Antonio Jesús Rivera Rivas

First name
Antonio Jesús
Last name
Rivera Rivas

2018

Pulgar Rubio, F. J. . ., Charte Ojeda, F. ., Rivera Rivas, A. J. ., & del Jesus Díaz, M. J. . (2018). A First Approach to Face Dimensionality Reduction Through Denoising Autoencoders. 439-447. Madrid (Spain). https://doi.org/10.1007/978-3-030-03493-1_46 (Original work published)
Ver
Pulgar Rubio, F. J. . ., Charte Ojeda, F. ., Rivera Rivas, A. J. ., & del Jesus Díaz, M. J. . (2018). AEkNN: An AutoEncoder kNN-Based Classifier With Built-in Dimensionality Reduction. International Journal of Computational Intelligence Systems, 12, 436-452. https://doi.org/10.2991/ijcis.2019.0025 (Original work published 2018)
Ver
Trujillo, D. ., Rivera Rivas, A. J. ., Charte Ojeda, F. ., & del Jesus Díaz, M. J. . (2018). An Approximation to Deep Learning Touristic-Related Time Series Forecasting. 448-456. Madrid (Spain). https://doi.org/10.1007/978-3-030-03493-1_47 (Original work published)
Ver
Pulgar Rubio, F. J. . ., Rivera Rivas, A. J. ., Charte Ojeda, F. ., & del Jesus Díaz, M. J. . (2018). Análisis del impacto de datos desbalanceados en el rendimiento predictivo de redes neuronales convolucionales. 1213-1218. Granada (Spain). (Original work published)
Ver
Martínez, F. ., Frías Bustamante, M. del P. ., Pérez Godoy, M. D. . ., & Rivera Rivas, A. J. . (2018). Dealing with seasonality by narrowing the training set in time series forecasting with kNN. Expert Systems With Applications, 103, 38-48. https://doi.org/10.1016/j.eswa.2018.03.005
Ver

2017

Charte Ojeda, F. ., Espinilla, M. ., Rivera Rivas, A. J. ., & Pulgar Rubio, F. J. . . (2017). Uso de dispositivos FPGA como apoyo a la enseñanza de asignaturas de arquitectura de computadores. Enseñanza Y Aprendizaje De ingeniería De Computadores. Revista De Experiencias Docentes En ingeniería De Computadores, 7, 37-52.
Ver
Martínez, F. ., Frías Bustamante, M. del P. ., Pérez Godoy, M. D. . ., & Rivera Rivas, A. J. . (2017). A methodology for applying k-nearest neighbor to time series forecasting. Artificial Intelligence Review. https://doi.org/10.1007/s10462-017-9593-z (Original work published 2025)
Ver
Martínez, F. ., Frías, M. ., Charte Ojeda, F. ., & Rivera Rivas, A. J. . (2017). A specialized lazy learner for time series forecasting. 1397-1403. Costa Ballena, Rota, Cáadiz (Spain). (Original work published)
Ver
Rivera Rivas, A. J. ., Charte Ojeda, F. ., Pulgar Rubio, F. J. . ., & del Jesus Díaz, M. J. . (2017). A Transformation Approach Towards Big Data Multilabel Decision Trees. 73-84. Cádiz (Spain). https://doi.org/10.1007/978-3-319-59153-7_7 (Original work published)
Ver
Charte Ojeda, F. ., Romero, I. ., Pérez Godoy, M. D. . ., Rivera Rivas, A. J. ., & Castro, E. . (2017). Comparative analysis of data mining and response surface methodology predictive models for enzymatic hydrolysis of pretreated olive tree biomass. Computers \& Chemical Engineering, 101, 23-30. https://doi.org/10.1016/j.compchemeng.2017.02.008
Ver
Loading...