoS2019 has about 100.000
benign examples and over 300.000 attacks.

Moreover, given fields of the data throughout all three
datasets were values that could not be worked with, as some
attributes had values of either NaN or infinity. These two
values always appeared together in the same two attributes,
usually in standard deviations or average flow speeds. As
these values may only be positive, infinity values were
replaced with the highest possible value that Python allowed,
while NaN values were replaced with -1. Removing exam-
ples with these data was considered, particularly if they were
prevalent in majority classes in order to further balance the
datasets, but since they appeared in both majority and minor-
ity classes, they were kept.

Lastly, all datasets underwent specific changes. For
instance, CIC-IDS2017 had its data presented throughout
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Table 1 Specifications of the computer used for the experiments

Component Model

Operative System Windows 10 Home

CPU Intel Core i7-10875h CPU @ 2.30GH

RAM 32 GB

Storage SSD 1 TB

Graphics card NVIDIA GeForce RTX 2070

different files. One of these files included exclusively benign
data, which was not considered during experimentation to
further balance that specific dataset. CIC-DDoS2019 had two
classes for a family of attack, UDP-Lag and UDP Lag. Since
both classes behaved very similarly, they were combined, as
the different naming was considered a human mistake made
while preparing the dataset.

4.2 Relevant tools

All models were implemented in Python 3.13. The Random
Forest model was built by using the Scikit-Learn framework
for python [49] then trainedwith the datasets described in sec-
tion 4.1 as described in section 3.1. The Transformer model
was built using the BERT-case-based transformer provided
by HuggingFace [47] as a starting point, then trained with
the datasets as described in section 3.2.

All experiments were made on the same computer to
ensure a fair comparison of the results for each model. The
details on the hardware are present in table 1.

4.3 Experimentation

The training and evaluation process of a givenmodel requires
both a given dataset and an execution mode. The dataset can
be anyfile inCSVformat that contains information structured
like any of the previously mentioned datasets. Execution
modes are defined by a string that determines how data will
be processed during training and evaluations that can take
three values:

• BinaryClassificationProblem: Specific kinds of attack
are ignored, and all types of attack are grouped under
the “Malicious” label. This execution mode is designed
so that models can differentiate between malicious and
benign traffic.

• MaliciousOnly: All benign traffic is ignored, and only
attacks are considered. This execution mode is designed
so that models can differentiate between different types
of attack.

• HiLMIDS Study: This execution mode attempts to dif-
ferentiate between benign traffic and all possible types

of attack in the previously defined two-stage process. It
was used to test the accuracy ofHiLMIDS against current
state-of-the-art algorithms and models.

Furthermore, when deciding which model was the most
appropriate for each execution mode, two main metrics were
considered: accuracy and recall [50], which are the metrics
most used in classification tasks such as this. Moreover, an
additional performance metric, execution time, was consid-
ered. All metrics used are described here:

• Precision: accuracy can be defined as the percentage of
cases in which the model is able to correctly predict the
label of a given example. Since it is of utmost importance
that themodel can differentiate between benign andmali-
cious traffic and the type of attack when relevant, this is
the main metric considered regardless of the execution
mode.

• Recall: due to the specific details of the data, it is imper-
ative to be able to discern whether a given connection is
or is not an attack. It is much more harmful to wrongly
classify an attack as a benign connection than vice versa.
As such, recall will also be considered when analyzing
the results of a given model, as this represents the ratio
of true positives (TP).

• F1Score: The F1 score is the harmonicmean of precision
and recall, thus symmetrically representing both in one
metric.

• Execution time: if a systemwas is attacked, it is of utmost
interest that the attack can be detected as such as soon
as possible. Since most of the models presented are deep
learning models, the time training process is often quite
slow. However, once trained they are able to make pre-
dictions in an acceptable amount of time. Due to this,
the time required to train a model will be considered, but
it is not deemed critical. However, the amount of time
taken for predictions will be of utmost importance when
it comes to deciding which is the best model.

5 Results and analysis

In this section, the results for each combination of execution
mode and model will be shown along with further discussion
of the experimental results obtained.

5.1 Results

Due to the nature of the proposal, the results will be divided
into different parts. First, the results for each individualmodel
for both BinaryClassificationProblem and MaliciousOnly
will be shown. Models used include RF, MLP, CNN,

123



Progress in Artificial Intelligence

Table 2 Execution times for each model and dataset

RF MLP CNN RNN TRANSF

Training Test Training Test Training Test Training Test Training Test

CIC-IDS2017 37s 5s 40s 6s 70s 6s 81s 9s 384s 22s

CIC-CSE-IDS2018 57s 9s 61s 11s 118s 10s 131s 15s 561s 31s

CIC-DDoS2019 29s 3s 32s 5s 59s 4s 74s 8s 315s 18s

RNN and TRANSF. Afterwards, the hierarchical model will
be compared to every other individual model using the
HiLMIDS analysis.

In each table, the amount of instances of each dataset will
also be reported. This information is labelled as Ns . Addi-
tionally, the execution time for each model and dataset can
be found in table 2.

As it can be seen, the proposedmodel takes longer for both
the training and test sets. While this may be a disadvantage,
the main difference in runtime is caused during the training,
which does not need to be done frequently and, as such, it
can be accepted. The time to predict whether a given connec-
tion is an attack is roughly twice as much as other models,
though it should be noted that this includes both stages of the
hierarchical model. Discerning between a benign connection
and a malicious one takes roughly the same amount of time
as the other models, while specifically predicting a type of
attack makes up for the remainder of the runtime.

On the other hand, when considering the amount of mem-
ory required by each model, it should be noted that most
models required very high resources during the training
stage, and up to 99% of available memory for RNN, the
transformer model and the HiLMIDS model. However, the
testing stage for all models is not particularly memory-
consuming, and is oftentimes below 50% of the available
memory even in the most complex models, such as trans-
formers and HiLMIDS. This is partly due to the hierarchical
nature of the model, which allows it to only make use of only
either Random Forest or the TRANSF-basedmodel based on
the task that is being handled.

5.1.1 BinaryClassificationProblem

The results of the binary problem executed on every model
appear in table 3.

As can be seen, for this first execution mode, RF obtains
far more accurate results than any other model. Models such
as the MLP and the RNN can reach around 90% accuracy
on certain datasets, but are still far from the results obtained
by RF. CNN and TRANSF can achieve 100% accuracy on
certain occasions, but it is because they are overfitted and
only predict the majority label.

Among the most important elements that Random Forest
detected as relevant to discernwhether a connection is benign
or malicious are the following characteristics:

• Flag count. Generally speaking, whenever a flag has a
high count, the connection is consideredmalicious by the
RandomForest algorithm.

• Forwarded packets per second. If the number of pack-
ets exceeds a certain threshold, roughly 5000 packets, the
connection is also deemed malicious.

• Flow duration. Longer data flows are most commonly
associated with malicious connections, as it may repre-
sent not finishing a connection to saturate a server or
sending a massive amount of packets.

• Flow size. A flow that handles large amounts of data per
second (roughly 250 MB / s) is often associated with
benign connections. Flows with less data, or flows with
roughly that data that consist on smaller packets (about
350 B / packet) are often associated with malicious con-
nections.

If the data that was to be processed lacked some of these
elements, the model would likely offer results of a lower
accuracy, as they are oftentimes associated with attacks.
However, since all these values can be easily gathered by
using CICFlowMeter, it should not be a hindrance in most
practical cases as a correct network data capture is ensured.

5.1.2 MaliciousOnly

This section includes the detailed results of the Mali-
ciousOnly execution mode. In order to simplify the infor-
mation presented, it is divided into three tables, one for each
dataset. Results for CIC-IDS2017 can be found in table 4,
results for CIC-CSE-IDS2018 can be found in table 5 and
results for CIC-DDoS2019 can be found in table 6.

In this specific case, it can be seen that while RF continues
to offer a remarkable degree of accuracy, the TRANSF can
surpass its results in both the CIC-CSE-IDS2018 dataset and
the CIC-DDoS2019 dataset. While the difference is of less
than 2%, this means correctly detecting 3000 more attacks
on the first dataset and around 1600 on the second one.
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With the objective of gathering more information about
every model tested, a breakdown of the results will be shown
afterwards. This breakdown includesmore information about
the performance of the model when used in each dataset.
Further information, such as the confusion matrices for each
model and dataset, can be found in A.

TheRFmodel offers great accuracy in all cases, although it
has some issues properly classifyingminority classes, though
it is capable of properly predicting their label in some cases.
Unlike the RF model, the MLP offers poor results. This is
due to the fact that most of the time it selects a majority class
and always predicts that class, applying a ZeroR strategy
that is unacceptable for this problem.Much like theMLP, the
CNN also tends to overfit, always predicting a givenmajority
class. As such, this model is discarded following the same
reasoning as the previous one.

The RNN model offers better results than every other
model shown until now except RF. Unlike the other mod-
els, although it tends to overfit towards themajority classes, it
continues to be able to predict the minority ones, though with
lesser accuracy. In spite of the poor results that the TRANSF
offered in the BinaryClassificationProblem mode, it offers
some of the best result in theMaliciousOnlymode. Its results
are better than those offered by RF, if only marginally, and
considerably better than any other model.

5.1.3 HiLMIDS Study

This section includes the results of using HiLMIDS, as well
as both RF and TRANSF individually (i.e. an ablation study
for our proposal), in order to analyze a given connection and
determine whether it is benign or malicious, and the family
of attack it may be encompassed in.

The study was executed as follows: HiLMIDS was used
as explained in section 3. Both TRANSF and RF were
used to directly discriminate between benign traffic and all
individual families of attack, as well as attempting to dif-
ferentiate between benign and malicious traffic directly, in
order to obtain easily comparable results. Furthermore, sev-
eral models from specialized literature where also compared
to HiLMIDS. Results from models are directly extracted
from the results provided by the authors. All comparisons
appear in tables 7, 8 and 9. The highest accuracy achieved in
each specific task is bolded.

As can be seen, for every single dataset, the hierarchi-
cal model offers greater accuracy than both the RF model
and the TRANSF model individually. Although in some
datasets, namely CIC-DDoS2019, this increase is extremely
subtle, due to the sheer amount of traffic that is analyzed, it
makes a difference of several hundred more attacks detected.
In the other datasets, the difference is much more notice-
able. The hierarchical model achieves results almost 2%
higher than RF, which is the most accurate for both CIC-

IDS2017 and CIC-CSE-IDS2018, and over 20% more than
the TRANSF model which, as seen in previous sections,
only offers satisfying results when detectingmalicious traffic
without considering benign connections.

Furthermore, when compared with other models from the
literature, it can be seen that HiLMIDS offers results that
are slightly more accurate than the best results from prior
models. However, the prior models with the worst results are
improved by up to 7% in CIC-IDS2017 and about 2-5% in
the other datasets.

It should be noted that most advanced state-of-art models
provide only the overall results for the model. As such, the
results for the BinaryProblem configuration, that is, attempt-
ing to discern between benign and malicious predictions, is
not provided and cannot be compared directly. The same
can be said about the MaliciousOnly configuration. The only
exception is the recurrent deep learning model [35], which
was tested on CIC-IDS2017 providing a precision of 0.990
for the first configuration and a precision of 0.980 for the
second configuration. Both of these are beaten by HiLMIDS,
which achieves a precision of 0.999 and 0.998, respectively.

The deep bayesian network proposed in [36] achieves an
accuracy only slightly worse than our own at a 0.998. In spite
of this, themodel lacks information for specific tasks (such as
the BinaryProblem configuration), and HiLMIDS manages
to outperform it by 0.001%.

The contractive autoencoder proposed in [44] provides
results for both CIC-IDS2017 and CIC-DDoS2019. In the
first dataset, the results provided are of an accuracy of 0.925,
somewhat lower than the proposed model. However, in the
CIC-DDoS2019 dataset, the results it provides are of a higher
accuracy than our own with an accuracy of 0.961. Never-
theless, it should also be noted that, in spite of achieving
a higher accuracy than HiLMIDS, the contractive AE pro-
posed in [44] makes use of only a fragment of the dataset,
as it considers only 6 kinds of attack instead of the full 16
that the dataset includes. No information was provided by
the authors regarding the results using the 16 classes.

The fuzzy artificial neural network proposed in [30]
achieves an accuracy of 0.887 in CIC-DDoS2019, which is
considerably lower than that of HiLMIDS, achieving a 0.937
accuracy in the same task. The same can be said about the
deep neural network proposed in [43], which achieves an
accuracy of 0.870, and the CNN-AE model proposed in the
same paper, which achieves an accuracy of 0.919, both lower
than that of HiLMIDS.

The results of all advanced techniques that were presented
are shown as provided by the authors. Though there is an
algorithm that provides higher accuracy than our own, it
should be noted that our model is the only one that can ide-
ally achieve a high accuracy in all tasks: discerning between
malicious and benign data and discerning between different
attacks individually, as well as classifying connections as
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Table 7 Comparison between
HiLMIDS and other models in
specialized literature for
CIC-IDS2017

Reference BinaryProblem MaliciousOnly Overall results

RF [10] 0.999 0.998 0.977

TRANSF [18] 0.797 0.998 0.788

Recurrent DL [35] 0.990 0.980 -

DBN [36] - - 0.998

Contractive AE [44] - - 0.925

HiLMIDS This manuscript. 0.999 0.998 0.999

Table 8 Comparison between
HiLMIDS and other models in
specialized literature for
CIC-CSE-IDS2018

Reference BinaryProblem MaliciousOnly Overall results

RF [10] 0.999 0.935 0.974

TRANSF [18] 0.681 0.948 0.681

HiLMIDS This manuscript. 0.999 0.948 0.984

Table 9 Comparison between
HiLMIDS and other models in
specialized literature for
CIC-DDoS2019

Reference BinaryProblem MaliciousOnly Overall results

RF [10] 0.993 0.906 0.927

TRANSF [18] 0.775 0.916 0.934

Fuzzy ANN [30] - - 0.887

DNN [43] - - 0.870

CNN-AE [43] - - 0.919

Contractive AE [44] - - 0.961

HiLMIDS This manuscript. 0.993 0.916 0.937

either benign or a specific attack, while most other models
are designed to achieve a high accuracy only in one of the
aforementioned tasks.

Due to this, HiLMIDS has proved to be a robust model
that can be used to detect cybersecurity threats in many cir-
cumstances, as it offers a high accuracy both when detecting
whether a given connection is an attack and discerning the
specific attack. As such, it could be used in any context that
requires intrusion detection systems and that already makes
use of a tool such as CICFLowMeter to gather network infor-
mation that can be steadily provided to HiLMIDS in order to
detect whether a given network is under attack.

5.1.4 Statistical tests

In order to discriminate whether one model actually offers
statistically significantly better accuracy than another, a
series of statistical tests was carried out. For every single
test, p = 0.05 will be considered. The accuracy results that
were taken into consideration for each test were the ones
provided in sections 5.1.1 and 5.1.2, respectively, and thus
considered the three datasets that were used during the exper-
imental study. The statistical tests and their results were as
follows:

• The first comparison was be a pairwise comparison. For
this purpose, a Wilcoxon test was carried out between
every possible combination of two models among all the
models used during the prediction. Results showed that
there was a statistically significant difference in accuracy
between HiLMIDS and the Random Forest, MLP, CNN,
RNN and Transformer models.

• The second and third comparison will be multiple com-
parisons between all models used, simultaneously. For
this purpose, two tests will be carried out: Friedman test
and post-hocHolm test. These tests showed that therewas
a statistically significant difference in accuracy between
HiLMIDS and RNN, CNN andMLP in all datasets used,
and it also showed that HiLMIDS had statistically sig-
nificantly better accuracy than both Random Forest and
Transformers in at least two datasets for each model.

6 Conclusions

A general revision of the state-of-the-art regarding deep
learning methods applied to cybersecurity has been pre-
sented in this study. Several deep learning techniques such as
RNN and ANN, among others, are widely used in different
cybersecurity problems, such as user identification, network
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situation awareness, abnormal traffic identification and dan-
gerous behavior monitoring. This contribution focuses on
dangerous behavior monitoring, and specifically malicious
traffic detection and IDS.

In order to improve the classic IDS, which nowadays are
often insufficient to defend systems from attackers, a novel
Hierarchical Learning Model for IDS (HiLMIDS) is pro-
posed. This model makes use of a RF-based algorithm in the
first stage, which can efficiently filter out benign traffic. If
any malicious traffic is detected, it is forwarded onto the sec-
ond stage, where a TRANSF-based algorithm discriminates
the family of attack the connection belongs to. HiLMIDS
makes use of the strong points of bothRF andTRANSFmod-
els, allowing for an efficient analysis that also offers highly
accurate results when detecting attacks.

HiLMIDS was afterwards tested with three datasets that
contained real traffic data, including attacks. The predictions
generated by this hierarchical model are more accurate than
both RF and TRANSF individually, and also than all other
models tested. The accuracy is between 93.74% and 99.92%,
based on the dataset used, which also improves the result of
state-of-the-art technology for general attack detection and
the detection of specific families of attack by up to roughly 2-
3%. In some specific cases, the improvement is much better
(roughly 18%).

However, models such as HiLMIDS are not without draw-
backs. Even though the results provided are accurate when it
comes to the detection of dangerous behavior, the main issue
lies in the fact that neither RF or TRANSF are easily explain-
able. While they are able to properly associate input data to
predict if a connection is an attack and the family of attacks
it belongs to, it is not easy to extrapolate what parameters the
model has used to make this prediction. Another issue is the
fact that the datasets are severely unbalanced,making the pre-
diction of specific types of attack considerably harder simply
due to a lack of specific information on them, which makes
it harder for the model to correctly predict them. Therefore,
the main line of future work is to apply post-hoc techniques
in order to improve its ability to explain the reasoning behind
its results so that we can properly extract knowledge from the
predictions it makes, which can be used to make detecting
attacks a simpler task and further improve this model and its
predictive capabilities.

Appendix A Confusionmatrices

This section includes confusion matrices for all executed
models and datasets detecting only malicious traffic Tables
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24.
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