Antonio Jesús Rivera Rivas

First name
Antonio Jesús
Last name
Rivera Rivas

2014

Pérez Godoy, M. D. . ., Rivera Rivas, A. J. ., Carmona, C. J. ., & del Jesus Díaz, M. J. . (2014). Training algorithms for Radial Basis Function Networks to tackle learning processes with imbalanced data-sets. Applied Soft Computing, 25, 26-39. https://doi.org/10.1016/j.asoc.2014.09.011
View
del Jesus Díaz, M. J. ., Martínez, F. ., Pérez Godoy, M. D. . ., Rivera Rivas, A. J. ., & Frías Bustamante, M. del P. . (2014). An ensemble method for time series forecasting with simple exponential smoothing. Presented at the. Rota, Cádiz (Spain). (Original work published)
View
Charte Ojeda, F. ., Rivera Rivas, A. J. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2014). Concurrence among Imbalanced Labels and Its Influence on Multilabel Resampling Algorithms. 110-121. Salamanca (Spain). https://doi.org/10.1007/978-3-319-07617-1_10 (Original work published)
View
Charte Ojeda, F. ., Rivera Rivas, A. J. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2014). LI-MLC: A Label Inference Methodology for Addressing High Dimensionality in the Label Space for Multilabel Classification. IEEE Transactions on Neural Networks and Learning Systems, 25, 1842-1854. https://doi.org/10.1109/TNNLS.2013.2296501
View
Charte Ojeda, F. ., Rivera Rivas, A. J. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2014). MLeNN: A First Approach to Heuristic Multilabel Undersampling. 1-9. Salamanca (Spain). https://doi.org/10.1007/978-3-319-10840-7_1 (Original work published)
View
Rivera Rivas, A. J. ., Espinilla, M. ., Fernández Hilario, A. L. . ., López, J. S., & Charte Ojeda, F. . (2014). Propuesta de una asignatura de Diseño de Servidores para la especialidad de Tecnologías de Información. Enseñanza Y Aprendizaje De ingeniería De Computadores. Revista De Experiencias Docentes En ingeniería De Computadores, 4, 15-24.
View

2013

Rivera Rivas, A. J. ., García-Domingo, B. ., del Jesus Díaz, M. J. ., & García, J. J. . A. (2013). A Performance Study of Concentrating Photovoltaic Modules Using Neural Networks: An Application with CO2RBFN (V. . Snášel, A. . Abraham, & E. S. Corchado, Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg.
View
Charte Ojeda, F. ., Rivera Rivas, A. J. ., Pérez Godoy, M. D. . ., & del Jesus Díaz, M. J. . (2013). Alternative OVA Proposals for Cooperative Competitive RBFN Design in Classification Tasks. 331-338. Tenerife (Spain). https://doi.org/10.1007/978-3-642-38679-4_32
View
Pérez Godoy, M. D. . ., Rivera Rivas, A. J. ., del Jesus Díaz, M. J. ., & Martínez, F. . (2013). A first analysis of the effect of local and global optimization weights methods in the cooperative-competitive design of RBFN for imbalanced environments. 1-8. https://doi.org/10.1109/IJCNN.2013.6706973 (Original work published 2025)
View
Charte Ojeda, F. ., Rivera Rivas, A. J. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2013). A First Approach to Deal with Imbalance in Multi-label Datasets. 150-160. Salamanca (Spain). https://doi.org/10.1007/978-3-642-40846-5_16 (Original work published)
View
Loading...