Maria José del Jesus Díaz

First name
Maria José
Last name
del Jesus Díaz

2017

García-Vico, Ángel M. ., González García, P. ., Carmona, C. J. ., & del Jesus Díaz, M. J. . (2017). Impact of the Type of Rule in Fuzzy Emerging Pattern Mining on a Big Data Approach. Presentado en.
Ver
Triguero, I. ., Gonzalez, S. ., Moyano, J. ., García López, S. ., Alcala-Fdez, J. ., Luengo, J. ., … PRESS., A. . (2017). KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining. International Journal of Computational Intelligence Systems, 10, 1238-1249.
Ver
Pulgar Rubio, F. J. . ., Rivera Rivas, A. J. ., Pérez Godoy, M. D. . ., González García, P. ., Carmona, C. J. ., & del Jesus Díaz, M. J. . (2017). MEFASD-BD: Multi-Objective Evolutionary Algorithm for Subgroup Discovery in Big Data Environments - A MapReduce Solution. Knowledge-Based Systems, 117, 70-78. https://doi.org/10.1016/j.knosys.2016.08.021
Ver
Pulgar Rubio, F. J. . ., Rivera Rivas, A. J. ., Charte Ojeda, F. ., & del Jesus Díaz, M. J. . (2017). On the Impact of Imbalanced Data in Convolutional Neural Networks Performance. 220-232. La Rioja (Spain). https://doi.org/10.1007/978-3-319-59650-1_19 (Original work published)
Ver
García-Vico, Ángel M. ., González García, P. ., del Jesus Díaz, M. J. ., & Carmona, C. J. . (2017). A First Approach to Handle Emergining Patterns Mining on Big Data Problems: The EvAEFP-Spark Algorithm. 1-6.
Ver
Fernández Hilario, A. L. . ., Carmona, C. J. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2017). A Pareto Based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets. International Journal of Neural Systems, 27, 1-17. https://doi.org/10.1142/S0129065717500289
Ver

2016

García-Vico, Ángel M. ., Carmona, C. J. ., González García, P. ., & del Jesus Díaz, M. J. . (2016). Minería de Patrones Emergentes: Una oportunidad para la extracción evolutiva de conocimiento. Presentado en.
Ver
Charte Ojeda, F. ., Rivera Rivas, A. J. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2016). MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation. XVII Conferencia De La Asociación Española Para La Inteligencia Artificial (CAEPIA 2016), 821-822. Salamanca (Spain). (Original work published)
Ver
Herrera Triguero, F. ., Charte Ojeda, F. ., Rivera Rivas, A. J. ., & del Jesus Díaz, M. J. . (2016). Multilabel Classification: Problem Analysis, Metrics and Techniques. Springer. https://doi.org/10.1007/978-3-319-41111-8
Ver
Charte Ojeda, F. ., Rivera Rivas, A. J. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2016). On the Impact of Dataset Complexity and Sampling Strategy in Multilabel Classifiers Performance. 500-511. Seville (Spain). https://doi.org/10.1007/978-3-319-32034-2_42 (Original work published)
Ver
Loading...