Finding informative code metrics under uncertainty for predicting the pass rate of online courses

Author
Keywords
Abstract

A method is proposed for predicting the pass rate of a Computer Science course. Input data comprises different software metrics that are evaluated on a set of programs, comprising students answers to a list of computing challenges proposed by the course instructor. Different kinds of uncertainty are accepted, including missing answers and multiple responses to the same challenge. The most informative metrics are selected according to an extension to vague data of the observed Fisher information. The proposed method was tested on experimental data collected during two years at Oviedo University. Yearly changes in the pass rate of two groups were accurately predicted on the basis of 7 software metrics. 73 volunteer students and 1500 source files were involved in the experimentation.

Year of Publication
2016
Journal
Information Sciences
Volume
373
Number of Pages
42-56
ISSN Number
0020-0255
URL
http://www.sciencedirect.com/science/article/pii/S0020025516306715
DOI
10.1016/j.ins.2016.08.090
Download citation