Francisco Herrera Triguero

First name
Francisco
Last name
Herrera Triguero

2009

García López, S. ., Fernández Hilario, A. L. . ., & Herrera Triguero, F. . (2009). Enhancing the Effectiveness and Interpretability of Decision Tree and Rule Induction Classifiers with Evolutionary Training Set Selection over Imbalanced Problems. Applied Soft Computing, 9, 1304-1314. https://doi.org/10.1016/j.asoc.2009.04.004
Ver
Fernández Hilario, A. L. . ., Herrera Triguero, F. ., & del Jesus Díaz, M. J. . (2009). On the influence of an adaptive inference system in fuzzy rule-based classification sytems for imbalanced data-sets. Expert Systems With Applications, 36, 9805-9812. https://doi.org/10.1016/j.eswa.2009.02.048
Ver
Romero, C. ., González García, P. ., Ventura, S. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2009). Evolutionary algorithms for subgroup discovery in e-learning: A practical application using Moodle data. Expert Systems With Applications, 36, 1632-1644.
Ver
García López, S. ., Fernández Hilario, A. L. . ., & Herrera Triguero, F. . (2009). Un Primer Estudio sobre la Utilización de Selección Evolutiva de Conjuntos de Entrenamiento en Problemas de Clasificación con Clases no Balanceadas y árboles de Decisión. 183-190. Málaga (Spain). (Original work published 2025)
Ver
Fernández Hilario, A. L. . ., Berlanga, F. ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2009). Genetic Cooperative-Competitive Fuzzy Rule Based Learning Method using Genetic Programming for Highly Imbalanced Data-Sets. 42-47. Lisbon (Portugal).
Ver
Gacto, M. J., Alcalá, R. ., & Herrera Triguero, F. . (2009). Handling High-Dimensional Regression Problems by Means of an Efficient Multi-Objective Evolutionary Algorithm. 109-114. Pisa (Italy). (Original work published 2025)
Ver
Gacto, M. J., Alcalá, R. ., & Herrera Triguero, F. . (2009). A Multiobjective Evolutionary Algorithm for Tuning Fuzzy Rule Based Systems with Measures for Preserving Interpretability. 1146-1151. Lisbon, Portugal: IFSA/EUSFLAT 2009. (Original work published 2025)
Ver
Fernández Hilario, A. L. . ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2009). Hierarchical fuzzy rule based classfication systems with genetic rule selection for imbalanced data-sets. International Journal of Approximate Reasoning, 50, 561-577. https://doi.org/10.1016/j.ijar.2008.11.004
Ver
Pérez Godoy, M. D. . ., Rivera Rivas, A. J. ., Fernández Hilario, A. L. . ., del Jesus Díaz, M. J. ., & Herrera Triguero, F. . (2009). A Preliminar Analysis of CO2RBFN in Imbalanced Problems (J. . Cabestany, F. . Sandoval, A. . Prieto, & J. M. Corchado, Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ver
Alcalá, R. ., Alcala-Fdez, J. ., Gacto, M. J., & Herrera Triguero, F. . (2009). Improving Fuzzy Logic Controllers Obtained by Experts: A Case Study in HVAC Systems. Applied Intelligence, 31, 15-30. https://doi.org/10.1007/s10489-007-0107-6
Ver
Loading...