Publicaciones

Revistas:

  • Arteaga, M., Gacto, M.J., Galende, M. Alcalá-Fdez, J., Alcalá, R., Enhancing soft computing techniques to actively address imbalanced regression problems, Expert Systems with Applications, Vol. 234, 2023, https://doi.org/10.1016/j.eswa.2023.121011.
  • Biedma-Rodríguez, C., Gacto, M.J., Anguita-Ruiz, A., Alcalá, R., Alcalá-Fdez, J. Transparent but Accurate Evolutionary Regression Combining New Linguistic Fuzzy Grammar and a Novel Interpretable Linear Extension. Int. J. Fuzzy Syst. 24, 3082-3103 2022. https://doi.org/10.1007/s40815-022-01324-w
  • Biedma- Rodríguez, C., Gacto, M.J., Anguita-Ruiz, A., Alcalá, R., Aguilera, C.M., Alcalá-Fdez, J. Learning positive-negative rule-based fuzzy associative classifiers with a good trade-off between complexity and accuracy, Fuzzy Sets and Systems, Volume 465, 2023, https://doi.org/10.1016/j.fss.2023.03.014.
  • Carmona, C.J., German-Morales, M., Elizondo, D., Ruiz-Rodado, V., & Grootveld, M. Urinary Metabolic Distinction of Niemann-Pick Class 1 Disease through the Use of Subgroup Discovery. Metabolites, 13. 2023
  • García-Vico, Á.M., Carmona, C., González, P., del Jesus, M.J. A cellular-based evolutionary approach for the extraction of emerging patterns in massive data streams. Expert Systems with Applications, 2021, 183, 115419. https://doi.org/10.1016/j.eswa.2021.115419
  • García-Vico, A.M., Carmona, C.J., González, P., del Jesus, M.J. A distributed evolutionary fuzzy system-based method for the fusion of descriptive emerging patterns in data streams, Information Fusion, Volume 91, 2023, 412-423, https://doi.org/10.1016/j.inffus.2022.10.028.
  • Martínez, F., Charte, F., Frías, M. P., Martínez-Rodríguez, A. M. Strategies for time series forecasting with generalized regression neural networks, Neurocomputing, 2022 https://doi.org/10.1016/j.neucom.2021.12.028
  • Martínez, F., Frías, M. P. Pérez-Godoy M. D., Rivera, A. J., Time Series Forecasting by Generalized Regression Neural Networks Trained With Multiple Series, in IEEE Access, vol. 10, pp. 3275-3283, 2022, https://doi.org/10.1109/ACCESS.2022.3140377
  • Perez, L.A., García-Vico, Á.M., González, P., & Carmona, C.J.. Clustering: an R library to facilitate the analysis and comparison of cluster algorithms. Progress in Artificial Intelligence. 2022. 12, 33-44.
  • Perez, L.A., García-Vico, Á.M., González, P., & del Jesus, C.J. A Multiclustering Evolutionary Hyperrectangle-Based Algorithm. International Journal of Computational Intelligence Systems, 16. 2023.
  • Pérez-Godoy, M.D., Molina, M., Martínez, F., Elizondo, D., Charte, F., Rivera, A.J., DESReg: Dynamic Ensemble Selection library for Regression tasks. Neurocomputing 2024. Volume 580
  • Pulgar, F. J., Charte, F., Rivera, A. J., & del Jesus, M. J. ClEnDAE: A classifier based on ensembles with built-in dimensionality reduction through denoising autoencoders. 2021 Information Sciences, 565, 146-176. https://doi.org/10.1016/j.ins.2021.02.060
  • Rivera, A. J.; Cobo, J.; Pérez-Godoy, M.D.; Saenz, Blanca; Charte, F.; Elizondo, D.; Rodríguez, César; Abolafia, M. L.; Perea, A.; Del Jesus M.J. XAIRE: An ensemble-based methodology for determining the relative importance of variables in regression tasks. Application to a hospital emergency department. Artificial Intelligence in Medicine. 137, 2023. https://doi.org/10.1016/j.artmed.2023.102494
  • Rivera, A.J., Dávila, M.A., Elizondo, D. del Jesus, M.J. Charte. F. mldr.resampling: Efficient reference implementations of multilabel resampling algorithms. Neurocomputing, 559, 126806, 2023. https://doi.org/j.neucom.2023.126806.
  • Rivera, A.J.; Pérez-Godoy, M.D.; Elizondo, D.; Deka, L.; Del Jesus M.J.. Analysis of clustering methods for crop type mapping using satellite imagery. Neurocomputing. 492, pp. 91 - 106. 2022. https://doi.org/10.1016/j.neucom.2022.04.002
  • Sáez-Castillo, A.J., Conde-Sánchez, A., Martínez, F. DGLMExtPois: Advances in Dealing with Over and Under-dispersion in a Double GLM Framework. R J., 14, 121-140. 2023 https://doi.org/10.32614/rj-2023-002

Congresos:

  • Cabrera-Bermejo, M.I., Del Jesus, M.J., Rivera, A.J., Elizondo, D., Charte, F., Pérez-Godoy, M.D. (2023). Analysis of Transformer Model Applications. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_20
  • Charte, D., Sevillano-García, I., Lucena-González, M. J., Martín-Rodríguez, J. L., Charte, F., & Herrera, F. Slicer: Feature Learning for Class Separability with Least-Squares Support Vector Machine Loss and COVID-19 Chest X-Ray Case Study. International Conference on Hybrid Artificial Intelligence Systems (pp. 305-315). (2021, September) Springer, Cham. https://doi.org/10.1007/978-3-030-86271-8_26
  • de la Rosa, D., Álvarez, A., Pérez, R., Garrote, G., Rivera, A. J., del Jesus, M. J., & Charte, F. . NOSpcimen: A First Approach to Unsupervised Discarding of Empty Photo Trap Images. In International Work-Conference on Artificial Neural Networks (IWANN 2023) (pp. 39-51). Cham: Springer Nature Switzerland (2023, June) https://doi.org/10.1007/978-3-031-43078-7_4
  • Rivera A.J., Pérez-Godoy M.D., Elizondo D., Deka L., del Jesus M.J. A Preliminary Study on Crop Classification with Unsupervised Algorithms for Time Series on Images with Olive Trees and Cereal Crops. 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). Advances in Intelligent Systems and Computing, vol 1268. (2021) Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_27
  • Padilla, D., Padilla-Rascón, M.A., Cámara, R., & Carmona, C.J.. A First Evolutionary Fuzzy Approach for Change Mining with Smart Bands. International Conference on Flexible Query Answering Systems. 2023
  • Pérez, L. A. et al. “An Evolutionary Fuzzy System for Multiclustering in Data Streaming.” Procedia Computer Science (2023).
  • Puentes, F. Pérez-Godoy, M.D. González, P., Jesus, M. J., Implementation of data stream classification neural network models over big data platforms. International Work-Conference on Artificial Neural Networks (IWANN 2021), volume 12862 of LNCS, pages 272-280. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-85099-9_22
SIMIDAT