Niching genetic feature selection algorithms applied to the design of fuzzy rule-based classification systems

Author
Keywords
Abstract

In the design of fuzzy rule-based classification systems (FRBCSs) a feature selection process which determines the most relevant features is a crucial component in the majority of the classification problems. This simplification process increases the efficiency of the design process, improves the interpretability of the FRBCS obtained and its generalization capacity. Most of the feature selection algorithms provide a set of variables which are adequate for the induction process according to different quality measures. Nevertheless it can be useful for the induction process to determine not only a set of variables but also different set of variables. These sets of variables can be used for the design of a set of FRBCSs which can be combined in a multiclassifler system, improving the prediction capacity increasing its description capacity. In this work, different proposals of niching genetic algorithms for the feature selection process are analyzed. The different sets of features provided by them are used in a multiclassifier system designed by means of a genetic proposal. The experimentation shows the adaptation of this type of genetic algorithms to the FRBCS design.

Year of Publication
2007
Date Published
July
DOI
10.1109/FUZZY.2007.4295638
Download citation
Number of Pages
1-6